marianokamp
commited on
Commit
•
e47c1e4
1
Parent(s):
e3620e2
Initial commit
Browse files- README.md +1 -1
- a2c-PandaReachDense-v2.zip +2 -2
- a2c-PandaReachDense-v2/data +22 -20
- a2c-PandaReachDense-v2/policy.optimizer.pth +2 -2
- a2c-PandaReachDense-v2/policy.pth +2 -2
- config.json +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
- vec_normalize.pkl +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value: -
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: -0.94 +/- 0.23
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
a2c-PandaReachDense-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8a865d8fe626f2c35159a83b202cd1d048be233f713c9ecd8175fd99e45941b0
|
3 |
+
size 109570
|
a2c-PandaReachDense-v2/data
CHANGED
@@ -11,7 +11,9 @@
|
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
13 |
":type:": "<class 'dict'>",
|
14 |
-
":serialized:": "
|
|
|
|
|
15 |
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
"optimizer_kwargs": {
|
17 |
"alpha": 0.99,
|
@@ -41,54 +43,54 @@
|
|
41 |
"_np_random": null
|
42 |
},
|
43 |
"n_envs": 4,
|
44 |
-
"num_timesteps":
|
45 |
-
"_total_timesteps":
|
46 |
"_num_timesteps_at_start": 0,
|
47 |
"seed": null,
|
48 |
"action_noise": null,
|
49 |
-
"start_time":
|
50 |
-
"learning_rate": 0.
|
51 |
"tensorboard_log": null,
|
52 |
"lr_schedule": {
|
53 |
":type:": "<class 'function'>",
|
54 |
-
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/
|
55 |
},
|
56 |
"_last_obs": {
|
57 |
":type:": "<class 'collections.OrderedDict'>",
|
58 |
-
":serialized:": "
|
59 |
-
"achieved_goal": "[[
|
60 |
-
"desired_goal": "[[ 1.
|
61 |
-
"observation": "[[
|
62 |
},
|
63 |
"_last_episode_starts": {
|
64 |
":type:": "<class 'numpy.ndarray'>",
|
65 |
-
":serialized:": "
|
66 |
},
|
67 |
"_last_original_obs": {
|
68 |
":type:": "<class 'collections.OrderedDict'>",
|
69 |
-
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
70 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
71 |
-
"desired_goal": "[[-
|
72 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
73 |
},
|
74 |
"_episode_num": 0,
|
75 |
-
"use_sde":
|
76 |
"sde_sample_freq": -1,
|
77 |
-
"_current_progress_remaining": 0.
|
78 |
"ep_info_buffer": {
|
79 |
":type:": "<class 'collections.deque'>",
|
80 |
-
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
81 |
},
|
82 |
"ep_success_buffer": {
|
83 |
":type:": "<class 'collections.deque'>",
|
84 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
85 |
},
|
86 |
-
"_n_updates":
|
87 |
-
"n_steps":
|
88 |
"gamma": 0.99,
|
89 |
-
"gae_lambda":
|
90 |
"ent_coef": 0.0,
|
91 |
-
"vf_coef": 0.
|
92 |
"max_grad_norm": 0.5,
|
93 |
"normalize_advantage": false
|
94 |
}
|
|
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
13 |
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
15 |
+
"log_std_init": -2,
|
16 |
+
"ortho_init": false,
|
17 |
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
18 |
"optimizer_kwargs": {
|
19 |
"alpha": 0.99,
|
|
|
43 |
"_np_random": null
|
44 |
},
|
45 |
"n_envs": 4,
|
46 |
+
"num_timesteps": 7776,
|
47 |
+
"_total_timesteps": 1000000,
|
48 |
"_num_timesteps_at_start": 0,
|
49 |
"seed": null,
|
50 |
"action_noise": null,
|
51 |
+
"start_time": 1674677262855477877,
|
52 |
+
"learning_rate": 0.00096,
|
53 |
"tensorboard_log": null,
|
54 |
"lr_schedule": {
|
55 |
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
57 |
},
|
58 |
"_last_obs": {
|
59 |
":type:": "<class 'collections.OrderedDict'>",
|
60 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAtxLIP+Eps75k+oC/KFsLvwTmAT/8tTI/VI6gPcNjpL61OOq+jUGWPl+DuT8ToNU+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAATR/ZP/ocv74mgZq/oqQvvyoi7z4HANI+KeEJvplh4r6uKT6/tsjHPYu+zj96U2g+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAC3Esg/4SmzvmT6gL+T07A+YOtyPnRhCD8oWwu/BOYBP/y1Mj8z2vi+N4rcvV+tAb1UjqA9w2OkvrU46r48Oaw+yY0iPSQ/qT6NQZY+X4O5PxOg1T6Nq3g/DajmPaKWh76UaA5LBEsGhpRoEnSUUpR1Lg==",
|
61 |
+
"achieved_goal": "[[ 1.5630711 -0.3499289 -1.0076413 ]\n [-0.5443597 0.507416 0.69808936]\n [ 0.07839647 -0.32107362 -0.4574639 ]\n [ 0.29346886 1.4493216 0.4172369 ]]",
|
62 |
+
"desired_goal": "[[ 1.6962677 -0.37326795 -1.2070663 ]\n [-0.68610585 0.46705753 0.41015646]\n [-0.13464798 -0.44215086 -0.7428235 ]\n [ 0.09755079 1.6151899 0.22688094]]",
|
63 |
+
"observation": "[[ 1.5630711 -0.3499289 -1.0076413 0.34536418 0.23722601 0.532737 ]\n [-0.5443597 0.507416 0.69808936 -0.48603973 -0.1076855 -0.03165948]\n [ 0.07839647 -0.32107362 -0.4574639 0.33637416 0.039686 0.33055985]\n [ 0.29346886 1.4493216 0.4172369 0.97136766 0.11262522 -0.2648211 ]]"
|
64 |
},
|
65 |
"_last_episode_starts": {
|
66 |
":type:": "<class 'numpy.ndarray'>",
|
67 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
68 |
},
|
69 |
"_last_original_obs": {
|
70 |
":type:": "<class 'collections.OrderedDict'>",
|
71 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAL95JPYRNA71sWcY48LLAvcuI9LtKClY+Xy3aPSgAWz2yHls+bHoyvDjw+b1M8Hc+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
72 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
73 |
+
"desired_goal": "[[ 4.9284156e-02 -3.2056347e-02 9.4580319e-05]\n [-9.4091296e-02 -7.4625961e-03 2.0902362e-01]\n [ 1.0653185e-01 5.3466946e-02 2.1398428e-01]\n [-1.0893445e-02 -1.2204021e-01 2.4212760e-01]]",
|
74 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
75 |
},
|
76 |
"_episode_num": 0,
|
77 |
+
"use_sde": true,
|
78 |
"sde_sample_freq": -1,
|
79 |
+
"_current_progress_remaining": 0.992224,
|
80 |
"ep_info_buffer": {
|
81 |
":type:": "<class 'collections.deque'>",
|
82 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIi/okd9jE8L+UhpRSlIwBbJRLMowBdJRHQLR0uNjslcB1fZQoaAZoCWgPQwhN+RBUjd7sv5SGlFKUaBVLMmgWR0C0dJTXSSeRdX2UKGgGaAloD0MICaaaWUsB5L+UhpRSlGgVSzJoFkdAtHR2aoddV3V9lChoBmgJaA9DCFG7XwX4bve/lIaUUpRoFUsyaBZHQLR0V9KVY6p1fZQoaAZoCWgPQwjWcmcmGE7rv5SGlFKUaBVLMmgWR0C0dS/r4WUKdX2UKGgGaAloD0MIr7FLVG+N9b+UhpRSlGgVSzJoFkdAtHULyup0fnV9lChoBmgJaA9DCGPuWkI+KPK/lIaUUpRoFUsyaBZHQLR07VyFPBV1fZQoaAZoCWgPQwhIbHcP0P3wv5SGlFKUaBVLMmgWR0C0dM65byH3dX2UKGgGaAloD0MIaHdIMUCi7b+UhpRSlGgVSzJoFkdAtHWqHh0heXV9lChoBmgJaA9DCJcBZylZDvK/lIaUUpRoFUsyaBZHQLR1hhWo3rF1fZQoaAZoCWgPQwieKXReY9fxv5SGlFKUaBVLMmgWR0C0dWfOt4iYdX2UKGgGaAloD0MI98snK4br8r+UhpRSlGgVSzJoFkdAtHVJN+LFXXV9lChoBmgJaA9DCGu5MxMM5+2/lIaUUpRoFUsyaBZHQLR2KMKkVN51fZQoaAZoCWgPQwgB323eOKnlv5SGlFKUaBVLMmgWR0C0dgS/bj95dX2UKGgGaAloD0MIDhDM0eP3+7+UhpRSlGgVSzJoFkdAtHXmrHU+cHV9lChoBmgJaA9DCNlaXyS05e+/lIaUUpRoFUsyaBZHQLR1yE87p3Z1fZQoaAZoCWgPQwjF5XgFoufyv5SGlFKUaBVLMmgWR0C0dqqfFrEcdX2UKGgGaAloD0MIYqJBCp4C9r+UhpRSlGgVSzJoFkdAtHaGqhlDnnV9lChoBmgJaA9DCAsqqn6l8/W/lIaUUpRoFUsyaBZHQLR2aGPPszF1fZQoaAZoCWgPQwh5dvnWh3Xqv5SGlFKUaBVLMmgWR0C0dknZ9NN8dX2UKGgGaAloD0MI6uv5muUy87+UhpRSlGgVSzJoFkdAtHcqsLfDUHV9lChoBmgJaA9DCH7hlSTP9fG/lIaUUpRoFUsyaBZHQLR3BpWFN+N1fZQoaAZoCWgPQwhj0t9L4cHpv5SGlFKUaBVLMmgWR0C0duhO1v2odX2UKGgGaAloD0MIRpc3h2s187+UhpRSlGgVSzJoFkdAtHbJvXK8tnV9lChoBmgJaA9DCOs3E9OF2Oq/lIaUUpRoFUsyaBZHQLR3wfDk2gp1fZQoaAZoCWgPQwhlVBnG3aDvv5SGlFKUaBVLMmgWR0C0d53jp9qldX2UKGgGaAloD0MIV5QSglV17L+UhpRSlGgVSzJoFkdAtHd/nnuAqnV9lChoBmgJaA9DCHDSNCiah+6/lIaUUpRoFUsyaBZHQLR3YPci4ax1fZQoaAZoCWgPQwh6NUBpqNHvv5SGlFKUaBVLMmgWR0C0eESI1tO3dX2UKGgGaAloD0MIXRWoxeBh3L+UhpRSlGgVSzJoFkdAtHggd2gWanV9lChoBmgJaA9DCBdIUPwYM/G/lIaUUpRoFUsyaBZHQLR4AjX4CZF1fZQoaAZoCWgPQwhaDvRQ2wbov5SGlFKUaBVLMmgWR0C0d+Oo99tudX2UKGgGaAloD0MIhleSPNe39L+UhpRSlGgVSzJoFkdAtHjNp1zQu3V9lChoBmgJaA9DCOj2ksZoHea/lIaUUpRoFUsyaBZHQLR4qaXKKYR1fZQoaAZoCWgPQwhFhH8RNGbwv5SGlFKUaBVLMmgWR0C0eItsBQvYdX2UKGgGaAloD0MIkZp2Mc105r+UhpRSlGgVSzJoFkdAtHhs4ku6E3V9lChoBmgJaA9DCMgljjwQ2fe/lIaUUpRoFUsyaBZHQLR5T9Ujs2N1fZQoaAZoCWgPQwhtO22NCEbkv5SGlFKUaBVLMmgWR0C0eSvOyE+QdX2UKGgGaAloD0MIJSGRtvEn7b+UhpRSlGgVSzJoFkdAtHkNhoduHnV9lChoBmgJaA9DCFis4SL3tPG/lIaUUpRoFUsyaBZHQLR47wB5ooN1fZQoaAZoCWgPQwhWZkrrbwnuv5SGlFKUaBVLMmgWR0C0edJFspG4dX2UKGgGaAloD0MIvM6G/DMD5b+UhpRSlGgVSzJoFkdAtHmuO1fE43V9lChoBmgJaA9DCMXHJ2Tnbeq/lIaUUpRoFUsyaBZHQLR5j/tIClt1fZQoaAZoCWgPQwjV6UDWUyvpv5SGlFKUaBVLMmgWR0C0eXFa0QbudX2UKGgGaAloD0MIpRMJpppZ47+UhpRSlGgVSzJoFkdAtHpVlZowmHV9lChoBmgJaA9DCHedDflnhvS/lIaUUpRoFUsyaBZHQLR6MXwsoUl1fZQoaAZoCWgPQwiwc9NmnEbwv5SGlFKUaBVLMmgWR0C0ehMbR4QjdX2UKGgGaAloD0MIeH5Rgv4C9r+UhpRSlGgVSzJoFkdAtHn0iD/VAnV9lChoBmgJaA9DCKKb/YFyG/+/lIaUUpRoFUsyaBZHQLR61VG0/np1fZQoaAZoCWgPQwjSbYlccAbpv5SGlFKUaBVLMmgWR0C0erFD8cdYdX2UKGgGaAloD0MIQN6rViZ88L+UhpRSlGgVSzJoFkdAtHqS+vhZQ3V9lChoBmgJaA9DCKgZUkXxquq/lIaUUpRoFUsyaBZHQLR6dGWD6Fd1fZQoaAZoCWgPQwghkbbxJyrtv5SGlFKUaBVLMmgWR0C0e1ODWbw0dX2UKGgGaAloD0MIsDvdeeK57b+UhpRSlGgVSzJoFkdAtHsvcCYCyXV9lChoBmgJaA9DCK7VHvZCgfS/lIaUUpRoFUsyaBZHQLR7ES/j81p1fZQoaAZoCWgPQwhEUgslk1Puv5SGlFKUaBVLMmgWR0C0evJ8F6iTdX2UKGgGaAloD0MI0y8Rb53/6L+UhpRSlGgVSzJoFkdAtHvSM4tHx3V9lChoBmgJaA9DCB+CqtGrwfK/lIaUUpRoFUsyaBZHQLR7rinYQJ51fZQoaAZoCWgPQwiqLXWQ14P3v5SGlFKUaBVLMmgWR0C0e4/omoitdX2UKGgGaAloD0MIAP+UKlF267+UhpRSlGgVSzJoFkdAtHtxTfixV3V9lChoBmgJaA9DCOSCM/j7Reu/lIaUUpRoFUsyaBZHQLR8UGHYYix1fZQoaAZoCWgPQwjNk2sKZHbzv5SGlFKUaBVLMmgWR0C0fCxV6u4gdX2UKGgGaAloD0MIXi13ZoLh6L+UhpRSlGgVSzJoFkdAtHwOD28IzHV9lChoBmgJaA9DCPATB9Dve/O/lIaUUpRoFUsyaBZHQLR773i704B1fZQoaAZoCWgPQwg5X+y9+CL1v5SGlFKUaBVLMmgWR0C0fM+HN5dGdX2UKGgGaAloD0MICYhJuJDH8L+UhpRSlGgVSzJoFkdAtHyrgTAWSHV9lChoBmgJaA9DCGYucHmsmeS/lIaUUpRoFUsyaBZHQLR8jTyauwJ1fZQoaAZoCWgPQwhu+x7116v0v5SGlFKUaBVLMmgWR0C0fG6T8pCsdX2UKGgGaAloD0MIsyYW+Ipu8L+UhpRSlGgVSzJoFkdAtH1OfK6nSHV9lChoBmgJaA9DCILknUMZ6ve/lIaUUpRoFUsyaBZHQLR9KmNBF/h1fZQoaAZoCWgPQwimmIOgoxX0v5SGlFKUaBVLMmgWR0C0fQv2Cdz5dX2UKGgGaAloD0MIW7OVl/yP87+UhpRSlGgVSzJoFkdAtHztTisGPnV9lChoBmgJaA9DCA+Z8iGoWvi/lIaUUpRoFUsyaBZHQLR90OinHed1fZQoaAZoCWgPQwhwCisVVBT8v5SGlFKUaBVLMmgWR0C0fazXOGCadX2UKGgGaAloD0MIwMsMG2X98b+UhpRSlGgVSzJoFkdAtH2Om51/2HV9lChoBmgJaA9DCEwW9x+ZzvG/lIaUUpRoFUsyaBZHQLR9b/4Irvt1fZQoaAZoCWgPQwjt2AjE6/ruv5SGlFKUaBVLMmgWR0C0flia7VawdX2UKGgGaAloD0MIiC8TRUgd9L+UhpRSlGgVSzJoFkdAtH40i/wiJXV9lChoBmgJaA9DCPJ376gxYfm/lIaUUpRoFUsyaBZHQLR+FjxkNF11fZQoaAZoCWgPQwgTKji8IOLxv5SGlFKUaBVLMmgWR0C0fffUnXumdX2UKGgGaAloD0MI4ZnQJLEk+L+UhpRSlGgVSzJoFkdAtH7iv0RODnV9lChoBmgJaA9DCAbYR6euvPC/lIaUUpRoFUsyaBZHQLR+vsw+MZR1fZQoaAZoCWgPQwhJhEawcT3wv5SGlFKUaBVLMmgWR0C0fqCKiwjddX2UKGgGaAloD0MIsMdESrN59L+UhpRSlGgVSzJoFkdAtH6B+uvECXV9lChoBmgJaA9DCIwPs5dtp+K/lIaUUpRoFUsyaBZHQLR/anAIpph1fZQoaAZoCWgPQwgtmPijqDPxv5SGlFKUaBVLMmgWR0C0f0Zswco6dX2UKGgGaAloD0MIb6DAO/n06r+UhpRSlGgVSzJoFkdAtH8oIppeu3V9lChoBmgJaA9DCKt7ZHPVfPS/lIaUUpRoFUsyaBZHQLR/CYu01Il1fZQoaAZoCWgPQwjpuBrZlRbqv5SGlFKUaBVLMmgWR0C0f+/3N9pidX2UKGgGaAloD0MIJ2co7niT8b+UhpRSlGgVSzJoFkdAtH/MB8x9HHV9lChoBmgJaA9DCFD9g0iGHPC/lIaUUpRoFUsyaBZHQLR/ra7EpAl1fZQoaAZoCWgPQwisHcU56mjuv5SGlFKUaBVLMmgWR0C0f48Z1mrbdX2UKGgGaAloD0MIdHtJY7RO8r+UhpRSlGgVSzJoFkdAtICMDB/I83V9lChoBmgJaA9DCJS8OseALPG/lIaUUpRoFUsyaBZHQLSAZ/smfGx1fZQoaAZoCWgPQwis5jki3yXvv5SGlFKUaBVLMmgWR0C0gEmw3YL9dX2UKGgGaAloD0MItAOuK2aE8L+UhpRSlGgVSzJoFkdAtIArlaKUFHV9lChoBmgJaA9DCOLMr+YAQey/lIaUUpRoFUsyaBZHQLSBDIrvsqt1fZQoaAZoCWgPQwh1OpD11Grmv5SGlFKUaBVLMmgWR0C0gOiAlOXWdX2UKGgGaAloD0MICyjU00fg97+UhpRSlGgVSzJoFkdAtIDKTTvy9XV9lChoBmgJaA9DCMTouYWuRPu/lIaUUpRoFUsyaBZHQLSAq7btZ3d1ZS4="
|
83 |
},
|
84 |
"ep_success_buffer": {
|
85 |
":type:": "<class 'collections.deque'>",
|
86 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
87 |
},
|
88 |
+
"_n_updates": 31492,
|
89 |
+
"n_steps": 8,
|
90 |
"gamma": 0.99,
|
91 |
+
"gae_lambda": 0.9,
|
92 |
"ent_coef": 0.0,
|
93 |
+
"vf_coef": 0.4,
|
94 |
"max_grad_norm": 0.5,
|
95 |
"normalize_advantage": false
|
96 |
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:baf9c354fcd8201849fca946699bfc454f1cde448960733139517d8954bb9246
|
3 |
+
size 45438
|
a2c-PandaReachDense-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f61ef0cc43ff64abb5d0ed4b425c3d98c5c64888d461eeb7213e064d4bf2bc95
|
3 |
+
size 46718
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f686f3833a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f686f37bae0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674666697281733540, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAfWeCPnTdbL3YuhY/fWeCPnTdbL3YuhY/fWeCPnTdbL3YuhY/fWeCPnTdbL3YuhY/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA89GoP2pDyT+S64G/e/7Sv7ZSvz5UXJA+NHVmPWCGQL9dRI4/Sf2EPxwRsT8LmQc/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAB9Z4I+dN1svdi6Fj/gZVE8zFTpOmi3+Tx9Z4I+dN1svdi6Fj/gZVE8zFTpOmi3+Tx9Z4I+dN1svdi6Fj/gZVE8zFTpOmi3+Tx9Z4I+dN1svdi6Fj/gZVE8zFTpOmi3+TyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.2546958 -0.05782838 0.5887885 ]\n [ 0.2546958 -0.05782838 0.5887885 ]\n [ 0.2546958 -0.05782838 0.5887885 ]\n [ 0.2546958 -0.05782838 0.5887885 ]]", "desired_goal": "[[ 1.3189071 1.5723698 -1.0150015 ]\n [-1.6483911 0.3736779 0.2819544 ]\n [ 0.05626412 -0.7520504 1.1114613 ]\n [ 1.0389796 1.3833346 0.529679 ]]", "observation": "[[ 0.2546958 -0.05782838 0.5887885 0.01278064 0.00178018 0.03048296]\n [ 0.2546958 -0.05782838 0.5887885 0.01278064 0.00178018 0.03048296]\n [ 0.2546958 -0.05782838 0.5887885 0.01278064 0.00178018 0.03048296]\n [ 0.2546958 -0.05782838 0.5887885 0.01278064 0.00178018 0.03048296]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA0NwUvSVK4j0kFo89gaZiu/TjOr0BMG0++hjEvY6vyj16P6w9I6SovSt4Bb7rDDU8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.0363434 0.11049298 0.06986645]\n [-0.00345841 -0.04562755 0.23162843]\n [-0.09575076 0.09896766 0.08410545]\n [-0.08234432 -0.13034122 0.01105044]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIniRdM/nGI8CUhpRSlIwBbJRLMowBdJRHQLN4+0dilSF1fZQoaAZoCWgPQwg4EJIFTPArwJSGlFKUaBVLMmgWR0CzeN4SQHRkdX2UKGgGaAloD0MIi4ujchPVKcCUhpRSlGgVSzJoFkdAs3jBgrpaBHV9lChoBmgJaA9DCDcZVYZxbynAlIaUUpRoFUsyaBZHQLN4ogH/tIF1fZQoaAZoCWgPQwhl+5C3XCdAwJSGlFKUaBVLMmgWR0CzeY9d7fHhdX2UKGgGaAloD0MI91j60AW9JcCUhpRSlGgVSzJoFkdAs3lyz3RG+nV9lChoBmgJaA9DCCNpN/qYzynAlIaUUpRoFUsyaBZHQLN5Vbo8p1B1fZQoaAZoCWgPQwhuowG8BcIqwJSGlFKUaBVLMmgWR0CzeTZPuXu3dX2UKGgGaAloD0MId9fZkH+2J8CUhpRSlGgVSzJoFkdAs3oPCEYfn3V9lChoBmgJaA9DCIl5VtKKTxjAlIaUUpRoFUsyaBZHQLN58cENe+p1fZQoaAZoCWgPQwj0aoDSUHMawJSGlFKUaBVLMmgWR0CzedSzgMtsdX2UKGgGaAloD0MIz77yID01LMCUhpRSlGgVSzJoFkdAs3m1SwW30HV9lChoBmgJaA9DCAIQd/UqwhHAlIaUUpRoFUsyaBZHQLN6hCaqjrR1fZQoaAZoCWgPQwiUwOYcPGMZwJSGlFKUaBVLMmgWR0CzemcCxNZedX2UKGgGaAloD0MI8fCeA8uhJMCUhpRSlGgVSzJoFkdAs3pKCL/CInV9lChoBmgJaA9DCII5evzetiLAlIaUUpRoFUsyaBZHQLN6KmqYJE91fZQoaAZoCWgPQwiiCn+GN/sXwJSGlFKUaBVLMmgWR0CzewNG3F1kdX2UKGgGaAloD0MIQPuRIjJIO8CUhpRSlGgVSzJoFkdAs3rmHSF493V9lChoBmgJaA9DCOgRo+cWChzAlIaUUpRoFUsyaBZHQLN6yQXQ+ll1fZQoaAZoCWgPQwjmPjkKEGUlwJSGlFKUaBVLMmgWR0CzeqlII4VAdX2UKGgGaAloD0MIZ2FPO/wxQMCUhpRSlGgVSzJoFkdAs3uaDEm6XnV9lChoBmgJaA9DCIofY+5aYjrAlIaUUpRoFUsyaBZHQLN7fMfigkF1fZQoaAZoCWgPQwjbv7LSpKQ5wJSGlFKUaBVLMmgWR0Cze1/NqxkedX2UKGgGaAloD0MIVHB4QUSSNMCUhpRSlGgVSzJoFkdAs3tAAiml7HV9lChoBmgJaA9DCGLcDaK1miDAlIaUUpRoFUsyaBZHQLN8IkcS5Ah1fZQoaAZoCWgPQwhDqiheZdUlwJSGlFKUaBVLMmgWR0CzfAWI0qH5dX2UKGgGaAloD0MIXAAapUv/JMCUhpRSlGgVSzJoFkdAs3voZMtbtHV9lChoBmgJaA9DCEuUvaWc3xHAlIaUUpRoFUsyaBZHQLN7yJD3M6l1fZQoaAZoCWgPQwiN0xBV+PMPwJSGlFKUaBVLMmgWR0CzfKijHn2adX2UKGgGaAloD0MIrb8lAP+EKcCUhpRSlGgVSzJoFkdAs3yLYywfQ3V9lChoBmgJaA9DCK1tisdFsTPAlIaUUpRoFUsyaBZHQLN8bp9JBgN1fZQoaAZoCWgPQwiRCfg1kkQ3wJSGlFKUaBVLMmgWR0CzfE6yGBWgdX2UKGgGaAloD0MItOTxtPwwFcCUhpRSlGgVSzJoFkdAs30hmTTvzHV9lChoBmgJaA9DCNtq1hnfVxLAlIaUUpRoFUsyaBZHQLN9BEzfrKN1fZQoaAZoCWgPQwjGGFjH8aMPwJSGlFKUaBVLMmgWR0CzfOdiQT24dX2UKGgGaAloD0MI740hADgWJcCUhpRSlGgVSzJoFkdAs3zHhisnzHV9lChoBmgJaA9DCJc5XRYT+ynAlIaUUpRoFUsyaBZHQLN9oSzw+dN1fZQoaAZoCWgPQwid19glqjcbwJSGlFKUaBVLMmgWR0CzfYRSUC7sdX2UKGgGaAloD0MIj4mUZvPoFMCUhpRSlGgVSzJoFkdAs31nMxGlRHV9lChoBmgJaA9DCOwy/KcbSCHAlIaUUpRoFUsyaBZHQLN9R1pTMq11fZQoaAZoCWgPQwg9fQT+8HskwJSGlFKUaBVLMmgWR0CzficZ1mrbdX2UKGgGaAloD0MIrwW9N4ZQKcCUhpRSlGgVSzJoFkdAs34KWcBltnV9lChoBmgJaA9DCDLp76Xw0BHAlIaUUpRoFUsyaBZHQLN97UmD15B1fZQoaAZoCWgPQwj2evfHe7UgwJSGlFKUaBVLMmgWR0Czfc19BrvcdX2UKGgGaAloD0MIdZSD2QS4FMCUhpRSlGgVSzJoFkdAs36gmShaknV9lChoBmgJaA9DCJAUkWEVzyDAlIaUUpRoFUsyaBZHQLN+g2lEZzh1fZQoaAZoCWgPQwjaOjjYm1gcwJSGlFKUaBVLMmgWR0CzfmZOvdM1dX2UKGgGaAloD0MImKQyxRxUEcCUhpRSlGgVSzJoFkdAs35GaoddV3V9lChoBmgJaA9DCBXEQNe+3DDAlIaUUpRoFUsyaBZHQLN/O0E5hjR1fZQoaAZoCWgPQwgk1uJTALAywJSGlFKUaBVLMmgWR0Czfx34bjtHdX2UKGgGaAloD0MIT5MZbyuFIcCUhpRSlGgVSzJoFkdAs38A6r/823V9lChoBmgJaA9DCO87hsd+vjLAlIaUUpRoFUsyaBZHQLN+4VkMCtB1fZQoaAZoCWgPQwjdzr7yIL0qwJSGlFKUaBVLMmgWR0Czf8DWkJrtdX2UKGgGaAloD0MIl1ZD4h77I8CUhpRSlGgVSzJoFkdAs3+jljmSyXV9lChoBmgJaA9DCN5YUBiUWSLAlIaUUpRoFUsyaBZHQLN/honrpq11fZQoaAZoCWgPQwhNhXgkXt4XwJSGlFKUaBVLMmgWR0Czf2bIHTqjdX2UKGgGaAloD0MI7IhDNpDeJ8CUhpRSlGgVSzJoFkdAs4BQNZvDQHV9lChoBmgJaA9DCMdGIF7XvyTAlIaUUpRoFUsyaBZHQLOAMvlU6xR1fZQoaAZoCWgPQwhGmngHeGIswJSGlFKUaBVLMmgWR0CzgBYUi6g/dX2UKGgGaAloD0MI09wKYTVCOcCUhpRSlGgVSzJoFkdAs3/2L5ylvnV9lChoBmgJaA9DCGoy422lIzfAlIaUUpRoFUsyaBZHQLOA3huO0b91fZQoaAZoCWgPQwg66BIOvcURwJSGlFKUaBVLMmgWR0CzgMEP6KtQdX2UKGgGaAloD0MIGxGMg0tPKsCUhpRSlGgVSzJoFkdAs4Cj+2mYSnV9lChoBmgJaA9DCGPQCaGDzhzAlIaUUpRoFUsyaBZHQLOAhCdSVGF1fZQoaAZoCWgPQwiscqHyr1UkwJSGlFKUaBVLMmgWR0CzgWMi8nNQdX2UKGgGaAloD0MIzEBl/PssF8CUhpRSlGgVSzJoFkdAs4FF9/jKgnV9lChoBmgJaA9DCMzUJHhDehfAlIaUUpRoFUsyaBZHQLOBKQtz0Yl1fZQoaAZoCWgPQwgZHvtZLHUSwJSGlFKUaBVLMmgWR0CzgQkmlZX/dX2UKGgGaAloD0MInaBNDp9EGMCUhpRSlGgVSzJoFkdAs4IYsUZeiXV9lChoBmgJaA9DCPOv5ZXrNSbAlIaUUpRoFUsyaBZHQLOB+938n/l1fZQoaAZoCWgPQwijO4idKdQTwJSGlFKUaBVLMmgWR0Czgd8ZP2wndX2UKGgGaAloD0MIL2zNVl56KcCUhpRSlGgVSzJoFkdAs4G/hBJI2HV9lChoBmgJaA9DCNu/stKkBBjAlIaUUpRoFUsyaBZHQLOC2W4Vh1F1fZQoaAZoCWgPQwhHyhZJu+EVwJSGlFKUaBVLMmgWR0Czgry8an76dX2UKGgGaAloD0MIIchBCTMtHcCUhpRSlGgVSzJoFkdAs4KgCnxaxHV9lChoBmgJaA9DCFPnUfF/LyHAlIaUUpRoFUsyaBZHQLOCgJZW7vp1fZQoaAZoCWgPQwiiYTHqWqsrwJSGlFKUaBVLMmgWR0Czg6MwQDmsdX2UKGgGaAloD0MIFxIwury5FMCUhpRSlGgVSzJoFkdAs4OGVObiInV9lChoBmgJaA9DCPaX3ZOHRRfAlIaUUpRoFUsyaBZHQLODab3Gn4x1fZQoaAZoCWgPQwhhFto5zSIowJSGlFKUaBVLMmgWR0Czg0pDzAerdX2UKGgGaAloD0MI/G8lOzYiE8CUhpRSlGgVSzJoFkdAs4SQhje9BnV9lChoBmgJaA9DCAhzu5f7xCPAlIaUUpRoFUsyaBZHQLOEc4Z/CqJ1fZQoaAZoCWgPQwgdk8X9R3YjwJSGlFKUaBVLMmgWR0CzhFfi5uqFdX2UKGgGaAloD0MIswkwLH8+GsCUhpRSlGgVSzJoFkdAs4Q4gKWszXV9lChoBmgJaA9DCIYEjC5vHhPAlIaUUpRoFUsyaBZHQLOFX/gzguR1fZQoaAZoCWgPQwgF3smnxy4lwJSGlFKUaBVLMmgWR0CzhUMQNCqqdX2UKGgGaAloD0MIDmjpCrbBEsCUhpRSlGgVSzJoFkdAs4UmXu3MIXV9lChoBmgJaA9DCBlW8Ubm6SjAlIaUUpRoFUsyaBZHQLOFBuF6Avt1fZQoaAZoCWgPQwjaykv+J88RwJSGlFKUaBVLMmgWR0CzhjLNbC79dX2UKGgGaAloD0MI860P640KGcCUhpRSlGgVSzJoFkdAs4YV8UmD2HV9lChoBmgJaA9DCFtc4zPZHxfAlIaUUpRoFUsyaBZHQLOF+Rsdkrh1fZQoaAZoCWgPQwgmAWpq2doYwJSGlFKUaBVLMmgWR0CzhdmYv38GdX2UKGgGaAloD0MIkiVzLO+yIsCUhpRSlGgVSzJoFkdAs4a4GTs6aXV9lChoBmgJaA9DCPUrnQ/P8grAlIaUUpRoFUsyaBZHQLOGmvJiiIt1fZQoaAZoCWgPQwgpP6n26VgkwJSGlFKUaBVLMmgWR0Czhn52ECeVdX2UKGgGaAloD0MIrKqX32mSC8CUhpRSlGgVSzJoFkdAs4ZeiJwbVHV9lChoBmgJaA9DCC3ovTEEsCHAlIaUUpRoFUsyaBZHQLOHPLpzLfV1fZQoaAZoCWgPQwiy9KEL6qsbwJSGlFKUaBVLMmgWR0Czhx+HBUJfdX2UKGgGaAloD0MIg8MLIlKzDsCUhpRSlGgVSzJoFkdAs4cCbWmP53V9lChoBmgJaA9DCJvG9lrQmxTAlIaUUpRoFUsyaBZHQLOG4sHSncd1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 100000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f686f3833a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f686f37bae0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 7776, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674677262855477877, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAtxLIP+Eps75k+oC/KFsLvwTmAT/8tTI/VI6gPcNjpL61OOq+jUGWPl+DuT8ToNU+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAATR/ZP/ocv74mgZq/oqQvvyoi7z4HANI+KeEJvplh4r6uKT6/tsjHPYu+zj96U2g+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAC3Esg/4SmzvmT6gL+T07A+YOtyPnRhCD8oWwu/BOYBP/y1Mj8z2vi+N4rcvV+tAb1UjqA9w2OkvrU46r48Oaw+yY0iPSQ/qT6NQZY+X4O5PxOg1T6Nq3g/DajmPaKWh76UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 1.5630711 -0.3499289 -1.0076413 ]\n [-0.5443597 0.507416 0.69808936]\n [ 0.07839647 -0.32107362 -0.4574639 ]\n [ 0.29346886 1.4493216 0.4172369 ]]", "desired_goal": "[[ 1.6962677 -0.37326795 -1.2070663 ]\n [-0.68610585 0.46705753 0.41015646]\n [-0.13464798 -0.44215086 -0.7428235 ]\n [ 0.09755079 1.6151899 0.22688094]]", "observation": "[[ 1.5630711 -0.3499289 -1.0076413 0.34536418 0.23722601 0.532737 ]\n [-0.5443597 0.507416 0.69808936 -0.48603973 -0.1076855 -0.03165948]\n [ 0.07839647 -0.32107362 -0.4574639 0.33637416 0.039686 0.33055985]\n [ 0.29346886 1.4493216 0.4172369 0.97136766 0.11262522 -0.2648211 ]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAL95JPYRNA71sWcY48LLAvcuI9LtKClY+Xy3aPSgAWz2yHls+bHoyvDjw+b1M8Hc+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 4.9284156e-02 -3.2056347e-02 9.4580319e-05]\n [-9.4091296e-02 -7.4625961e-03 2.0902362e-01]\n [ 1.0653185e-01 5.3466946e-02 2.1398428e-01]\n [-1.0893445e-02 -1.2204021e-01 2.4212760e-01]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.992224, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIi/okd9jE8L+UhpRSlIwBbJRLMowBdJRHQLR0uNjslcB1fZQoaAZoCWgPQwhN+RBUjd7sv5SGlFKUaBVLMmgWR0C0dJTXSSeRdX2UKGgGaAloD0MICaaaWUsB5L+UhpRSlGgVSzJoFkdAtHR2aoddV3V9lChoBmgJaA9DCFG7XwX4bve/lIaUUpRoFUsyaBZHQLR0V9KVY6p1fZQoaAZoCWgPQwjWcmcmGE7rv5SGlFKUaBVLMmgWR0C0dS/r4WUKdX2UKGgGaAloD0MIr7FLVG+N9b+UhpRSlGgVSzJoFkdAtHULyup0fnV9lChoBmgJaA9DCGPuWkI+KPK/lIaUUpRoFUsyaBZHQLR07VyFPBV1fZQoaAZoCWgPQwhIbHcP0P3wv5SGlFKUaBVLMmgWR0C0dM65byH3dX2UKGgGaAloD0MIaHdIMUCi7b+UhpRSlGgVSzJoFkdAtHWqHh0heXV9lChoBmgJaA9DCJcBZylZDvK/lIaUUpRoFUsyaBZHQLR1hhWo3rF1fZQoaAZoCWgPQwieKXReY9fxv5SGlFKUaBVLMmgWR0C0dWfOt4iYdX2UKGgGaAloD0MI98snK4br8r+UhpRSlGgVSzJoFkdAtHVJN+LFXXV9lChoBmgJaA9DCGu5MxMM5+2/lIaUUpRoFUsyaBZHQLR2KMKkVN51fZQoaAZoCWgPQwgB323eOKnlv5SGlFKUaBVLMmgWR0C0dgS/bj95dX2UKGgGaAloD0MIDhDM0eP3+7+UhpRSlGgVSzJoFkdAtHXmrHU+cHV9lChoBmgJaA9DCNlaXyS05e+/lIaUUpRoFUsyaBZHQLR1yE87p3Z1fZQoaAZoCWgPQwjF5XgFoufyv5SGlFKUaBVLMmgWR0C0dqqfFrEcdX2UKGgGaAloD0MIYqJBCp4C9r+UhpRSlGgVSzJoFkdAtHaGqhlDnnV9lChoBmgJaA9DCAsqqn6l8/W/lIaUUpRoFUsyaBZHQLR2aGPPszF1fZQoaAZoCWgPQwh5dvnWh3Xqv5SGlFKUaBVLMmgWR0C0dknZ9NN8dX2UKGgGaAloD0MI6uv5muUy87+UhpRSlGgVSzJoFkdAtHcqsLfDUHV9lChoBmgJaA9DCH7hlSTP9fG/lIaUUpRoFUsyaBZHQLR3BpWFN+N1fZQoaAZoCWgPQwhj0t9L4cHpv5SGlFKUaBVLMmgWR0C0duhO1v2odX2UKGgGaAloD0MIRpc3h2s187+UhpRSlGgVSzJoFkdAtHbJvXK8tnV9lChoBmgJaA9DCOs3E9OF2Oq/lIaUUpRoFUsyaBZHQLR3wfDk2gp1fZQoaAZoCWgPQwhlVBnG3aDvv5SGlFKUaBVLMmgWR0C0d53jp9qldX2UKGgGaAloD0MIV5QSglV17L+UhpRSlGgVSzJoFkdAtHd/nnuAqnV9lChoBmgJaA9DCHDSNCiah+6/lIaUUpRoFUsyaBZHQLR3YPci4ax1fZQoaAZoCWgPQwh6NUBpqNHvv5SGlFKUaBVLMmgWR0C0eESI1tO3dX2UKGgGaAloD0MIXRWoxeBh3L+UhpRSlGgVSzJoFkdAtHggd2gWanV9lChoBmgJaA9DCBdIUPwYM/G/lIaUUpRoFUsyaBZHQLR4AjX4CZF1fZQoaAZoCWgPQwhaDvRQ2wbov5SGlFKUaBVLMmgWR0C0d+Oo99tudX2UKGgGaAloD0MIhleSPNe39L+UhpRSlGgVSzJoFkdAtHjNp1zQu3V9lChoBmgJaA9DCOj2ksZoHea/lIaUUpRoFUsyaBZHQLR4qaXKKYR1fZQoaAZoCWgPQwhFhH8RNGbwv5SGlFKUaBVLMmgWR0C0eItsBQvYdX2UKGgGaAloD0MIkZp2Mc105r+UhpRSlGgVSzJoFkdAtHhs4ku6E3V9lChoBmgJaA9DCMgljjwQ2fe/lIaUUpRoFUsyaBZHQLR5T9Ujs2N1fZQoaAZoCWgPQwhtO22NCEbkv5SGlFKUaBVLMmgWR0C0eSvOyE+QdX2UKGgGaAloD0MIJSGRtvEn7b+UhpRSlGgVSzJoFkdAtHkNhoduHnV9lChoBmgJaA9DCFis4SL3tPG/lIaUUpRoFUsyaBZHQLR47wB5ooN1fZQoaAZoCWgPQwhWZkrrbwnuv5SGlFKUaBVLMmgWR0C0edJFspG4dX2UKGgGaAloD0MIvM6G/DMD5b+UhpRSlGgVSzJoFkdAtHmuO1fE43V9lChoBmgJaA9DCMXHJ2Tnbeq/lIaUUpRoFUsyaBZHQLR5j/tIClt1fZQoaAZoCWgPQwjV6UDWUyvpv5SGlFKUaBVLMmgWR0C0eXFa0QbudX2UKGgGaAloD0MIpRMJpppZ47+UhpRSlGgVSzJoFkdAtHpVlZowmHV9lChoBmgJaA9DCHedDflnhvS/lIaUUpRoFUsyaBZHQLR6MXwsoUl1fZQoaAZoCWgPQwiwc9NmnEbwv5SGlFKUaBVLMmgWR0C0ehMbR4QjdX2UKGgGaAloD0MIeH5Rgv4C9r+UhpRSlGgVSzJoFkdAtHn0iD/VAnV9lChoBmgJaA9DCKKb/YFyG/+/lIaUUpRoFUsyaBZHQLR61VG0/np1fZQoaAZoCWgPQwjSbYlccAbpv5SGlFKUaBVLMmgWR0C0erFD8cdYdX2UKGgGaAloD0MIQN6rViZ88L+UhpRSlGgVSzJoFkdAtHqS+vhZQ3V9lChoBmgJaA9DCKgZUkXxquq/lIaUUpRoFUsyaBZHQLR6dGWD6Fd1fZQoaAZoCWgPQwghkbbxJyrtv5SGlFKUaBVLMmgWR0C0e1ODWbw0dX2UKGgGaAloD0MIsDvdeeK57b+UhpRSlGgVSzJoFkdAtHsvcCYCyXV9lChoBmgJaA9DCK7VHvZCgfS/lIaUUpRoFUsyaBZHQLR7ES/j81p1fZQoaAZoCWgPQwhEUgslk1Puv5SGlFKUaBVLMmgWR0C0evJ8F6iTdX2UKGgGaAloD0MI0y8Rb53/6L+UhpRSlGgVSzJoFkdAtHvSM4tHx3V9lChoBmgJaA9DCB+CqtGrwfK/lIaUUpRoFUsyaBZHQLR7rinYQJ51fZQoaAZoCWgPQwiqLXWQ14P3v5SGlFKUaBVLMmgWR0C0e4/omoitdX2UKGgGaAloD0MIAP+UKlF267+UhpRSlGgVSzJoFkdAtHtxTfixV3V9lChoBmgJaA9DCOSCM/j7Reu/lIaUUpRoFUsyaBZHQLR8UGHYYix1fZQoaAZoCWgPQwjNk2sKZHbzv5SGlFKUaBVLMmgWR0C0fCxV6u4gdX2UKGgGaAloD0MIXi13ZoLh6L+UhpRSlGgVSzJoFkdAtHwOD28IzHV9lChoBmgJaA9DCPATB9Dve/O/lIaUUpRoFUsyaBZHQLR773i704B1fZQoaAZoCWgPQwg5X+y9+CL1v5SGlFKUaBVLMmgWR0C0fM+HN5dGdX2UKGgGaAloD0MICYhJuJDH8L+UhpRSlGgVSzJoFkdAtHyrgTAWSHV9lChoBmgJaA9DCGYucHmsmeS/lIaUUpRoFUsyaBZHQLR8jTyauwJ1fZQoaAZoCWgPQwhu+x7116v0v5SGlFKUaBVLMmgWR0C0fG6T8pCsdX2UKGgGaAloD0MIsyYW+Ipu8L+UhpRSlGgVSzJoFkdAtH1OfK6nSHV9lChoBmgJaA9DCILknUMZ6ve/lIaUUpRoFUsyaBZHQLR9KmNBF/h1fZQoaAZoCWgPQwimmIOgoxX0v5SGlFKUaBVLMmgWR0C0fQv2Cdz5dX2UKGgGaAloD0MIW7OVl/yP87+UhpRSlGgVSzJoFkdAtHztTisGPnV9lChoBmgJaA9DCA+Z8iGoWvi/lIaUUpRoFUsyaBZHQLR90OinHed1fZQoaAZoCWgPQwhwCisVVBT8v5SGlFKUaBVLMmgWR0C0fazXOGCadX2UKGgGaAloD0MIwMsMG2X98b+UhpRSlGgVSzJoFkdAtH2Om51/2HV9lChoBmgJaA9DCEwW9x+ZzvG/lIaUUpRoFUsyaBZHQLR9b/4Irvt1fZQoaAZoCWgPQwjt2AjE6/ruv5SGlFKUaBVLMmgWR0C0flia7VawdX2UKGgGaAloD0MIiC8TRUgd9L+UhpRSlGgVSzJoFkdAtH40i/wiJXV9lChoBmgJaA9DCPJ376gxYfm/lIaUUpRoFUsyaBZHQLR+FjxkNF11fZQoaAZoCWgPQwgTKji8IOLxv5SGlFKUaBVLMmgWR0C0fffUnXumdX2UKGgGaAloD0MI4ZnQJLEk+L+UhpRSlGgVSzJoFkdAtH7iv0RODnV9lChoBmgJaA9DCAbYR6euvPC/lIaUUpRoFUsyaBZHQLR+vsw+MZR1fZQoaAZoCWgPQwhJhEawcT3wv5SGlFKUaBVLMmgWR0C0fqCKiwjddX2UKGgGaAloD0MIsMdESrN59L+UhpRSlGgVSzJoFkdAtH6B+uvECXV9lChoBmgJaA9DCIwPs5dtp+K/lIaUUpRoFUsyaBZHQLR/anAIpph1fZQoaAZoCWgPQwgtmPijqDPxv5SGlFKUaBVLMmgWR0C0f0Zswco6dX2UKGgGaAloD0MIb6DAO/n06r+UhpRSlGgVSzJoFkdAtH8oIppeu3V9lChoBmgJaA9DCKt7ZHPVfPS/lIaUUpRoFUsyaBZHQLR/CYu01Il1fZQoaAZoCWgPQwjpuBrZlRbqv5SGlFKUaBVLMmgWR0C0f+/3N9pidX2UKGgGaAloD0MIJ2co7niT8b+UhpRSlGgVSzJoFkdAtH/MB8x9HHV9lChoBmgJaA9DCFD9g0iGHPC/lIaUUpRoFUsyaBZHQLR/ra7EpAl1fZQoaAZoCWgPQwisHcU56mjuv5SGlFKUaBVLMmgWR0C0f48Z1mrbdX2UKGgGaAloD0MIdHtJY7RO8r+UhpRSlGgVSzJoFkdAtICMDB/I83V9lChoBmgJaA9DCJS8OseALPG/lIaUUpRoFUsyaBZHQLSAZ/smfGx1fZQoaAZoCWgPQwis5jki3yXvv5SGlFKUaBVLMmgWR0C0gEmw3YL9dX2UKGgGaAloD0MItAOuK2aE8L+UhpRSlGgVSzJoFkdAtIArlaKUFHV9lChoBmgJaA9DCOLMr+YAQey/lIaUUpRoFUsyaBZHQLSBDIrvsqt1fZQoaAZoCWgPQwh1OpD11Grmv5SGlFKUaBVLMmgWR0C0gOiAlOXWdX2UKGgGaAloD0MICyjU00fg97+UhpRSlGgVSzJoFkdAtIDKTTvy9XV9lChoBmgJaA9DCMTouYWuRPu/lIaUUpRoFUsyaBZHQLSAq7btZ3d1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 31492, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward": -
|
|
|
1 |
+
{"mean_reward": -0.9353570744162425, "std_reward": 0.23413060599534358, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-25T20:08:14.178222"}
|
vec_normalize.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 3056
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:614f5a5a0029d3ea89d5498d492d1a7ac518ec993eb5fc6ee3cfcf643bd2e39d
|
3 |
size 3056
|