marianokamp
commited on
Commit
•
687ef25
1
Parent(s):
d7f828e
Initial commit
Browse files- README.md +1 -1
- a2c-PandaReachDense-v2.zip +2 -2
- a2c-PandaReachDense-v2/data +10 -10
- a2c-PandaReachDense-v2/policy.optimizer.pth +1 -1
- a2c-PandaReachDense-v2/policy.pth +1 -1
- config.json +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
- vec_normalize.pkl +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value: -3.
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: -3.70 +/- 1.68
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
a2c-PandaReachDense-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:297938754d3c1b6443d8b38e94d2863ed062665e5bdb787077153c3ca3d6ea7a
|
3 |
+
size 108011
|
a2c-PandaReachDense-v2/data
CHANGED
@@ -4,9 +4,9 @@
|
|
4 |
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function MultiInputActorCriticPolicy.__init__ at
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
-
"_abc_impl": "<_abc_data object at
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
@@ -46,7 +46,7 @@
|
|
46 |
"_num_timesteps_at_start": 0,
|
47 |
"seed": null,
|
48 |
"action_noise": null,
|
49 |
-
"start_time":
|
50 |
"learning_rate": 0.0007,
|
51 |
"tensorboard_log": null,
|
52 |
"lr_schedule": {
|
@@ -55,10 +55,10 @@
|
|
55 |
},
|
56 |
"_last_obs": {
|
57 |
":type:": "<class 'collections.OrderedDict'>",
|
58 |
-
":serialized:": "
|
59 |
-
"achieved_goal": "[[
|
60 |
-
"desired_goal": "[[
|
61 |
-
"observation": "[[
|
62 |
},
|
63 |
"_last_episode_starts": {
|
64 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -66,9 +66,9 @@
|
|
66 |
},
|
67 |
"_last_original_obs": {
|
68 |
":type:": "<class 'collections.OrderedDict'>",
|
69 |
-
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
70 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
71 |
-
"desired_goal": "[[
|
72 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
73 |
},
|
74 |
"_episode_num": 0,
|
@@ -77,7 +77,7 @@
|
|
77 |
"_current_progress_remaining": 0.0,
|
78 |
"ep_info_buffer": {
|
79 |
":type:": "<class 'collections.deque'>",
|
80 |
-
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
81 |
},
|
82 |
"ep_success_buffer": {
|
83 |
":type:": "<class 'collections.deque'>",
|
|
|
4 |
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f462f880e50>",
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc_data object at 0x7f462f87e780>"
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
|
|
46 |
"_num_timesteps_at_start": 0,
|
47 |
"seed": null,
|
48 |
"action_noise": null,
|
49 |
+
"start_time": 1674410638570067454,
|
50 |
"learning_rate": 0.0007,
|
51 |
"tensorboard_log": null,
|
52 |
"lr_schedule": {
|
|
|
55 |
},
|
56 |
"_last_obs": {
|
57 |
":type:": "<class 'collections.OrderedDict'>",
|
58 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAdOfIPg//Xj3tfyU/dOfIPg//Xj3tfyU/dOfIPg//Xj3tfyU/dOfIPg//Xj3tfyU/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAANG6jPm7kbT++Xos/i7k2v7toRL+dICa8yheDP4MWmT9QwKY+DSu/P1XQgT8dgI8/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAB058g+D/9ePe1/JT/H8xy8wh84uz98gTx058g+D/9ePe1/JT/H8xy8wh84uz98gTx058g+D/9ePe1/JT/H8xy8wh84uz98gTx058g+D/9ePe1/JT/H8xy8wh84uz98gTyUaA5LBEsGhpRoEnSUUpR1Lg==",
|
59 |
+
"achieved_goal": "[[0.39239085 0.05444246 0.64648324]\n [0.39239085 0.05444246 0.64648324]\n [0.39239085 0.05444246 0.64648324]\n [0.39239085 0.05444246 0.64648324]]",
|
60 |
+
"desired_goal": "[[ 0.31920016 0.9292668 1.0888288 ]\n [-0.71376866 -0.76722306 -0.01013961]\n [ 1.0241635 1.1959995 0.32568598]\n [ 1.4935013 1.0141703 1.1210972 ]]",
|
61 |
+
"observation": "[[ 0.39239085 0.05444246 0.64648324 -0.00957961 -0.00280951 0.01580632]\n [ 0.39239085 0.05444246 0.64648324 -0.00957961 -0.00280951 0.01580632]\n [ 0.39239085 0.05444246 0.64648324 -0.00957961 -0.00280951 0.01580632]\n [ 0.39239085 0.05444246 0.64648324 -0.00957961 -0.00280951 0.01580632]]"
|
62 |
},
|
63 |
"_last_episode_starts": {
|
64 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
66 |
},
|
67 |
"_last_original_obs": {
|
68 |
":type:": "<class 'collections.OrderedDict'>",
|
69 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAgzLDPJwLUT2FNl8+E3aEvYT5Br4GA0w+p6qRvRvikj2RAjk+RPDFvRfgYj2GSp09lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
70 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
71 |
+
"desired_goal": "[[ 0.0238278 0.05103646 0.21798141]\n [-0.06467833 -0.1318112 0.19923028]\n [-0.07112627 0.07172032 0.18067385]\n [-0.09664968 0.05538949 0.0768023 ]]",
|
72 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
73 |
},
|
74 |
"_episode_num": 0,
|
|
|
77 |
"_current_progress_remaining": 0.0,
|
78 |
"ep_info_buffer": {
|
79 |
":type:": "<class 'collections.deque'>",
|
80 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIMEymCkZlAsCUhpRSlIwBbJRLMowBdJRHQKL5jVlwtJ51fZQoaAZoCWgPQwix9+KL9pgKwJSGlFKUaBVLMmgWR0Ci+U5hKDkEdX2UKGgGaAloD0MIBDkoYaYtCcCUhpRSlGgVSzJoFkdAovkOA5JbuHV9lChoBmgJaA9DCLByaJHtXAjAlIaUUpRoFUsyaBZHQKL40hxHXmN1fZQoaAZoCWgPQwgSa/EpAOYAwJSGlFKUaBVLMmgWR0Ci+nA7gbZOdX2UKGgGaAloD0MIzXfwEwdQC8CUhpRSlGgVSzJoFkdAovoxVMmF8HV9lChoBmgJaA9DCEhvuI/cOgfAlIaUUpRoFUsyaBZHQKL58OvMbFV1fZQoaAZoCWgPQwi0jxX8NuQIwJSGlFKUaBVLMmgWR0Ci+bUG3WnTdX2UKGgGaAloD0MIH2RZMPHnAcCUhpRSlGgVSzJoFkdAovtks+V1OnV9lChoBmgJaA9DCLKhm/2B0hrAlIaUUpRoFUsyaBZHQKL7JatcOb11fZQoaAZoCWgPQwhJS+XtCOcBwJSGlFKUaBVLMmgWR0Ci+uVkMCtBdX2UKGgGaAloD0MIN8XjolokDsCUhpRSlGgVSzJoFkdAovqphfBvaXV9lChoBmgJaA9DCFqeB3dnrf+/lIaUUpRoFUsyaBZHQKL8RyTY/V11fZQoaAZoCWgPQwj2C3bDtqUFwJSGlFKUaBVLMmgWR0Ci/AgjyFwldX2UKGgGaAloD0MIs7eU88V+BsCUhpRSlGgVSzJoFkdAovvHv0AcUHV9lChoBmgJaA9DCKyL22gADw3AlIaUUpRoFUsyaBZHQKL7i9YfW+Z1fZQoaAZoCWgPQwjRzmkWaLcNwJSGlFKUaBVLMmgWR0Ci/S3sPatcdX2UKGgGaAloD0MIgEbp0r9kB8CUhpRSlGgVSzJoFkdAovzvBzmwJXV9lChoBmgJaA9DCLuAlxk26gzAlIaUUpRoFUsyaBZHQKL8rq0tyxR1fZQoaAZoCWgPQwheK6G7JK4SwJSGlFKUaBVLMmgWR0Ci/HLm6oVEdX2UKGgGaAloD0MIb72mBwXlBsCUhpRSlGgVSzJoFkdAov4V/WlMy3V9lChoBmgJaA9DCAb1LXO6LALAlIaUUpRoFUsyaBZHQKL91wdbPhR1fZQoaAZoCWgPQwg7pu7KLjgLwJSGlFKUaBVLMmgWR0Ci/Za8xsVMdX2UKGgGaAloD0MIMC/APjpVEcCUhpRSlGgVSzJoFkdAov1a9K28ZnV9lChoBmgJaA9DCJFEL6NYjgnAlIaUUpRoFUsyaBZHQKL+/0yxiXp1fZQoaAZoCWgPQwgAOPbsuSwTwJSGlFKUaBVLMmgWR0Ci/sBY3eendX2UKGgGaAloD0MIi/z6ITYoFcCUhpRSlGgVSzJoFkdAov5/9WIXTHV9lChoBmgJaA9DCH+8V61MeAXAlIaUUpRoFUsyaBZHQKL+RA6dUbV1fZQoaAZoCWgPQwgjumddo2UIwJSGlFKUaBVLMmgWR0Ci/+DG96C2dX2UKGgGaAloD0MIfo0kQbiiC8CUhpRSlGgVSzJoFkdAov+hxBE8aHV9lChoBmgJaA9DCGO1+X/VEQTAlIaUUpRoFUsyaBZHQKL/YVCXyAh1fZQoaAZoCWgPQwiYv0LmyoAHwJSGlFKUaBVLMmgWR0Ci/yVoQFs6dX2UKGgGaAloD0MIeqcC7nn+AsCUhpRSlGgVSzJoFkdAowDKAUcn3XV9lChoBmgJaA9DCM8u3/qwbhbAlIaUUpRoFUsyaBZHQKMAiyAQQMB1fZQoaAZoCWgPQwggYoOFk1QFwJSGlFKUaBVLMmgWR0CjAEqxLTQWdX2UKGgGaAloD0MInmD/dW56EcCUhpRSlGgVSzJoFkdAowAO1v2oN3V9lChoBmgJaA9DCA05tp4hHA3AlIaUUpRoFUsyaBZHQKMBrupjtol1fZQoaAZoCWgPQwjh8e1dgx4OwJSGlFKUaBVLMmgWR0CjAW/KQq7RdX2UKGgGaAloD0MIKH/3jhpzDsCUhpRSlGgVSzJoFkdAowEviaRZEHV9lChoBmgJaA9DCC4CY30DswvAlIaUUpRoFUsyaBZHQKMA88B+4LF1fZQoaAZoCWgPQwg7yOvBpFgBwJSGlFKUaBVLMmgWR0CjAodCmdiEdX2UKGgGaAloD0MISiU8odcfAcCUhpRSlGgVSzJoFkdAowJIS+QEIXV9lChoBmgJaA9DCJ5haksdpALAlIaUUpRoFUsyaBZHQKMCB9d/rjZ1fZQoaAZoCWgPQwgD6WLTSmEJwJSGlFKUaBVLMmgWR0CjAcvqkdmydX2UKGgGaAloD0MIHqm+84tSCsCUhpRSlGgVSzJoFkdAowNpvkzXSXV9lChoBmgJaA9DCBVSflLtswrAlIaUUpRoFUsyaBZHQKMDKrOJLuh1fZQoaAZoCWgPQwijc36K40D/v5SGlFKUaBVLMmgWR0CjAupJGvwFdX2UKGgGaAloD0MIBoNr7uhfCsCUhpRSlGgVSzJoFkdAowKuUwBYFXV9lChoBmgJaA9DCEmdgCbChgHAlIaUUpRoFUsyaBZHQKMESnsLORl1fZQoaAZoCWgPQwhTJcreUk4bwJSGlFKUaBVLMmgWR0CjBAt6ol2NdX2UKGgGaAloD0MIey++aI93A8CUhpRSlGgVSzJoFkdAowPLBfrrxHV9lChoBmgJaA9DCDnulA7WXwPAlIaUUpRoFUsyaBZHQKMDjxTbWVh1fZQoaAZoCWgPQwioHJPF/WcVwJSGlFKUaBVLMmgWR0CjBTKaXrt3dX2UKGgGaAloD0MIyOvBpPh4CsCUhpRSlGgVSzJoFkdAowTzncL0BnV9lChoBmgJaA9DCL8rgv+tlBDAlIaUUpRoFUsyaBZHQKMEszk6tDF1fZQoaAZoCWgPQwgTYcPTKzUSwJSGlFKUaBVLMmgWR0CjBHdxp+MIdX2UKGgGaAloD0MI1GUxsfmYAcCUhpRSlGgVSzJoFkdAowYZWFN+LHV9lChoBmgJaA9DCHRcjexKaxTAlIaUUpRoFUsyaBZHQKMF2mAskIJ1fZQoaAZoCWgPQwi0rzxIT3EDwJSGlFKUaBVLMmgWR0CjBZn3cpLFdX2UKGgGaAloD0MIsOYAwRx9/L+UhpRSlGgVSzJoFkdAowVeCoS+QHV9lChoBmgJaA9DCMNlFTYDbBTAlIaUUpRoFUsyaBZHQKMHANedCmd1fZQoaAZoCWgPQwiKc9TRcVUGwJSGlFKUaBVLMmgWR0CjBsHAymALdX2UKGgGaAloD0MInL8JhQjYBsCUhpRSlGgVSzJoFkdAowaBb6guiHV9lChoBmgJaA9DCMKE0axsvw/AlIaUUpRoFUsyaBZHQKMGRa7mMfl1fZQoaAZoCWgPQwhAo3TpX/ILwJSGlFKUaBVLMmgWR0CjB+maYu01dX2UKGgGaAloD0MIwqVjzjOWCcCUhpRSlGgVSzJoFkdAoweqnzg/DHV9lChoBmgJaA9DCBSuR+F6lAHAlIaUUpRoFUsyaBZHQKMHakdFOO91fZQoaAZoCWgPQwiyD7IsmPgNwJSGlFKUaBVLMmgWR0CjBy6N+9amdX2UKGgGaAloD0MIjxmojH+/CMCUhpRSlGgVSzJoFkdAowjMjRlYl3V9lChoBmgJaA9DCChgOxixrw7AlIaUUpRoFUsyaBZHQKMIjYeT3Zh1fZQoaAZoCWgPQwglkBK7tlcUwJSGlFKUaBVLMmgWR0CjCE0hePaMdX2UKGgGaAloD0MItcL0vYbAAsCUhpRSlGgVSzJoFkdAowgRLPD503V9lChoBmgJaA9DCCKJXkaxHAnAlIaUUpRoFUsyaBZHQKMJr2Dg62h1fZQoaAZoCWgPQwjjxcIQOd0YwJSGlFKUaBVLMmgWR0CjCXBkRSP2dX2UKGgGaAloD0MIQ1a3ek4KHcCUhpRSlGgVSzJoFkdAowkwXqJMx3V9lChoBmgJaA9DCCAot+171AvAlIaUUpRoFUsyaBZHQKMI9HjIaLp1fZQoaAZoCWgPQwhH6dK/JHUFwJSGlFKUaBVLMmgWR0CjCpEaESM+dX2UKGgGaAloD0MIUigLX1/LAMCUhpRSlGgVSzJoFkdAowpSHEdeY3V9lChoBmgJaA9DCOfhBKbTGgPAlIaUUpRoFUsyaBZHQKMKEdzXBgx1fZQoaAZoCWgPQwgeqb7zi9INwJSGlFKUaBVLMmgWR0CjCdX9R77bdX2UKGgGaAloD0MIUU1J1uGIDsCUhpRSlGgVSzJoFkdAowt3eP7vX3V9lChoBmgJaA9DCBhcc0f/qxXAlIaUUpRoFUsyaBZHQKMLOH1vl2h1fZQoaAZoCWgPQwguknajj7kCwJSGlFKUaBVLMmgWR0CjCvhCtzS1dX2UKGgGaAloD0MI8GyP3nC/DsCUhpRSlGgVSzJoFkdAowq8ajvd/XV9lChoBmgJaA9DCKM6Hch6qgrAlIaUUpRoFUsyaBZHQKMMVUkv9Lp1fZQoaAZoCWgPQwj2CgvuB7wAwJSGlFKUaBVLMmgWR0CjDBZB1LamdX2UKGgGaAloD0MIxhSscTZdCsCUhpRSlGgVSzJoFkdAowvV9Wp6yHV9lChoBmgJaA9DCLQB2IAIcQjAlIaUUpRoFUsyaBZHQKMLmgyuZCx1fZQoaAZoCWgPQwjfbd44KfwawJSGlFKUaBVLMmgWR0CjDTlqBVdYdX2UKGgGaAloD0MI2o6pu7IrA8CUhpRSlGgVSzJoFkdAowz6oMrmQ3V9lChoBmgJaA9DCAgiizTxDgnAlIaUUpRoFUsyaBZHQKMMuk2P1ct1fZQoaAZoCWgPQwgNObaeIewQwJSGlFKUaBVLMmgWR0CjDH6AWi1zdX2UKGgGaAloD0MIQ6uTMxTXB8CUhpRSlGgVSzJoFkdAow4ZxaPjn3V9lChoBmgJaA9DCAnAP6VKVATAlIaUUpRoFUsyaBZHQKMN2sGxD9h1fZQoaAZoCWgPQwgVrdwLzCoCwJSGlFKUaBVLMmgWR0CjDZp4B3iadX2UKGgGaAloD0MIgjrl0Y3wBsCUhpRSlGgVSzJoFkdAow1eus90R3V9lChoBmgJaA9DCIM0Y9F0NgHAlIaUUpRoFUsyaBZHQKMPCKVII4V1fZQoaAZoCWgPQwiT407pYI0XwJSGlFKUaBVLMmgWR0CjDsml67d0dX2UKGgGaAloD0MIz6EMVTG1BMCUhpRSlGgVSzJoFkdAow6JOnEVFnV9lChoBmgJaA9DCPEr1nCR2wvAlIaUUpRoFUsyaBZHQKMOTU2DQJJ1ZS4="
|
81 |
},
|
82 |
"ep_success_buffer": {
|
83 |
":type:": "<class 'collections.deque'>",
|
a2c-PandaReachDense-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 44734
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:38926cc4371309421183c86feab1b84401bdf933e93d7ece750bdab5f1393a38
|
3 |
size 44734
|
a2c-PandaReachDense-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 46014
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:47c11708287caad4109a24c17284d2c40a057d7f2b380f0595e4678b74cee60e
|
3 |
size 46014
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f67f3b49e50>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f67f3b46690>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674394265721255687, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAIdPOPlqtyLx80xU/IdPOPlqtyLx80xU/IdPOPlqtyLx80xU/IdPOPlqtyLx80xU/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAC7a3P7eoIL+tT90/OOZ+P6BiUL632a4/dbeoPuSrGb/coJq/3qd/P1RwTz9w9Ao/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAh084+Wq3IvHzTFT9Q9Mk8t93buR7wzTwh084+Wq3IvHzTFT9Q9Mk8t93buR7wzTwh084+Wq3IvHzTFT9Q9Mk8t93buR7wzTwh084+Wq3IvHzTFT9Q9Mk8t93buR7wzTyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.40395454 -0.02449672 0.58525825]\n [ 0.40395454 -0.02449672 0.58525825]\n [ 0.40395454 -0.02449672 0.58525825]\n [ 0.40395454 -0.02449672 0.58525825]]", "desired_goal": "[[ 1.435243 -0.6275744 1.728994 ]\n [ 0.99570036 -0.20350122 1.3660191 ]\n [ 0.32952467 -0.6002791 -1.208034 ]\n [ 0.9986552 0.81030774 0.5427923 ]]", "observation": "[[ 4.0395454e-01 -2.4496723e-02 5.8525825e-01 2.4652630e-02\n -4.1936125e-04 2.5138911e-02]\n [ 4.0395454e-01 -2.4496723e-02 5.8525825e-01 2.4652630e-02\n -4.1936125e-04 2.5138911e-02]\n [ 4.0395454e-01 -2.4496723e-02 5.8525825e-01 2.4652630e-02\n -4.1936125e-04 2.5138911e-02]\n [ 4.0395454e-01 -2.4496723e-02 5.8525825e-01 2.4652630e-02\n -4.1936125e-04 2.5138911e-02]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAwlrwvejH7r3BLUo9Gj+gPZbyOD3EP3E+TzDvPPRNDb6JdVI8epXfPE6SmzwxtI0+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.11736061 -0.11659223 0.04936004]\n [ 0.07824536 0.04515322 0.23559481]\n [ 0.02919784 -0.13799268 0.01284541]\n [ 0.02729296 0.01899066 0.27676538]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI1bDfE+s0EcCUhpRSlIwBbJRLMowBdJRHQKNiruuRs/J1fZQoaAZoCWgPQwgjLCridJIEwJSGlFKUaBVLMmgWR0CjYm7IT4+KdX2UKGgGaAloD0MIymyQSUbOCsCUhpRSlGgVSzJoFkdAo2IxQP7N0XV9lChoBmgJaA9DCGQGKuPfRwTAlIaUUpRoFUsyaBZHQKNh9A1vVEx1fZQoaAZoCWgPQwjOjekJS/wKwJSGlFKUaBVLMmgWR0CjY7zyjHn2dX2UKGgGaAloD0MIBrggW5bPCsCUhpRSlGgVSzJoFkdAo2N8r9VFQXV9lChoBmgJaA9DCPerAN9tfgfAlIaUUpRoFUsyaBZHQKNjQD3/PxB1fZQoaAZoCWgPQwgeVOI6xlUQwJSGlFKUaBVLMmgWR0CjYwMH0K7adX2UKGgGaAloD0MIeR7cnbW7CcCUhpRSlGgVSzJoFkdAo2TFCzC1qnV9lChoBmgJaA9DCETcnEoGYAfAlIaUUpRoFUsyaBZHQKNkhJcPe551fZQoaAZoCWgPQwiHMlTFVDoNwJSGlFKUaBVLMmgWR0CjZEcMd92HdX2UKGgGaAloD0MIowG8BRK0A8CUhpRSlGgVSzJoFkdAo2QKaw2VFHV9lChoBmgJaA9DCKpiKv2EUwvAlIaUUpRoFUsyaBZHQKNltEGZ/kN1fZQoaAZoCWgPQwh/9bhvte4IwJSGlFKUaBVLMmgWR0CjZXRwqAjIdX2UKGgGaAloD0MIsMbZdARwBcCUhpRSlGgVSzJoFkdAo2U243FUAHV9lChoBmgJaA9DCLK5ap4j8gTAlIaUUpRoFUsyaBZHQKNk+evpyIZ1fZQoaAZoCWgPQwj3jhoTYg4GwJSGlFKUaBVLMmgWR0CjZqCkXUH6dX2UKGgGaAloD0MIgGH5821hD8CUhpRSlGgVSzJoFkdAo2ZgQpWmxnV9lChoBmgJaA9DCBniWBe3cQ/AlIaUUpRoFUsyaBZHQKNmIrZJ04l1fZQoaAZoCWgPQwhgAOFDiTYGwJSGlFKUaBVLMmgWR0CjZeXjuKGddX2UKGgGaAloD0MIzosTX+2IEsCUhpRSlGgVSzJoFkdAo2ejOiWVvHV9lChoBmgJaA9DCBR2UfTAZwnAlIaUUpRoFUsyaBZHQKNnYtGNJe51fZQoaAZoCWgPQwja5zHKM28GwJSGlFKUaBVLMmgWR0CjZyVvES/TdX2UKGgGaAloD0MI5GiOrPwSB8CUhpRSlGgVSzJoFkdAo2boV45cT3V9lChoBmgJaA9DCOAtkKD4UQ/AlIaUUpRoFUsyaBZHQKNoxIe5nUV1fZQoaAZoCWgPQwgh6GhVSzoQwJSGlFKUaBVLMmgWR0CjaIP99+gEdX2UKGgGaAloD0MIXW+bqRCfEMCUhpRSlGgVSzJoFkdAo2hHhwVCX3V9lChoBmgJaA9DCOykvizttAnAlIaUUpRoFUsyaBZHQKNoCkvboKV1fZQoaAZoCWgPQwjl7nN8tNgMwJSGlFKUaBVLMmgWR0CjabXyy2QXdX2UKGgGaAloD0MIzlFHx9WIBcCUhpRSlGgVSzJoFkdAo2l1fCyhSXV9lChoBmgJaA9DCAtCeR9H0wnAlIaUUpRoFUsyaBZHQKNpOCCjDbd1fZQoaAZoCWgPQwhAGHjuPXwHwJSGlFKUaBVLMmgWR0CjaPsd92HMdX2UKGgGaAloD0MIcLVOXI7XCMCUhpRSlGgVSzJoFkdAo2q0ETxoZnV9lChoBmgJaA9DCDUKSWb1jgXAlIaUUpRoFUsyaBZHQKNqdA/LTx51fZQoaAZoCWgPQwiVYdwNokUQwJSGlFKUaBVLMmgWR0Cjajb3Gn4xdX2UKGgGaAloD0MIoUrNHmiFBsCUhpRSlGgVSzJoFkdAo2n57zCk43V9lChoBmgJaA9DCLN5HAbzVwnAlIaUUpRoFUsyaBZHQKNr3Wvr4WV1fZQoaAZoCWgPQwhVwhN6/WEswJSGlFKUaBVLMmgWR0Cja51ivxH5dX2UKGgGaAloD0MISBlxAWgUB8CUhpRSlGgVSzJoFkdAo2tgK8cuJ3V9lChoBmgJaA9DCJChYweV+ArAlIaUUpRoFUsyaBZHQKNrIwQlKK51fZQoaAZoCWgPQwhBuAIK9VQMwJSGlFKUaBVLMmgWR0CjbMiVrylOdX2UKGgGaAloD0MIZHPVPEfkDMCUhpRSlGgVSzJoFkdAo2yIJRfnfXV9lChoBmgJaA9DCAfsavKUNQnAlIaUUpRoFUsyaBZHQKNsSulGgBd1fZQoaAZoCWgPQwh6jPLMyyEIwJSGlFKUaBVLMmgWR0CjbA3FcY65dX2UKGgGaAloD0MIgGH5820hAsCUhpRSlGgVSzJoFkdAo236r/82rHV9lChoBmgJaA9DCJIDdjV5qgvAlIaUUpRoFUsyaBZHQKNtujsUqQR1fZQoaAZoCWgPQwibAwRz9HgLwJSGlFKUaBVLMmgWR0CjbX3P7el9dX2UKGgGaAloD0MI+YIWEjBqEcCUhpRSlGgVSzJoFkdAo21BAMUh3nV9lChoBmgJaA9DCJHtfD81/grAlIaUUpRoFUsyaBZHQKNu9cIqslt1fZQoaAZoCWgPQwjb+1QVGugKwJSGlFKUaBVLMmgWR0CjbrWHLzPKdX2UKGgGaAloD0MIVTNrKSDNC8CUhpRSlGgVSzJoFkdAo254FmnO0XV9lChoBmgJaA9DCFHbhlEQ/BHAlIaUUpRoFUsyaBZHQKNuOzBRAKR1fZQoaAZoCWgPQwiDGVOwxtkMwJSGlFKUaBVLMmgWR0Cjb+ICU5dXdX2UKGgGaAloD0MISmBzDp7pDMCUhpRSlGgVSzJoFkdAo2+hnDiwS3V9lChoBmgJaA9DCC0I5X0cbQnAlIaUUpRoFUsyaBZHQKNvZBrvb491fZQoaAZoCWgPQwhYq3ZNSEsLwJSGlFKUaBVLMmgWR0CjbybRnezldX2UKGgGaAloD0MI3iBaK9pcC8CUhpRSlGgVSzJoFkdAo3Dd2gWadHV9lChoBmgJaA9DCFA0D2CRnwvAlIaUUpRoFUsyaBZHQKNwnWsA/9p1fZQoaAZoCWgPQwihE0IHXaIIwJSGlFKUaBVLMmgWR0CjcF/7BO58dX2UKGgGaAloD0MIt7jGZ7L/EsCUhpRSlGgVSzJoFkdAo3AiwpvxY3V9lChoBmgJaA9DCCdNg6J5IAnAlIaUUpRoFUsyaBZHQKNx9EqDsdF1fZQoaAZoCWgPQwi6+NueIPELwJSGlFKUaBVLMmgWR0CjcbQI+nqFdX2UKGgGaAloD0MIdv9YiA4hCcCUhpRSlGgVSzJoFkdAo3F2jZcs2HV9lChoBmgJaA9DCIDVkSOdwQzAlIaUUpRoFUsyaBZHQKNxOVoHs1N1fZQoaAZoCWgPQwiIEFfO3vkHwJSGlFKUaBVLMmgWR0CjcuepXIU8dX2UKGgGaAloD0MIq1rSUQ6GCMCUhpRSlGgVSzJoFkdAo3KnV9Wp63V9lChoBmgJaA9DCILEdvcA/QbAlIaUUpRoFUsyaBZHQKNyadI5HVh1fZQoaAZoCWgPQwgW/DbEeB0SwJSGlFKUaBVLMmgWR0CjciybQTmGdX2UKGgGaAloD0MIDMo0mlxMDsCUhpRSlGgVSzJoFkdAo3PofyPMjnV9lChoBmgJaA9DCEVGByRhnwrAlIaUUpRoFUsyaBZHQKNzqE5hjON1fZQoaAZoCWgPQwjHuyNjtfkLwJSGlFKUaBVLMmgWR0Cjc2ryDqW1dX2UKGgGaAloD0MI3GRUGcY9DcCUhpRSlGgVSzJoFkdAo3MtvCMxXXV9lChoBmgJaA9DCKX5Y1qbpgnAlIaUUpRoFUsyaBZHQKN1D4xDb8F1fZQoaAZoCWgPQwgXD+85sNwIwJSGlFKUaBVLMmgWR0CjdM/xDst1dX2UKGgGaAloD0MIUaIlj6clAMCUhpRSlGgVSzJoFkdAo3SS1stTUHV9lChoBmgJaA9DCOtvCcA/5QvAlIaUUpRoFUsyaBZHQKN0VjSXt0F1fZQoaAZoCWgPQwjHuriNBrAHwJSGlFKUaBVLMmgWR0CjdicHv+fidX2UKGgGaAloD0MIesISDyh7BsCUhpRSlGgVSzJoFkdAo3Xm2sq8UXV9lChoBmgJaA9DCBk4oKUrmBrAlIaUUpRoFUsyaBZHQKN1qZPVNHp1fZQoaAZoCWgPQwiVnX5QF2kAwJSGlFKUaBVLMmgWR0CjdW17Qb++dX2UKGgGaAloD0MICqNZ2T5kB8CUhpRSlGgVSzJoFkdAo3dtKK5083V9lChoBmgJaA9DCCxhbYydUADAlIaUUpRoFUsyaBZHQKN3LcuanaZ1fZQoaAZoCWgPQwhE+BdBYyYPwJSGlFKUaBVLMmgWR0CjdvBYFJQMdX2UKGgGaAloD0MIdR2qKcl6A8CUhpRSlGgVSzJoFkdAo3a0HryDqXV9lChoBmgJaA9DCGcPtAJD9gjAlIaUUpRoFUsyaBZHQKN4geKbayt1fZQoaAZoCWgPQwiE04IXfUUGwJSGlFKUaBVLMmgWR0CjeEHS4OMEdX2UKGgGaAloD0MI3SIw1jcw/L+UhpRSlGgVSzJoFkdAo3gEfRu0kXV9lChoBmgJaA9DCAaf5uRFRgvAlIaUUpRoFUsyaBZHQKN3x6QeV9p1fZQoaAZoCWgPQwi7KlCLwSMGwJSGlFKUaBVLMmgWR0CjeXdl2/zrdX2UKGgGaAloD0MIAhHiytlbDcCUhpRSlGgVSzJoFkdAo3k3LxI8Q3V9lChoBmgJaA9DCI21v7M9mgzAlIaUUpRoFUsyaBZHQKN4+a2F36h1fZQoaAZoCWgPQwjuemmKAOcJwJSGlFKUaBVLMmgWR0CjeLx5TqB3dX2UKGgGaAloD0MIPSmTGtogCsCUhpRSlGgVSzJoFkdAo3ptLpRoAXV9lChoBmgJaA9DCBfYYyKl2QbAlIaUUpRoFUsyaBZHQKN6LPuXu3N1fZQoaAZoCWgPQwh8KTxodt0IwJSGlFKUaBVLMmgWR0Cjee/kNnXedX2UKGgGaAloD0MIxY8xdy0BCMCUhpRSlGgVSzJoFkdAo3mysQumJnV9lChoBmgJaA9DCOtSI/QzNQfAlIaUUpRoFUsyaBZHQKN7edbPhQ51fZQoaAZoCWgPQwhI3GPpQ1cDwJSGlFKUaBVLMmgWR0CjezrSeAd5dX2UKGgGaAloD0MIAn/4+e9hD8CUhpRSlGgVSzJoFkdAo3r9iay8jHV9lChoBmgJaA9DCNDx0eKMgQ3AlIaUUpRoFUsyaBZHQKN6wFmFrVR1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f462f880e50>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f462f87e780>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674410638570067454, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAdOfIPg//Xj3tfyU/dOfIPg//Xj3tfyU/dOfIPg//Xj3tfyU/dOfIPg//Xj3tfyU/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAANG6jPm7kbT++Xos/i7k2v7toRL+dICa8yheDP4MWmT9QwKY+DSu/P1XQgT8dgI8/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAB058g+D/9ePe1/JT/H8xy8wh84uz98gTx058g+D/9ePe1/JT/H8xy8wh84uz98gTx058g+D/9ePe1/JT/H8xy8wh84uz98gTx058g+D/9ePe1/JT/H8xy8wh84uz98gTyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.39239085 0.05444246 0.64648324]\n [0.39239085 0.05444246 0.64648324]\n [0.39239085 0.05444246 0.64648324]\n [0.39239085 0.05444246 0.64648324]]", "desired_goal": "[[ 0.31920016 0.9292668 1.0888288 ]\n [-0.71376866 -0.76722306 -0.01013961]\n [ 1.0241635 1.1959995 0.32568598]\n [ 1.4935013 1.0141703 1.1210972 ]]", "observation": "[[ 0.39239085 0.05444246 0.64648324 -0.00957961 -0.00280951 0.01580632]\n [ 0.39239085 0.05444246 0.64648324 -0.00957961 -0.00280951 0.01580632]\n [ 0.39239085 0.05444246 0.64648324 -0.00957961 -0.00280951 0.01580632]\n [ 0.39239085 0.05444246 0.64648324 -0.00957961 -0.00280951 0.01580632]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAgzLDPJwLUT2FNl8+E3aEvYT5Br4GA0w+p6qRvRvikj2RAjk+RPDFvRfgYj2GSp09lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.0238278 0.05103646 0.21798141]\n [-0.06467833 -0.1318112 0.19923028]\n [-0.07112627 0.07172032 0.18067385]\n [-0.09664968 0.05538949 0.0768023 ]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIMEymCkZlAsCUhpRSlIwBbJRLMowBdJRHQKL5jVlwtJ51fZQoaAZoCWgPQwix9+KL9pgKwJSGlFKUaBVLMmgWR0Ci+U5hKDkEdX2UKGgGaAloD0MIBDkoYaYtCcCUhpRSlGgVSzJoFkdAovkOA5JbuHV9lChoBmgJaA9DCLByaJHtXAjAlIaUUpRoFUsyaBZHQKL40hxHXmN1fZQoaAZoCWgPQwgSa/EpAOYAwJSGlFKUaBVLMmgWR0Ci+nA7gbZOdX2UKGgGaAloD0MIzXfwEwdQC8CUhpRSlGgVSzJoFkdAovoxVMmF8HV9lChoBmgJaA9DCEhvuI/cOgfAlIaUUpRoFUsyaBZHQKL58OvMbFV1fZQoaAZoCWgPQwi0jxX8NuQIwJSGlFKUaBVLMmgWR0Ci+bUG3WnTdX2UKGgGaAloD0MIH2RZMPHnAcCUhpRSlGgVSzJoFkdAovtks+V1OnV9lChoBmgJaA9DCLKhm/2B0hrAlIaUUpRoFUsyaBZHQKL7JatcOb11fZQoaAZoCWgPQwhJS+XtCOcBwJSGlFKUaBVLMmgWR0Ci+uVkMCtBdX2UKGgGaAloD0MIN8XjolokDsCUhpRSlGgVSzJoFkdAovqphfBvaXV9lChoBmgJaA9DCFqeB3dnrf+/lIaUUpRoFUsyaBZHQKL8RyTY/V11fZQoaAZoCWgPQwj2C3bDtqUFwJSGlFKUaBVLMmgWR0Ci/AgjyFwldX2UKGgGaAloD0MIs7eU88V+BsCUhpRSlGgVSzJoFkdAovvHv0AcUHV9lChoBmgJaA9DCKyL22gADw3AlIaUUpRoFUsyaBZHQKL7i9YfW+Z1fZQoaAZoCWgPQwjRzmkWaLcNwJSGlFKUaBVLMmgWR0Ci/S3sPatcdX2UKGgGaAloD0MIgEbp0r9kB8CUhpRSlGgVSzJoFkdAovzvBzmwJXV9lChoBmgJaA9DCLuAlxk26gzAlIaUUpRoFUsyaBZHQKL8rq0tyxR1fZQoaAZoCWgPQwheK6G7JK4SwJSGlFKUaBVLMmgWR0Ci/HLm6oVEdX2UKGgGaAloD0MIb72mBwXlBsCUhpRSlGgVSzJoFkdAov4V/WlMy3V9lChoBmgJaA9DCAb1LXO6LALAlIaUUpRoFUsyaBZHQKL91wdbPhR1fZQoaAZoCWgPQwg7pu7KLjgLwJSGlFKUaBVLMmgWR0Ci/Za8xsVMdX2UKGgGaAloD0MIMC/APjpVEcCUhpRSlGgVSzJoFkdAov1a9K28ZnV9lChoBmgJaA9DCJFEL6NYjgnAlIaUUpRoFUsyaBZHQKL+/0yxiXp1fZQoaAZoCWgPQwgAOPbsuSwTwJSGlFKUaBVLMmgWR0Ci/sBY3eendX2UKGgGaAloD0MIi/z6ITYoFcCUhpRSlGgVSzJoFkdAov5/9WIXTHV9lChoBmgJaA9DCH+8V61MeAXAlIaUUpRoFUsyaBZHQKL+RA6dUbV1fZQoaAZoCWgPQwgjumddo2UIwJSGlFKUaBVLMmgWR0Ci/+DG96C2dX2UKGgGaAloD0MIfo0kQbiiC8CUhpRSlGgVSzJoFkdAov+hxBE8aHV9lChoBmgJaA9DCGO1+X/VEQTAlIaUUpRoFUsyaBZHQKL/YVCXyAh1fZQoaAZoCWgPQwiYv0LmyoAHwJSGlFKUaBVLMmgWR0Ci/yVoQFs6dX2UKGgGaAloD0MIeqcC7nn+AsCUhpRSlGgVSzJoFkdAowDKAUcn3XV9lChoBmgJaA9DCM8u3/qwbhbAlIaUUpRoFUsyaBZHQKMAiyAQQMB1fZQoaAZoCWgPQwggYoOFk1QFwJSGlFKUaBVLMmgWR0CjAEqxLTQWdX2UKGgGaAloD0MInmD/dW56EcCUhpRSlGgVSzJoFkdAowAO1v2oN3V9lChoBmgJaA9DCA05tp4hHA3AlIaUUpRoFUsyaBZHQKMBrupjtol1fZQoaAZoCWgPQwjh8e1dgx4OwJSGlFKUaBVLMmgWR0CjAW/KQq7RdX2UKGgGaAloD0MIKH/3jhpzDsCUhpRSlGgVSzJoFkdAowEviaRZEHV9lChoBmgJaA9DCC4CY30DswvAlIaUUpRoFUsyaBZHQKMA88B+4LF1fZQoaAZoCWgPQwg7yOvBpFgBwJSGlFKUaBVLMmgWR0CjAodCmdiEdX2UKGgGaAloD0MISiU8odcfAcCUhpRSlGgVSzJoFkdAowJIS+QEIXV9lChoBmgJaA9DCJ5haksdpALAlIaUUpRoFUsyaBZHQKMCB9d/rjZ1fZQoaAZoCWgPQwgD6WLTSmEJwJSGlFKUaBVLMmgWR0CjAcvqkdmydX2UKGgGaAloD0MIHqm+84tSCsCUhpRSlGgVSzJoFkdAowNpvkzXSXV9lChoBmgJaA9DCBVSflLtswrAlIaUUpRoFUsyaBZHQKMDKrOJLuh1fZQoaAZoCWgPQwijc36K40D/v5SGlFKUaBVLMmgWR0CjAupJGvwFdX2UKGgGaAloD0MIBoNr7uhfCsCUhpRSlGgVSzJoFkdAowKuUwBYFXV9lChoBmgJaA9DCEmdgCbChgHAlIaUUpRoFUsyaBZHQKMESnsLORl1fZQoaAZoCWgPQwhTJcreUk4bwJSGlFKUaBVLMmgWR0CjBAt6ol2NdX2UKGgGaAloD0MIey++aI93A8CUhpRSlGgVSzJoFkdAowPLBfrrxHV9lChoBmgJaA9DCDnulA7WXwPAlIaUUpRoFUsyaBZHQKMDjxTbWVh1fZQoaAZoCWgPQwioHJPF/WcVwJSGlFKUaBVLMmgWR0CjBTKaXrt3dX2UKGgGaAloD0MIyOvBpPh4CsCUhpRSlGgVSzJoFkdAowTzncL0BnV9lChoBmgJaA9DCL8rgv+tlBDAlIaUUpRoFUsyaBZHQKMEszk6tDF1fZQoaAZoCWgPQwgTYcPTKzUSwJSGlFKUaBVLMmgWR0CjBHdxp+MIdX2UKGgGaAloD0MI1GUxsfmYAcCUhpRSlGgVSzJoFkdAowYZWFN+LHV9lChoBmgJaA9DCHRcjexKaxTAlIaUUpRoFUsyaBZHQKMF2mAskIJ1fZQoaAZoCWgPQwi0rzxIT3EDwJSGlFKUaBVLMmgWR0CjBZn3cpLFdX2UKGgGaAloD0MIsOYAwRx9/L+UhpRSlGgVSzJoFkdAowVeCoS+QHV9lChoBmgJaA9DCMNlFTYDbBTAlIaUUpRoFUsyaBZHQKMHANedCmd1fZQoaAZoCWgPQwiKc9TRcVUGwJSGlFKUaBVLMmgWR0CjBsHAymALdX2UKGgGaAloD0MInL8JhQjYBsCUhpRSlGgVSzJoFkdAowaBb6guiHV9lChoBmgJaA9DCMKE0axsvw/AlIaUUpRoFUsyaBZHQKMGRa7mMfl1fZQoaAZoCWgPQwhAo3TpX/ILwJSGlFKUaBVLMmgWR0CjB+maYu01dX2UKGgGaAloD0MIwqVjzjOWCcCUhpRSlGgVSzJoFkdAoweqnzg/DHV9lChoBmgJaA9DCBSuR+F6lAHAlIaUUpRoFUsyaBZHQKMHakdFOO91fZQoaAZoCWgPQwiyD7IsmPgNwJSGlFKUaBVLMmgWR0CjBy6N+9amdX2UKGgGaAloD0MIjxmojH+/CMCUhpRSlGgVSzJoFkdAowjMjRlYl3V9lChoBmgJaA9DCChgOxixrw7AlIaUUpRoFUsyaBZHQKMIjYeT3Zh1fZQoaAZoCWgPQwglkBK7tlcUwJSGlFKUaBVLMmgWR0CjCE0hePaMdX2UKGgGaAloD0MItcL0vYbAAsCUhpRSlGgVSzJoFkdAowgRLPD503V9lChoBmgJaA9DCCKJXkaxHAnAlIaUUpRoFUsyaBZHQKMJr2Dg62h1fZQoaAZoCWgPQwjjxcIQOd0YwJSGlFKUaBVLMmgWR0CjCXBkRSP2dX2UKGgGaAloD0MIQ1a3ek4KHcCUhpRSlGgVSzJoFkdAowkwXqJMx3V9lChoBmgJaA9DCCAot+171AvAlIaUUpRoFUsyaBZHQKMI9HjIaLp1fZQoaAZoCWgPQwhH6dK/JHUFwJSGlFKUaBVLMmgWR0CjCpEaESM+dX2UKGgGaAloD0MIUigLX1/LAMCUhpRSlGgVSzJoFkdAowpSHEdeY3V9lChoBmgJaA9DCOfhBKbTGgPAlIaUUpRoFUsyaBZHQKMKEdzXBgx1fZQoaAZoCWgPQwgeqb7zi9INwJSGlFKUaBVLMmgWR0CjCdX9R77bdX2UKGgGaAloD0MIUU1J1uGIDsCUhpRSlGgVSzJoFkdAowt3eP7vX3V9lChoBmgJaA9DCBhcc0f/qxXAlIaUUpRoFUsyaBZHQKMLOH1vl2h1fZQoaAZoCWgPQwguknajj7kCwJSGlFKUaBVLMmgWR0CjCvhCtzS1dX2UKGgGaAloD0MI8GyP3nC/DsCUhpRSlGgVSzJoFkdAowq8ajvd/XV9lChoBmgJaA9DCKM6Hch6qgrAlIaUUpRoFUsyaBZHQKMMVUkv9Lp1fZQoaAZoCWgPQwj2CgvuB7wAwJSGlFKUaBVLMmgWR0CjDBZB1LamdX2UKGgGaAloD0MIxhSscTZdCsCUhpRSlGgVSzJoFkdAowvV9Wp6yHV9lChoBmgJaA9DCLQB2IAIcQjAlIaUUpRoFUsyaBZHQKMLmgyuZCx1fZQoaAZoCWgPQwjfbd44KfwawJSGlFKUaBVLMmgWR0CjDTlqBVdYdX2UKGgGaAloD0MI2o6pu7IrA8CUhpRSlGgVSzJoFkdAowz6oMrmQ3V9lChoBmgJaA9DCAgiizTxDgnAlIaUUpRoFUsyaBZHQKMMuk2P1ct1fZQoaAZoCWgPQwgNObaeIewQwJSGlFKUaBVLMmgWR0CjDH6AWi1zdX2UKGgGaAloD0MIQ6uTMxTXB8CUhpRSlGgVSzJoFkdAow4ZxaPjn3V9lChoBmgJaA9DCAnAP6VKVATAlIaUUpRoFUsyaBZHQKMN2sGxD9h1fZQoaAZoCWgPQwgVrdwLzCoCwJSGlFKUaBVLMmgWR0CjDZp4B3iadX2UKGgGaAloD0MIgjrl0Y3wBsCUhpRSlGgVSzJoFkdAow1eus90R3V9lChoBmgJaA9DCIM0Y9F0NgHAlIaUUpRoFUsyaBZHQKMPCKVII4V1fZQoaAZoCWgPQwiT407pYI0XwJSGlFKUaBVLMmgWR0CjDsml67d0dX2UKGgGaAloD0MIz6EMVTG1BMCUhpRSlGgVSzJoFkdAow6JOnEVFnV9lChoBmgJaA9DCPEr1nCR2wvAlIaUUpRoFUsyaBZHQKMOTU2DQJJ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward": -3.
|
|
|
1 |
+
{"mean_reward": -3.704546856647357, "std_reward": 1.6820800529801874, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-22T18:44:40.603149"}
|
vec_normalize.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 3056
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5a41347e0a1033f5e91a7e4923f86fadaff6ec3420abbaa2d1a551c00c2cb20f
|
3 |
size 3056
|