mariastull commited on
Commit
2bbad34
1 Parent(s): a0e0dd8

v0 of PPO lunar lander

Browse files
.gitattributes CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: 225.02 +/- 24.01
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: LunarLander-v2
20
+ type: LunarLander-v2
21
+ ---
22
+
23
+ # **PPO** Agent playing **LunarLander-v2**
24
+ This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
25
+
26
+ ## Usage (with Stable-baselines3)
27
+ TODO: Add your code
28
+
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f2d8f39a950>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f2d8f39a9e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2d8f39aa70>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f2d8f39ab00>", "_build": "<function ActorCriticPolicy._build at 0x7f2d8f39ab90>", "forward": "<function ActorCriticPolicy.forward at 0x7f2d8f39ac20>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2d8f39acb0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f2d8f39ad40>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2d8f39add0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f2d8f39ae60>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2d8f39aef0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f2d8f3ef300>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652719160.4247115, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAFNvWD4FlsM8UcUvO5IrxTlJSVM+yhZuugAAgD8AAIA/mr80Pp9oirtjLRc76a2uvPtg7bzynZW9AAAAAAAAgD+as308w4khuuV1wDvVIGA7pVGXOcT0rzsAAIA/AACAP3OGvL09ykG5y84HPECwAbVzRoe7zp8CtAAAgD8AAIA/E68CPjlBKj57XEe9xyGAvoUyjbzmy/Y8AAAAAAAAAADgxCk+WWhTPwitBj4ORnK+eJBMPVig/T0AAAAAAAAAAA3BhT3h8pS6QonvO98TujYzAQq7QoSzNQAAgD8AAIA/M73UPIUrtrklnbs63nJ5NLY4cTsGZNu5AACAPwAAgD8NXdY9SCXsulh9cb4axE27oZjXu3/fMrwAAAAAAAAAAM1UE70M/qk/oDTjvGZXcr5s7mO9ZlmUvQAAAAAAAAAAALZgPIUj4rkiocK7VNGVtscUJzoiqgc2AACAPwAAgD/gMU++KCSkvKTTA7tt8Iq4qsUQPiqTHDoAAIA/AACAP2bZizygk0s/qtEtPe/rlb71qKM96PoSPQAAAAAAAAAATc0vvau5Fj/q3Uq9Yr8VvrSdqzwLwUw9AAAAAAAAAADNhH67rv2muprMBDrRTqM0qgdaujSoF7kAAIA/AACAP63wHL5Arbw/o/e9vts+U77rGym+oqfXvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIlrIMcaylVkCUhpRSlIwBbJRN6AOMAXSUR0ChSeWsijcmdX2UKGgGaAloD0MIDB8RUyJxW0CUhpRSlGgVTegDaBZHQKFKb7zCk451fZQoaAZoCWgPQwjxZDcz+lHnP5SGlFKUaBVNmQFoFkdAoU0SN+9alnV9lChoBmgJaA9DCPjB+dQxqmBAlIaUUpRoFU3oA2gWR0ChTUME7nxKdX2UKGgGaAloD0MI2ZQrvMvWWECUhpRSlGgVTegDaBZHQKFN1uqm0md1fZQoaAZoCWgPQwg2donqraZWQJSGlFKUaBVN6ANoFkdAoU5i+8Gs3nV9lChoBmgJaA9DCEj5SbVPh2BAlIaUUpRoFU3oA2gWR0ChTzoS13MZdX2UKGgGaAloD0MIY5rpXqckYUCUhpRSlGgVTegDaBZHQKFRocENe+p1fZQoaAZoCWgPQwgn9WVpp6YbwJSGlFKUaBVNRAFoFkdAoVKI0EX+EXV9lChoBmgJaA9DCCb/k797V1dAlIaUUpRoFU3oA2gWR0ChUwNN8E3bdX2UKGgGaAloD0MI6SlyiDhZYECUhpRSlGgVTegDaBZHQKFTkjZ+QU51fZQoaAZoCWgPQwgqyTocXaNMQJSGlFKUaBVN6ANoFkdAoVVvsE7nxXV9lChoBmgJaA9DCKW+LO3U/ABAlIaUUpRoFU0jAWgWR0ChVbhHLA58dX2UKGgGaAloD0MIKNTTR+CtWkCUhpRSlGgVTegDaBZHQKFV1J3gUDd1fZQoaAZoCWgPQwiaJmw/GfMQQJSGlFKUaBVNCwFoFkdAoVYLxmTTv3V9lChoBmgJaA9DCNQrZRni2DbAlIaUUpRoFU09AWgWR0ChXyBje9BbdX2UKGgGaAloD0MIxysQPSlgW0CUhpRSlGgVTegDaBZHQKFgMvOhTOx1fZQoaAZoCWgPQwjFWKZfor9gQJSGlFKUaBVN6ANoFkdAoWIRYFJQL3V9lChoBmgJaA9DCFclkX2Q1FxAlIaUUpRoFU3oA2gWR0Chcd/BeokzdX2UKGgGaAloD0MI1c4wtaUFXECUhpRSlGgVTegDaBZHQKFzBsxfv4N1fZQoaAZoCWgPQwgEOpM21XBiQJSGlFKUaBVN6ANoFkdAoXNwxzq8lHV9lChoBmgJaA9DCLpoyHiU5EBAlIaUUpRoFU1IAWgWR0ChdDU5lvqDdX2UKGgGaAloD0MIZr0YyomeWkCUhpRSlGgVTegDaBZHQKF1xUc4o7V1fZQoaAZoCWgPQwgomgewyItcQJSGlFKUaBVN6ANoFkdAoXY/Vy3kP3V9lChoBmgJaA9DCBb6YBkbpF9AlIaUUpRoFU3oA2gWR0Chd366z3RHdX2UKGgGaAloD0MIUAEwnsEOYECUhpRSlGgVTegDaBZHQKF5+H9m6Gx1fZQoaAZoCWgPQwhq+YGrPIk4QJSGlFKUaBVNHAFoFkdAoXqdw3o9tHV9lChoBmgJaA9DCLMngc05nFZAlIaUUpRoFU3oA2gWR0Chet0h3aBadX2UKGgGaAloD0MI7+U+OYqfZECUhpRSlGgVTegDaBZHQKF7SJHAh0R1fZQoaAZoCWgPQwjnwkgvajRfQJSGlFKUaBVN6ANoFkdAoXvFECvHLnV9lChoBmgJaA9DCLEUyVcCtFVAlIaUUpRoFU3oA2gWR0ChfZXXRPXTdX2UKGgGaAloD0MIar+1E6VqYECUhpRSlGgVTegDaBZHQKF9r3JxNqR1fZQoaAZoCWgPQwhjRQ2mYZ5kQJSGlFKUaBVN6ANoFkdAoX3kpPRAr3V9lChoBmgJaA9DCH6QZcHEazJAlIaUUpRoFUv9aBZHQKGBB6HCXQd1fZQoaAZoCWgPQwhivrwA+8FtQJSGlFKUaBVNtgFoFkdAoYHXQla8pXV9lChoBmgJaA9DCPROBdxz3mJAlIaUUpRoFU3oA2gWR0ChhmFdcB2fdX2UKGgGaAloD0MIGhcOhGSEYECUhpRSlGgVTegDaBZHQKGJbwxWT5h1fZQoaAZoCWgPQwga3xeXqjQgQJSGlFKUaBVNOQFoFkdAoYvPKSxJNHV9lChoBmgJaA9DCIhlM4ek719AlIaUUpRoFU3oA2gWR0Chm4m+9Jz1dX2UKGgGaAloD0MI5Pih0ogFYUCUhpRSlGgVTegDaBZHQKGcC1jy4F11fZQoaAZoCWgPQwjSjbCoiJJhQJSGlFKUaBVN6ANoFkdAoZz07fYSQHV9lChoBmgJaA9DCN7/xwkT0lpAlIaUUpRoFU3oA2gWR0ChntlHJ9y+dX2UKGgGaAloD0MIC12JQHVyYECUhpRSlGgVTegDaBZHQKGg+nVG0/p1fZQoaAZoCWgPQwhB8WPM3etoQJSGlFKUaBVNHwNoFkdAoaHhFqi48XV9lChoBmgJaA9DCP/NixNfxWBAlIaUUpRoFU3oA2gWR0Cho9REfDDTdX2UKGgGaAloD0MIzhd7Lz7TYUCUhpRSlGgVTegDaBZHQKGkhRNyo4x1fZQoaAZoCWgPQwiRXz/EBmVdQJSGlFKUaBVN6ANoFkdAoaU6iudPL3V9lChoBmgJaA9DCJAxdy0h6V5AlIaUUpRoFU3oA2gWR0Chpc3l0YCRdX2UKGgGaAloD0MIOSuiJvq9XECUhpRSlGgVTegDaBZHQKGoJBv73wl1fZQoaAZoCWgPQwjs2XOZmkNWQJSGlFKUaBVN6ANoFkdAoahmfRNRFnV9lChoBmgJaA9DCIKOVrUk3mFAlIaUUpRoFU3oA2gWR0ChrUi3gDRudX2UKGgGaAloD0MI6/8c5ssLHcCUhpRSlGgVTQ4BaBZHQKGteFOfukV1fZQoaAZoCWgPQwiI2GDhJEE3QJSGlFKUaBVNUAFoFkdAoa7fk1dgOXV9lChoBmgJaA9DCOo+AKnN/GdAlIaUUpRoFU0CAmgWR0Chr05fdAPedX2UKGgGaAloD0MIv0nToGhuHUCUhpRSlGgVTTwBaBZHQKGvp1g6U7l1fZQoaAZoCWgPQwjw+PauQd1eQJSGlFKUaBVN6ANoFkdAobG0L8aXKXV9lChoBmgJaA9DCFH51/LKwmJAlIaUUpRoFU3oA2gWR0ChtCmIKtxNdX2UKGgGaAloD0MIVdy4xfx8WECUhpRSlGgVTegDaBZHQKG2Bhjvuw51fZQoaAZoCWgPQwhKsg5HV6kfQJSGlFKUaBVNAwFoFkdAobdrk6tDD3V9lChoBmgJaA9DCGVuvhHdK1FAlIaUUpRoFU3oA2gWR0ChxNdkauOkdX2UKGgGaAloD0MICB7f3jWwUkCUhpRSlGgVTegDaBZHQKHFUcebNKR1fZQoaAZoCWgPQwgS290D9E5hQJSGlFKUaBVN6ANoFkdAocY3icXm/3V9lChoBmgJaA9DCGDmO/iJkFdAlIaUUpRoFU3oA2gWR0ChyhjOs1badX2UKGgGaAloD0MIqkiFsYX6Q0CUhpRSlGgVTUcBaBZHQKHKWvnr6cl1fZQoaAZoCWgPQwiZuiu7YPNWQJSGlFKUaBVN6ANoFkdAocsD48EFGHV9lChoBmgJaA9DCOcXJegv3l5AlIaUUpRoFU3oA2gWR0ChzQPwd8zAdX2UKGgGaAloD0MIDeIDO/6LKUCUhpRSlGgVS/JoFkdAoc1oN9YwI3V9lChoBmgJaA9DCEZgrG/gwmFAlIaUUpRoFU3oA2gWR0Ch0faEal1sdX2UKGgGaAloD0MIRKZ8CKruXECUhpRSlGgVTegDaBZHQKHSSolUp/h1fZQoaAZoCWgPQwgUrkfh+sZsQJSGlFKUaBVNOAFoFkdAodTgE2YOUnV9lChoBmgJaA9DCCarItxkW15AlIaUUpRoFU3oA2gWR0Ch15Lqt5lfdX2UKGgGaAloD0MIPbt868OeXUCUhpRSlGgVTegDaBZHQKHXwMS9M9N1fZQoaAZoCWgPQwhHAg02dcdbQJSGlFKUaBVN6ANoFkdAodkeIZZSvXV9lChoBmgJaA9DCKhwBKkUlV1AlIaUUpRoFU3oA2gWR0Ch2YP2GqPwdX2UKGgGaAloD0MI8L4qF6rkYECUhpRSlGgVTegDaBZHQKHbytEofCB1fZQoaAZoCWgPQwgE5iFTvpphQJSGlFKUaBVN6ANoFkdAod5cV58jRnV9lChoBmgJaA9DCAPpYtNK9TlAlIaUUpRoFU0FAWgWR0Ch37qPGQ0XdX2UKGgGaAloD0MIKA6g3/ejP0CUhpRSlGgVTQ4BaBZHQKHhURGMGX51fZQoaAZoCWgPQwgf14aKcXdgQJSGlFKUaBVN6ANoFkdAoeG5PRArx3V9lChoBmgJaA9DCDMZjuez5WxAlIaUUpRoFU1QAWgWR0Ch46m7J4jbdX2UKGgGaAloD0MI3zMSoZFKY0CUhpRSlGgVTegDaBZHQKHu+/wiJO51fZQoaAZoCWgPQwibHhSUovZiQJSGlFKUaBVN6ANoFkdAoe+15WzWw3V9lChoBmgJaA9DCAGFevqIOGBAlIaUUpRoFU3oA2gWR0Ch8vJb+tKadX2UKGgGaAloD0MIokJ1c/EfYUCUhpRSlGgVTegDaBZHQKHzsnKGL1p1fZQoaAZoCWgPQwjCMGDJVTFdQJSGlFKUaBVN6ANoFkdAofVbASFoMHV9lChoBmgJaA9DCPzh578HgFxAlIaUUpRoFU3oA2gWR0Ch9bM1KoQ4dX2UKGgGaAloD0MI4iNiSiTZJcCUhpRSlGgVTQ4BaBZHQKH23f4REnd1fZQoaAZoCWgPQwifWKfKd8BhQJSGlFKUaBVN6ANoFkdAofmP7pFCs3V9lChoBmgJaA9DCGMJa2Ps+mFAlIaUUpRoFU3oA2gWR0Ch+dNnf2sadX2UKGgGaAloD0MINX12wHVVKMCUhpRSlGgVTQEBaBZHQKH6S3WFvht1fZQoaAZoCWgPQwhxHk5gOrVeQJSGlFKUaBVN6ANoFkdAofv8p1A7gnV9lChoBmgJaA9DCPvrFRbc21pAlIaUUpRoFU3oA2gWR0Ch/iqbBoEkdX2UKGgGaAloD0MIvrwA++gEOECUhpRSlGgVTQYBaBZHQKIBfZi/fwZ1fZQoaAZoCWgPQwhBSYEFMBdiQJSGlFKUaBVN6ANoFkdAogKCN+9alnV9lChoBmgJaA9DCDDZeLBFcWNAlIaUUpRoFU3oA2gWR0CiBSp2U0N0dX2UKGgGaAloD0MI4ExMF2LZYECUhpRSlGgVTegDaBZHQKIGn101ZT11fZQoaAZoCWgPQwiNgApHELFjQJSGlFKUaBVN6ANoFkdAogg4exOclXV9lChoBmgJaA9DCLpJDAIrW1ZAlIaUUpRoFU3oA2gWR0CiCJyiVSn+dX2UKGgGaAloD0MIKAtfX+viMUCUhpRSlGgVS/9oFkdAogqLIHTqjnV9lChoBmgJaA9DCIv/O6JCBGVAlIaUUpRoFU3oA2gWR0CiCpxcVxjsdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 132, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:470443f9218160ff94fa44476e82eb03970091312059ef3fd88106104334d5c3
3
+ size 253669
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 225.02230274210916, "std_reward": 24.01400884083597, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-16T16:56:07.128325"}
trained_lunar_lander_v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:569d0504c9a52620b81b9f6bf1c21835e845dd3c17799bfcb6d37cebf770a837
3
+ size 144044
trained_lunar_lander_v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.5.0
trained_lunar_lander_v0/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f2d8f39a950>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f2d8f39a9e0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2d8f39aa70>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f2d8f39ab00>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f2d8f39ab90>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f2d8f39ac20>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2d8f39acb0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f2d8f39ad40>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2d8f39add0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f2d8f39ae60>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2d8f39aef0>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f2d8f3ef300>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 507904,
46
+ "_total_timesteps": 500000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1652719160.4247115,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAFNvWD4FlsM8UcUvO5IrxTlJSVM+yhZuugAAgD8AAIA/mr80Pp9oirtjLRc76a2uvPtg7bzynZW9AAAAAAAAgD+as308w4khuuV1wDvVIGA7pVGXOcT0rzsAAIA/AACAP3OGvL09ykG5y84HPECwAbVzRoe7zp8CtAAAgD8AAIA/E68CPjlBKj57XEe9xyGAvoUyjbzmy/Y8AAAAAAAAAADgxCk+WWhTPwitBj4ORnK+eJBMPVig/T0AAAAAAAAAAA3BhT3h8pS6QonvO98TujYzAQq7QoSzNQAAgD8AAIA/M73UPIUrtrklnbs63nJ5NLY4cTsGZNu5AACAPwAAgD8NXdY9SCXsulh9cb4axE27oZjXu3/fMrwAAAAAAAAAAM1UE70M/qk/oDTjvGZXcr5s7mO9ZlmUvQAAAAAAAAAAALZgPIUj4rkiocK7VNGVtscUJzoiqgc2AACAPwAAgD/gMU++KCSkvKTTA7tt8Iq4qsUQPiqTHDoAAIA/AACAP2bZizygk0s/qtEtPe/rlb71qKM96PoSPQAAAAAAAAAATc0vvau5Fj/q3Uq9Yr8VvrSdqzwLwUw9AAAAAAAAAADNhH67rv2muprMBDrRTqM0qgdaujSoF7kAAIA/AACAP63wHL5Arbw/o/e9vts+U77rGym+oqfXvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVfhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIlrIMcaylVkCUhpRSlIwBbJRN6AOMAXSUR0ChSeWsijcmdX2UKGgGaAloD0MIDB8RUyJxW0CUhpRSlGgVTegDaBZHQKFKb7zCk451fZQoaAZoCWgPQwjxZDcz+lHnP5SGlFKUaBVNmQFoFkdAoU0SN+9alnV9lChoBmgJaA9DCPjB+dQxqmBAlIaUUpRoFU3oA2gWR0ChTUME7nxKdX2UKGgGaAloD0MI2ZQrvMvWWECUhpRSlGgVTegDaBZHQKFN1uqm0md1fZQoaAZoCWgPQwg2donqraZWQJSGlFKUaBVN6ANoFkdAoU5i+8Gs3nV9lChoBmgJaA9DCEj5SbVPh2BAlIaUUpRoFU3oA2gWR0ChTzoS13MZdX2UKGgGaAloD0MIY5rpXqckYUCUhpRSlGgVTegDaBZHQKFRocENe+p1fZQoaAZoCWgPQwgn9WVpp6YbwJSGlFKUaBVNRAFoFkdAoVKI0EX+EXV9lChoBmgJaA9DCCb/k797V1dAlIaUUpRoFU3oA2gWR0ChUwNN8E3bdX2UKGgGaAloD0MI6SlyiDhZYECUhpRSlGgVTegDaBZHQKFTkjZ+QU51fZQoaAZoCWgPQwgqyTocXaNMQJSGlFKUaBVN6ANoFkdAoVVvsE7nxXV9lChoBmgJaA9DCKW+LO3U/ABAlIaUUpRoFU0jAWgWR0ChVbhHLA58dX2UKGgGaAloD0MIKNTTR+CtWkCUhpRSlGgVTegDaBZHQKFV1J3gUDd1fZQoaAZoCWgPQwiaJmw/GfMQQJSGlFKUaBVNCwFoFkdAoVYLxmTTv3V9lChoBmgJaA9DCNQrZRni2DbAlIaUUpRoFU09AWgWR0ChXyBje9BbdX2UKGgGaAloD0MIxysQPSlgW0CUhpRSlGgVTegDaBZHQKFgMvOhTOx1fZQoaAZoCWgPQwjFWKZfor9gQJSGlFKUaBVN6ANoFkdAoWIRYFJQL3V9lChoBmgJaA9DCFclkX2Q1FxAlIaUUpRoFU3oA2gWR0Chcd/BeokzdX2UKGgGaAloD0MI1c4wtaUFXECUhpRSlGgVTegDaBZHQKFzBsxfv4N1fZQoaAZoCWgPQwgEOpM21XBiQJSGlFKUaBVN6ANoFkdAoXNwxzq8lHV9lChoBmgJaA9DCLpoyHiU5EBAlIaUUpRoFU1IAWgWR0ChdDU5lvqDdX2UKGgGaAloD0MIZr0YyomeWkCUhpRSlGgVTegDaBZHQKF1xUc4o7V1fZQoaAZoCWgPQwgomgewyItcQJSGlFKUaBVN6ANoFkdAoXY/Vy3kP3V9lChoBmgJaA9DCBb6YBkbpF9AlIaUUpRoFU3oA2gWR0Chd366z3RHdX2UKGgGaAloD0MIUAEwnsEOYECUhpRSlGgVTegDaBZHQKF5+H9m6Gx1fZQoaAZoCWgPQwhq+YGrPIk4QJSGlFKUaBVNHAFoFkdAoXqdw3o9tHV9lChoBmgJaA9DCLMngc05nFZAlIaUUpRoFU3oA2gWR0Chet0h3aBadX2UKGgGaAloD0MI7+U+OYqfZECUhpRSlGgVTegDaBZHQKF7SJHAh0R1fZQoaAZoCWgPQwjnwkgvajRfQJSGlFKUaBVN6ANoFkdAoXvFECvHLnV9lChoBmgJaA9DCLEUyVcCtFVAlIaUUpRoFU3oA2gWR0ChfZXXRPXTdX2UKGgGaAloD0MIar+1E6VqYECUhpRSlGgVTegDaBZHQKF9r3JxNqR1fZQoaAZoCWgPQwhjRQ2mYZ5kQJSGlFKUaBVN6ANoFkdAoX3kpPRAr3V9lChoBmgJaA9DCH6QZcHEazJAlIaUUpRoFUv9aBZHQKGBB6HCXQd1fZQoaAZoCWgPQwhivrwA+8FtQJSGlFKUaBVNtgFoFkdAoYHXQla8pXV9lChoBmgJaA9DCPROBdxz3mJAlIaUUpRoFU3oA2gWR0ChhmFdcB2fdX2UKGgGaAloD0MIGhcOhGSEYECUhpRSlGgVTegDaBZHQKGJbwxWT5h1fZQoaAZoCWgPQwga3xeXqjQgQJSGlFKUaBVNOQFoFkdAoYvPKSxJNHV9lChoBmgJaA9DCIhlM4ek719AlIaUUpRoFU3oA2gWR0Chm4m+9Jz1dX2UKGgGaAloD0MI5Pih0ogFYUCUhpRSlGgVTegDaBZHQKGcC1jy4F11fZQoaAZoCWgPQwjSjbCoiJJhQJSGlFKUaBVN6ANoFkdAoZz07fYSQHV9lChoBmgJaA9DCN7/xwkT0lpAlIaUUpRoFU3oA2gWR0ChntlHJ9y+dX2UKGgGaAloD0MIC12JQHVyYECUhpRSlGgVTegDaBZHQKGg+nVG0/p1fZQoaAZoCWgPQwhB8WPM3etoQJSGlFKUaBVNHwNoFkdAoaHhFqi48XV9lChoBmgJaA9DCP/NixNfxWBAlIaUUpRoFU3oA2gWR0Cho9REfDDTdX2UKGgGaAloD0MIzhd7Lz7TYUCUhpRSlGgVTegDaBZHQKGkhRNyo4x1fZQoaAZoCWgPQwiRXz/EBmVdQJSGlFKUaBVN6ANoFkdAoaU6iudPL3V9lChoBmgJaA9DCJAxdy0h6V5AlIaUUpRoFU3oA2gWR0Chpc3l0YCRdX2UKGgGaAloD0MIOSuiJvq9XECUhpRSlGgVTegDaBZHQKGoJBv73wl1fZQoaAZoCWgPQwjs2XOZmkNWQJSGlFKUaBVN6ANoFkdAoahmfRNRFnV9lChoBmgJaA9DCIKOVrUk3mFAlIaUUpRoFU3oA2gWR0ChrUi3gDRudX2UKGgGaAloD0MI6/8c5ssLHcCUhpRSlGgVTQ4BaBZHQKGteFOfukV1fZQoaAZoCWgPQwiI2GDhJEE3QJSGlFKUaBVNUAFoFkdAoa7fk1dgOXV9lChoBmgJaA9DCOo+AKnN/GdAlIaUUpRoFU0CAmgWR0Chr05fdAPedX2UKGgGaAloD0MIv0nToGhuHUCUhpRSlGgVTTwBaBZHQKGvp1g6U7l1fZQoaAZoCWgPQwjw+PauQd1eQJSGlFKUaBVN6ANoFkdAobG0L8aXKXV9lChoBmgJaA9DCFH51/LKwmJAlIaUUpRoFU3oA2gWR0ChtCmIKtxNdX2UKGgGaAloD0MIVdy4xfx8WECUhpRSlGgVTegDaBZHQKG2Bhjvuw51fZQoaAZoCWgPQwhKsg5HV6kfQJSGlFKUaBVNAwFoFkdAobdrk6tDD3V9lChoBmgJaA9DCGVuvhHdK1FAlIaUUpRoFU3oA2gWR0ChxNdkauOkdX2UKGgGaAloD0MICB7f3jWwUkCUhpRSlGgVTegDaBZHQKHFUcebNKR1fZQoaAZoCWgPQwgS290D9E5hQJSGlFKUaBVN6ANoFkdAocY3icXm/3V9lChoBmgJaA9DCGDmO/iJkFdAlIaUUpRoFU3oA2gWR0ChyhjOs1badX2UKGgGaAloD0MIqkiFsYX6Q0CUhpRSlGgVTUcBaBZHQKHKWvnr6cl1fZQoaAZoCWgPQwiZuiu7YPNWQJSGlFKUaBVN6ANoFkdAocsD48EFGHV9lChoBmgJaA9DCOcXJegv3l5AlIaUUpRoFU3oA2gWR0ChzQPwd8zAdX2UKGgGaAloD0MIDeIDO/6LKUCUhpRSlGgVS/JoFkdAoc1oN9YwI3V9lChoBmgJaA9DCEZgrG/gwmFAlIaUUpRoFU3oA2gWR0Ch0faEal1sdX2UKGgGaAloD0MIRKZ8CKruXECUhpRSlGgVTegDaBZHQKHSSolUp/h1fZQoaAZoCWgPQwgUrkfh+sZsQJSGlFKUaBVNOAFoFkdAodTgE2YOUnV9lChoBmgJaA9DCCarItxkW15AlIaUUpRoFU3oA2gWR0Ch15Lqt5lfdX2UKGgGaAloD0MIPbt868OeXUCUhpRSlGgVTegDaBZHQKHXwMS9M9N1fZQoaAZoCWgPQwhHAg02dcdbQJSGlFKUaBVN6ANoFkdAodkeIZZSvXV9lChoBmgJaA9DCKhwBKkUlV1AlIaUUpRoFU3oA2gWR0Ch2YP2GqPwdX2UKGgGaAloD0MI8L4qF6rkYECUhpRSlGgVTegDaBZHQKHbytEofCB1fZQoaAZoCWgPQwgE5iFTvpphQJSGlFKUaBVN6ANoFkdAod5cV58jRnV9lChoBmgJaA9DCAPpYtNK9TlAlIaUUpRoFU0FAWgWR0Ch37qPGQ0XdX2UKGgGaAloD0MIKA6g3/ejP0CUhpRSlGgVTQ4BaBZHQKHhURGMGX51fZQoaAZoCWgPQwgf14aKcXdgQJSGlFKUaBVN6ANoFkdAoeG5PRArx3V9lChoBmgJaA9DCDMZjuez5WxAlIaUUpRoFU1QAWgWR0Ch46m7J4jbdX2UKGgGaAloD0MI3zMSoZFKY0CUhpRSlGgVTegDaBZHQKHu+/wiJO51fZQoaAZoCWgPQwibHhSUovZiQJSGlFKUaBVN6ANoFkdAoe+15WzWw3V9lChoBmgJaA9DCAGFevqIOGBAlIaUUpRoFU3oA2gWR0Ch8vJb+tKadX2UKGgGaAloD0MIokJ1c/EfYUCUhpRSlGgVTegDaBZHQKHzsnKGL1p1fZQoaAZoCWgPQwjCMGDJVTFdQJSGlFKUaBVN6ANoFkdAofVbASFoMHV9lChoBmgJaA9DCPzh578HgFxAlIaUUpRoFU3oA2gWR0Ch9bM1KoQ4dX2UKGgGaAloD0MI4iNiSiTZJcCUhpRSlGgVTQ4BaBZHQKH23f4REnd1fZQoaAZoCWgPQwifWKfKd8BhQJSGlFKUaBVN6ANoFkdAofmP7pFCs3V9lChoBmgJaA9DCGMJa2Ps+mFAlIaUUpRoFU3oA2gWR0Ch+dNnf2sadX2UKGgGaAloD0MINX12wHVVKMCUhpRSlGgVTQEBaBZHQKH6S3WFvht1fZQoaAZoCWgPQwhxHk5gOrVeQJSGlFKUaBVN6ANoFkdAofv8p1A7gnV9lChoBmgJaA9DCPvrFRbc21pAlIaUUpRoFU3oA2gWR0Ch/iqbBoEkdX2UKGgGaAloD0MIvrwA++gEOECUhpRSlGgVTQYBaBZHQKIBfZi/fwZ1fZQoaAZoCWgPQwhBSYEFMBdiQJSGlFKUaBVN6ANoFkdAogKCN+9alnV9lChoBmgJaA9DCDDZeLBFcWNAlIaUUpRoFU3oA2gWR0CiBSp2U0N0dX2UKGgGaAloD0MI4ExMF2LZYECUhpRSlGgVTegDaBZHQKIGn101ZT11fZQoaAZoCWgPQwiNgApHELFjQJSGlFKUaBVN6ANoFkdAogg4exOclXV9lChoBmgJaA9DCLpJDAIrW1ZAlIaUUpRoFU3oA2gWR0CiCJyiVSn+dX2UKGgGaAloD0MIKAtfX+viMUCUhpRSlGgVS/9oFkdAogqLIHTqjnV9lChoBmgJaA9DCIv/O6JCBGVAlIaUUpRoFU3oA2gWR0CiCpxcVxjsdWUu"
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 132,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
trained_lunar_lander_v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:05cd2aaffdf66162d777fdb354c6c927d4586cc6aea38ca2f185c4d3861de3be
3
+ size 84829
trained_lunar_lander_v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f365836ee2b7d0fc9631373967faeba7dc8e2d64bd776aff9a06a3bdc72ab979
3
+ size 43201
trained_lunar_lander_v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
trained_lunar_lander_v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
2
+ Python: 3.7.13
3
+ Stable-Baselines3: 1.5.0
4
+ PyTorch: 1.11.0+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0