mariastull
commited on
Commit
•
2bbad34
1
Parent(s):
a0e0dd8
v0 of PPO lunar lander
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- trained_lunar_lander_v0.zip +3 -0
- trained_lunar_lander_v0/_stable_baselines3_version +1 -0
- trained_lunar_lander_v0/data +94 -0
- trained_lunar_lander_v0/policy.optimizer.pth +3 -0
- trained_lunar_lander_v0/policy.pth +3 -0
- trained_lunar_lander_v0/pytorch_variables.pth +3 -0
- trained_lunar_lander_v0/system_info.txt +7 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 225.02 +/- 24.01
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f2d8f39a950>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f2d8f39a9e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2d8f39aa70>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f2d8f39ab00>", "_build": "<function ActorCriticPolicy._build at 0x7f2d8f39ab90>", "forward": "<function ActorCriticPolicy.forward at 0x7f2d8f39ac20>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2d8f39acb0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f2d8f39ad40>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2d8f39add0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f2d8f39ae60>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2d8f39aef0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f2d8f3ef300>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652719160.4247115, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAFNvWD4FlsM8UcUvO5IrxTlJSVM+yhZuugAAgD8AAIA/mr80Pp9oirtjLRc76a2uvPtg7bzynZW9AAAAAAAAgD+as308w4khuuV1wDvVIGA7pVGXOcT0rzsAAIA/AACAP3OGvL09ykG5y84HPECwAbVzRoe7zp8CtAAAgD8AAIA/E68CPjlBKj57XEe9xyGAvoUyjbzmy/Y8AAAAAAAAAADgxCk+WWhTPwitBj4ORnK+eJBMPVig/T0AAAAAAAAAAA3BhT3h8pS6QonvO98TujYzAQq7QoSzNQAAgD8AAIA/M73UPIUrtrklnbs63nJ5NLY4cTsGZNu5AACAPwAAgD8NXdY9SCXsulh9cb4axE27oZjXu3/fMrwAAAAAAAAAAM1UE70M/qk/oDTjvGZXcr5s7mO9ZlmUvQAAAAAAAAAAALZgPIUj4rkiocK7VNGVtscUJzoiqgc2AACAPwAAgD/gMU++KCSkvKTTA7tt8Iq4qsUQPiqTHDoAAIA/AACAP2bZizygk0s/qtEtPe/rlb71qKM96PoSPQAAAAAAAAAATc0vvau5Fj/q3Uq9Yr8VvrSdqzwLwUw9AAAAAAAAAADNhH67rv2muprMBDrRTqM0qgdaujSoF7kAAIA/AACAP63wHL5Arbw/o/e9vts+U77rGym+oqfXvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIlrIMcaylVkCUhpRSlIwBbJRN6AOMAXSUR0ChSeWsijcmdX2UKGgGaAloD0MIDB8RUyJxW0CUhpRSlGgVTegDaBZHQKFKb7zCk451fZQoaAZoCWgPQwjxZDcz+lHnP5SGlFKUaBVNmQFoFkdAoU0SN+9alnV9lChoBmgJaA9DCPjB+dQxqmBAlIaUUpRoFU3oA2gWR0ChTUME7nxKdX2UKGgGaAloD0MI2ZQrvMvWWECUhpRSlGgVTegDaBZHQKFN1uqm0md1fZQoaAZoCWgPQwg2donqraZWQJSGlFKUaBVN6ANoFkdAoU5i+8Gs3nV9lChoBmgJaA9DCEj5SbVPh2BAlIaUUpRoFU3oA2gWR0ChTzoS13MZdX2UKGgGaAloD0MIY5rpXqckYUCUhpRSlGgVTegDaBZHQKFRocENe+p1fZQoaAZoCWgPQwgn9WVpp6YbwJSGlFKUaBVNRAFoFkdAoVKI0EX+EXV9lChoBmgJaA9DCCb/k797V1dAlIaUUpRoFU3oA2gWR0ChUwNN8E3bdX2UKGgGaAloD0MI6SlyiDhZYECUhpRSlGgVTegDaBZHQKFTkjZ+QU51fZQoaAZoCWgPQwgqyTocXaNMQJSGlFKUaBVN6ANoFkdAoVVvsE7nxXV9lChoBmgJaA9DCKW+LO3U/ABAlIaUUpRoFU0jAWgWR0ChVbhHLA58dX2UKGgGaAloD0MIKNTTR+CtWkCUhpRSlGgVTegDaBZHQKFV1J3gUDd1fZQoaAZoCWgPQwiaJmw/GfMQQJSGlFKUaBVNCwFoFkdAoVYLxmTTv3V9lChoBmgJaA9DCNQrZRni2DbAlIaUUpRoFU09AWgWR0ChXyBje9BbdX2UKGgGaAloD0MIxysQPSlgW0CUhpRSlGgVTegDaBZHQKFgMvOhTOx1fZQoaAZoCWgPQwjFWKZfor9gQJSGlFKUaBVN6ANoFkdAoWIRYFJQL3V9lChoBmgJaA9DCFclkX2Q1FxAlIaUUpRoFU3oA2gWR0Chcd/BeokzdX2UKGgGaAloD0MI1c4wtaUFXECUhpRSlGgVTegDaBZHQKFzBsxfv4N1fZQoaAZoCWgPQwgEOpM21XBiQJSGlFKUaBVN6ANoFkdAoXNwxzq8lHV9lChoBmgJaA9DCLpoyHiU5EBAlIaUUpRoFU1IAWgWR0ChdDU5lvqDdX2UKGgGaAloD0MIZr0YyomeWkCUhpRSlGgVTegDaBZHQKF1xUc4o7V1fZQoaAZoCWgPQwgomgewyItcQJSGlFKUaBVN6ANoFkdAoXY/Vy3kP3V9lChoBmgJaA9DCBb6YBkbpF9AlIaUUpRoFU3oA2gWR0Chd366z3RHdX2UKGgGaAloD0MIUAEwnsEOYECUhpRSlGgVTegDaBZHQKF5+H9m6Gx1fZQoaAZoCWgPQwhq+YGrPIk4QJSGlFKUaBVNHAFoFkdAoXqdw3o9tHV9lChoBmgJaA9DCLMngc05nFZAlIaUUpRoFU3oA2gWR0Chet0h3aBadX2UKGgGaAloD0MI7+U+OYqfZECUhpRSlGgVTegDaBZHQKF7SJHAh0R1fZQoaAZoCWgPQwjnwkgvajRfQJSGlFKUaBVN6ANoFkdAoXvFECvHLnV9lChoBmgJaA9DCLEUyVcCtFVAlIaUUpRoFU3oA2gWR0ChfZXXRPXTdX2UKGgGaAloD0MIar+1E6VqYECUhpRSlGgVTegDaBZHQKF9r3JxNqR1fZQoaAZoCWgPQwhjRQ2mYZ5kQJSGlFKUaBVN6ANoFkdAoX3kpPRAr3V9lChoBmgJaA9DCH6QZcHEazJAlIaUUpRoFUv9aBZHQKGBB6HCXQd1fZQoaAZoCWgPQwhivrwA+8FtQJSGlFKUaBVNtgFoFkdAoYHXQla8pXV9lChoBmgJaA9DCPROBdxz3mJAlIaUUpRoFU3oA2gWR0ChhmFdcB2fdX2UKGgGaAloD0MIGhcOhGSEYECUhpRSlGgVTegDaBZHQKGJbwxWT5h1fZQoaAZoCWgPQwga3xeXqjQgQJSGlFKUaBVNOQFoFkdAoYvPKSxJNHV9lChoBmgJaA9DCIhlM4ek719AlIaUUpRoFU3oA2gWR0Chm4m+9Jz1dX2UKGgGaAloD0MI5Pih0ogFYUCUhpRSlGgVTegDaBZHQKGcC1jy4F11fZQoaAZoCWgPQwjSjbCoiJJhQJSGlFKUaBVN6ANoFkdAoZz07fYSQHV9lChoBmgJaA9DCN7/xwkT0lpAlIaUUpRoFU3oA2gWR0ChntlHJ9y+dX2UKGgGaAloD0MIC12JQHVyYECUhpRSlGgVTegDaBZHQKGg+nVG0/p1fZQoaAZoCWgPQwhB8WPM3etoQJSGlFKUaBVNHwNoFkdAoaHhFqi48XV9lChoBmgJaA9DCP/NixNfxWBAlIaUUpRoFU3oA2gWR0Cho9REfDDTdX2UKGgGaAloD0MIzhd7Lz7TYUCUhpRSlGgVTegDaBZHQKGkhRNyo4x1fZQoaAZoCWgPQwiRXz/EBmVdQJSGlFKUaBVN6ANoFkdAoaU6iudPL3V9lChoBmgJaA9DCJAxdy0h6V5AlIaUUpRoFU3oA2gWR0Chpc3l0YCRdX2UKGgGaAloD0MIOSuiJvq9XECUhpRSlGgVTegDaBZHQKGoJBv73wl1fZQoaAZoCWgPQwjs2XOZmkNWQJSGlFKUaBVN6ANoFkdAoahmfRNRFnV9lChoBmgJaA9DCIKOVrUk3mFAlIaUUpRoFU3oA2gWR0ChrUi3gDRudX2UKGgGaAloD0MI6/8c5ssLHcCUhpRSlGgVTQ4BaBZHQKGteFOfukV1fZQoaAZoCWgPQwiI2GDhJEE3QJSGlFKUaBVNUAFoFkdAoa7fk1dgOXV9lChoBmgJaA9DCOo+AKnN/GdAlIaUUpRoFU0CAmgWR0Chr05fdAPedX2UKGgGaAloD0MIv0nToGhuHUCUhpRSlGgVTTwBaBZHQKGvp1g6U7l1fZQoaAZoCWgPQwjw+PauQd1eQJSGlFKUaBVN6ANoFkdAobG0L8aXKXV9lChoBmgJaA9DCFH51/LKwmJAlIaUUpRoFU3oA2gWR0ChtCmIKtxNdX2UKGgGaAloD0MIVdy4xfx8WECUhpRSlGgVTegDaBZHQKG2Bhjvuw51fZQoaAZoCWgPQwhKsg5HV6kfQJSGlFKUaBVNAwFoFkdAobdrk6tDD3V9lChoBmgJaA9DCGVuvhHdK1FAlIaUUpRoFU3oA2gWR0ChxNdkauOkdX2UKGgGaAloD0MICB7f3jWwUkCUhpRSlGgVTegDaBZHQKHFUcebNKR1fZQoaAZoCWgPQwgS290D9E5hQJSGlFKUaBVN6ANoFkdAocY3icXm/3V9lChoBmgJaA9DCGDmO/iJkFdAlIaUUpRoFU3oA2gWR0ChyhjOs1badX2UKGgGaAloD0MIqkiFsYX6Q0CUhpRSlGgVTUcBaBZHQKHKWvnr6cl1fZQoaAZoCWgPQwiZuiu7YPNWQJSGlFKUaBVN6ANoFkdAocsD48EFGHV9lChoBmgJaA9DCOcXJegv3l5AlIaUUpRoFU3oA2gWR0ChzQPwd8zAdX2UKGgGaAloD0MIDeIDO/6LKUCUhpRSlGgVS/JoFkdAoc1oN9YwI3V9lChoBmgJaA9DCEZgrG/gwmFAlIaUUpRoFU3oA2gWR0Ch0faEal1sdX2UKGgGaAloD0MIRKZ8CKruXECUhpRSlGgVTegDaBZHQKHSSolUp/h1fZQoaAZoCWgPQwgUrkfh+sZsQJSGlFKUaBVNOAFoFkdAodTgE2YOUnV9lChoBmgJaA9DCCarItxkW15AlIaUUpRoFU3oA2gWR0Ch15Lqt5lfdX2UKGgGaAloD0MIPbt868OeXUCUhpRSlGgVTegDaBZHQKHXwMS9M9N1fZQoaAZoCWgPQwhHAg02dcdbQJSGlFKUaBVN6ANoFkdAodkeIZZSvXV9lChoBmgJaA9DCKhwBKkUlV1AlIaUUpRoFU3oA2gWR0Ch2YP2GqPwdX2UKGgGaAloD0MI8L4qF6rkYECUhpRSlGgVTegDaBZHQKHbytEofCB1fZQoaAZoCWgPQwgE5iFTvpphQJSGlFKUaBVN6ANoFkdAod5cV58jRnV9lChoBmgJaA9DCAPpYtNK9TlAlIaUUpRoFU0FAWgWR0Ch37qPGQ0XdX2UKGgGaAloD0MIKA6g3/ejP0CUhpRSlGgVTQ4BaBZHQKHhURGMGX51fZQoaAZoCWgPQwgf14aKcXdgQJSGlFKUaBVN6ANoFkdAoeG5PRArx3V9lChoBmgJaA9DCDMZjuez5WxAlIaUUpRoFU1QAWgWR0Ch46m7J4jbdX2UKGgGaAloD0MI3zMSoZFKY0CUhpRSlGgVTegDaBZHQKHu+/wiJO51fZQoaAZoCWgPQwibHhSUovZiQJSGlFKUaBVN6ANoFkdAoe+15WzWw3V9lChoBmgJaA9DCAGFevqIOGBAlIaUUpRoFU3oA2gWR0Ch8vJb+tKadX2UKGgGaAloD0MIokJ1c/EfYUCUhpRSlGgVTegDaBZHQKHzsnKGL1p1fZQoaAZoCWgPQwjCMGDJVTFdQJSGlFKUaBVN6ANoFkdAofVbASFoMHV9lChoBmgJaA9DCPzh578HgFxAlIaUUpRoFU3oA2gWR0Ch9bM1KoQ4dX2UKGgGaAloD0MI4iNiSiTZJcCUhpRSlGgVTQ4BaBZHQKH23f4REnd1fZQoaAZoCWgPQwifWKfKd8BhQJSGlFKUaBVN6ANoFkdAofmP7pFCs3V9lChoBmgJaA9DCGMJa2Ps+mFAlIaUUpRoFU3oA2gWR0Ch+dNnf2sadX2UKGgGaAloD0MINX12wHVVKMCUhpRSlGgVTQEBaBZHQKH6S3WFvht1fZQoaAZoCWgPQwhxHk5gOrVeQJSGlFKUaBVN6ANoFkdAofv8p1A7gnV9lChoBmgJaA9DCPvrFRbc21pAlIaUUpRoFU3oA2gWR0Ch/iqbBoEkdX2UKGgGaAloD0MIvrwA++gEOECUhpRSlGgVTQYBaBZHQKIBfZi/fwZ1fZQoaAZoCWgPQwhBSYEFMBdiQJSGlFKUaBVN6ANoFkdAogKCN+9alnV9lChoBmgJaA9DCDDZeLBFcWNAlIaUUpRoFU3oA2gWR0CiBSp2U0N0dX2UKGgGaAloD0MI4ExMF2LZYECUhpRSlGgVTegDaBZHQKIGn101ZT11fZQoaAZoCWgPQwiNgApHELFjQJSGlFKUaBVN6ANoFkdAogg4exOclXV9lChoBmgJaA9DCLpJDAIrW1ZAlIaUUpRoFU3oA2gWR0CiCJyiVSn+dX2UKGgGaAloD0MIKAtfX+viMUCUhpRSlGgVS/9oFkdAogqLIHTqjnV9lChoBmgJaA9DCIv/O6JCBGVAlIaUUpRoFU3oA2gWR0CiCpxcVxjsdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 132, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:470443f9218160ff94fa44476e82eb03970091312059ef3fd88106104334d5c3
|
3 |
+
size 253669
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 225.02230274210916, "std_reward": 24.01400884083597, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-16T16:56:07.128325"}
|
trained_lunar_lander_v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:569d0504c9a52620b81b9f6bf1c21835e845dd3c17799bfcb6d37cebf770a837
|
3 |
+
size 144044
|
trained_lunar_lander_v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
trained_lunar_lander_v0/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f2d8f39a950>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f2d8f39a9e0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2d8f39aa70>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f2d8f39ab00>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f2d8f39ab90>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f2d8f39ac20>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2d8f39acb0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f2d8f39ad40>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2d8f39add0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f2d8f39ae60>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2d8f39aef0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f2d8f3ef300>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 507904,
|
46 |
+
"_total_timesteps": 500000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1652719160.4247115,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAFNvWD4FlsM8UcUvO5IrxTlJSVM+yhZuugAAgD8AAIA/mr80Pp9oirtjLRc76a2uvPtg7bzynZW9AAAAAAAAgD+as308w4khuuV1wDvVIGA7pVGXOcT0rzsAAIA/AACAP3OGvL09ykG5y84HPECwAbVzRoe7zp8CtAAAgD8AAIA/E68CPjlBKj57XEe9xyGAvoUyjbzmy/Y8AAAAAAAAAADgxCk+WWhTPwitBj4ORnK+eJBMPVig/T0AAAAAAAAAAA3BhT3h8pS6QonvO98TujYzAQq7QoSzNQAAgD8AAIA/M73UPIUrtrklnbs63nJ5NLY4cTsGZNu5AACAPwAAgD8NXdY9SCXsulh9cb4axE27oZjXu3/fMrwAAAAAAAAAAM1UE70M/qk/oDTjvGZXcr5s7mO9ZlmUvQAAAAAAAAAAALZgPIUj4rkiocK7VNGVtscUJzoiqgc2AACAPwAAgD/gMU++KCSkvKTTA7tt8Iq4qsUQPiqTHDoAAIA/AACAP2bZizygk0s/qtEtPe/rlb71qKM96PoSPQAAAAAAAAAATc0vvau5Fj/q3Uq9Yr8VvrSdqzwLwUw9AAAAAAAAAADNhH67rv2muprMBDrRTqM0qgdaujSoF7kAAIA/AACAP63wHL5Arbw/o/e9vts+U77rGym+oqfXvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVfhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIlrIMcaylVkCUhpRSlIwBbJRN6AOMAXSUR0ChSeWsijcmdX2UKGgGaAloD0MIDB8RUyJxW0CUhpRSlGgVTegDaBZHQKFKb7zCk451fZQoaAZoCWgPQwjxZDcz+lHnP5SGlFKUaBVNmQFoFkdAoU0SN+9alnV9lChoBmgJaA9DCPjB+dQxqmBAlIaUUpRoFU3oA2gWR0ChTUME7nxKdX2UKGgGaAloD0MI2ZQrvMvWWECUhpRSlGgVTegDaBZHQKFN1uqm0md1fZQoaAZoCWgPQwg2donqraZWQJSGlFKUaBVN6ANoFkdAoU5i+8Gs3nV9lChoBmgJaA9DCEj5SbVPh2BAlIaUUpRoFU3oA2gWR0ChTzoS13MZdX2UKGgGaAloD0MIY5rpXqckYUCUhpRSlGgVTegDaBZHQKFRocENe+p1fZQoaAZoCWgPQwgn9WVpp6YbwJSGlFKUaBVNRAFoFkdAoVKI0EX+EXV9lChoBmgJaA9DCCb/k797V1dAlIaUUpRoFU3oA2gWR0ChUwNN8E3bdX2UKGgGaAloD0MI6SlyiDhZYECUhpRSlGgVTegDaBZHQKFTkjZ+QU51fZQoaAZoCWgPQwgqyTocXaNMQJSGlFKUaBVN6ANoFkdAoVVvsE7nxXV9lChoBmgJaA9DCKW+LO3U/ABAlIaUUpRoFU0jAWgWR0ChVbhHLA58dX2UKGgGaAloD0MIKNTTR+CtWkCUhpRSlGgVTegDaBZHQKFV1J3gUDd1fZQoaAZoCWgPQwiaJmw/GfMQQJSGlFKUaBVNCwFoFkdAoVYLxmTTv3V9lChoBmgJaA9DCNQrZRni2DbAlIaUUpRoFU09AWgWR0ChXyBje9BbdX2UKGgGaAloD0MIxysQPSlgW0CUhpRSlGgVTegDaBZHQKFgMvOhTOx1fZQoaAZoCWgPQwjFWKZfor9gQJSGlFKUaBVN6ANoFkdAoWIRYFJQL3V9lChoBmgJaA9DCFclkX2Q1FxAlIaUUpRoFU3oA2gWR0Chcd/BeokzdX2UKGgGaAloD0MI1c4wtaUFXECUhpRSlGgVTegDaBZHQKFzBsxfv4N1fZQoaAZoCWgPQwgEOpM21XBiQJSGlFKUaBVN6ANoFkdAoXNwxzq8lHV9lChoBmgJaA9DCLpoyHiU5EBAlIaUUpRoFU1IAWgWR0ChdDU5lvqDdX2UKGgGaAloD0MIZr0YyomeWkCUhpRSlGgVTegDaBZHQKF1xUc4o7V1fZQoaAZoCWgPQwgomgewyItcQJSGlFKUaBVN6ANoFkdAoXY/Vy3kP3V9lChoBmgJaA9DCBb6YBkbpF9AlIaUUpRoFU3oA2gWR0Chd366z3RHdX2UKGgGaAloD0MIUAEwnsEOYECUhpRSlGgVTegDaBZHQKF5+H9m6Gx1fZQoaAZoCWgPQwhq+YGrPIk4QJSGlFKUaBVNHAFoFkdAoXqdw3o9tHV9lChoBmgJaA9DCLMngc05nFZAlIaUUpRoFU3oA2gWR0Chet0h3aBadX2UKGgGaAloD0MI7+U+OYqfZECUhpRSlGgVTegDaBZHQKF7SJHAh0R1fZQoaAZoCWgPQwjnwkgvajRfQJSGlFKUaBVN6ANoFkdAoXvFECvHLnV9lChoBmgJaA9DCLEUyVcCtFVAlIaUUpRoFU3oA2gWR0ChfZXXRPXTdX2UKGgGaAloD0MIar+1E6VqYECUhpRSlGgVTegDaBZHQKF9r3JxNqR1fZQoaAZoCWgPQwhjRQ2mYZ5kQJSGlFKUaBVN6ANoFkdAoX3kpPRAr3V9lChoBmgJaA9DCH6QZcHEazJAlIaUUpRoFUv9aBZHQKGBB6HCXQd1fZQoaAZoCWgPQwhivrwA+8FtQJSGlFKUaBVNtgFoFkdAoYHXQla8pXV9lChoBmgJaA9DCPROBdxz3mJAlIaUUpRoFU3oA2gWR0ChhmFdcB2fdX2UKGgGaAloD0MIGhcOhGSEYECUhpRSlGgVTegDaBZHQKGJbwxWT5h1fZQoaAZoCWgPQwga3xeXqjQgQJSGlFKUaBVNOQFoFkdAoYvPKSxJNHV9lChoBmgJaA9DCIhlM4ek719AlIaUUpRoFU3oA2gWR0Chm4m+9Jz1dX2UKGgGaAloD0MI5Pih0ogFYUCUhpRSlGgVTegDaBZHQKGcC1jy4F11fZQoaAZoCWgPQwjSjbCoiJJhQJSGlFKUaBVN6ANoFkdAoZz07fYSQHV9lChoBmgJaA9DCN7/xwkT0lpAlIaUUpRoFU3oA2gWR0ChntlHJ9y+dX2UKGgGaAloD0MIC12JQHVyYECUhpRSlGgVTegDaBZHQKGg+nVG0/p1fZQoaAZoCWgPQwhB8WPM3etoQJSGlFKUaBVNHwNoFkdAoaHhFqi48XV9lChoBmgJaA9DCP/NixNfxWBAlIaUUpRoFU3oA2gWR0Cho9REfDDTdX2UKGgGaAloD0MIzhd7Lz7TYUCUhpRSlGgVTegDaBZHQKGkhRNyo4x1fZQoaAZoCWgPQwiRXz/EBmVdQJSGlFKUaBVN6ANoFkdAoaU6iudPL3V9lChoBmgJaA9DCJAxdy0h6V5AlIaUUpRoFU3oA2gWR0Chpc3l0YCRdX2UKGgGaAloD0MIOSuiJvq9XECUhpRSlGgVTegDaBZHQKGoJBv73wl1fZQoaAZoCWgPQwjs2XOZmkNWQJSGlFKUaBVN6ANoFkdAoahmfRNRFnV9lChoBmgJaA9DCIKOVrUk3mFAlIaUUpRoFU3oA2gWR0ChrUi3gDRudX2UKGgGaAloD0MI6/8c5ssLHcCUhpRSlGgVTQ4BaBZHQKGteFOfukV1fZQoaAZoCWgPQwiI2GDhJEE3QJSGlFKUaBVNUAFoFkdAoa7fk1dgOXV9lChoBmgJaA9DCOo+AKnN/GdAlIaUUpRoFU0CAmgWR0Chr05fdAPedX2UKGgGaAloD0MIv0nToGhuHUCUhpRSlGgVTTwBaBZHQKGvp1g6U7l1fZQoaAZoCWgPQwjw+PauQd1eQJSGlFKUaBVN6ANoFkdAobG0L8aXKXV9lChoBmgJaA9DCFH51/LKwmJAlIaUUpRoFU3oA2gWR0ChtCmIKtxNdX2UKGgGaAloD0MIVdy4xfx8WECUhpRSlGgVTegDaBZHQKG2Bhjvuw51fZQoaAZoCWgPQwhKsg5HV6kfQJSGlFKUaBVNAwFoFkdAobdrk6tDD3V9lChoBmgJaA9DCGVuvhHdK1FAlIaUUpRoFU3oA2gWR0ChxNdkauOkdX2UKGgGaAloD0MICB7f3jWwUkCUhpRSlGgVTegDaBZHQKHFUcebNKR1fZQoaAZoCWgPQwgS290D9E5hQJSGlFKUaBVN6ANoFkdAocY3icXm/3V9lChoBmgJaA9DCGDmO/iJkFdAlIaUUpRoFU3oA2gWR0ChyhjOs1badX2UKGgGaAloD0MIqkiFsYX6Q0CUhpRSlGgVTUcBaBZHQKHKWvnr6cl1fZQoaAZoCWgPQwiZuiu7YPNWQJSGlFKUaBVN6ANoFkdAocsD48EFGHV9lChoBmgJaA9DCOcXJegv3l5AlIaUUpRoFU3oA2gWR0ChzQPwd8zAdX2UKGgGaAloD0MIDeIDO/6LKUCUhpRSlGgVS/JoFkdAoc1oN9YwI3V9lChoBmgJaA9DCEZgrG/gwmFAlIaUUpRoFU3oA2gWR0Ch0faEal1sdX2UKGgGaAloD0MIRKZ8CKruXECUhpRSlGgVTegDaBZHQKHSSolUp/h1fZQoaAZoCWgPQwgUrkfh+sZsQJSGlFKUaBVNOAFoFkdAodTgE2YOUnV9lChoBmgJaA9DCCarItxkW15AlIaUUpRoFU3oA2gWR0Ch15Lqt5lfdX2UKGgGaAloD0MIPbt868OeXUCUhpRSlGgVTegDaBZHQKHXwMS9M9N1fZQoaAZoCWgPQwhHAg02dcdbQJSGlFKUaBVN6ANoFkdAodkeIZZSvXV9lChoBmgJaA9DCKhwBKkUlV1AlIaUUpRoFU3oA2gWR0Ch2YP2GqPwdX2UKGgGaAloD0MI8L4qF6rkYECUhpRSlGgVTegDaBZHQKHbytEofCB1fZQoaAZoCWgPQwgE5iFTvpphQJSGlFKUaBVN6ANoFkdAod5cV58jRnV9lChoBmgJaA9DCAPpYtNK9TlAlIaUUpRoFU0FAWgWR0Ch37qPGQ0XdX2UKGgGaAloD0MIKA6g3/ejP0CUhpRSlGgVTQ4BaBZHQKHhURGMGX51fZQoaAZoCWgPQwgf14aKcXdgQJSGlFKUaBVN6ANoFkdAoeG5PRArx3V9lChoBmgJaA9DCDMZjuez5WxAlIaUUpRoFU1QAWgWR0Ch46m7J4jbdX2UKGgGaAloD0MI3zMSoZFKY0CUhpRSlGgVTegDaBZHQKHu+/wiJO51fZQoaAZoCWgPQwibHhSUovZiQJSGlFKUaBVN6ANoFkdAoe+15WzWw3V9lChoBmgJaA9DCAGFevqIOGBAlIaUUpRoFU3oA2gWR0Ch8vJb+tKadX2UKGgGaAloD0MIokJ1c/EfYUCUhpRSlGgVTegDaBZHQKHzsnKGL1p1fZQoaAZoCWgPQwjCMGDJVTFdQJSGlFKUaBVN6ANoFkdAofVbASFoMHV9lChoBmgJaA9DCPzh578HgFxAlIaUUpRoFU3oA2gWR0Ch9bM1KoQ4dX2UKGgGaAloD0MI4iNiSiTZJcCUhpRSlGgVTQ4BaBZHQKH23f4REnd1fZQoaAZoCWgPQwifWKfKd8BhQJSGlFKUaBVN6ANoFkdAofmP7pFCs3V9lChoBmgJaA9DCGMJa2Ps+mFAlIaUUpRoFU3oA2gWR0Ch+dNnf2sadX2UKGgGaAloD0MINX12wHVVKMCUhpRSlGgVTQEBaBZHQKH6S3WFvht1fZQoaAZoCWgPQwhxHk5gOrVeQJSGlFKUaBVN6ANoFkdAofv8p1A7gnV9lChoBmgJaA9DCPvrFRbc21pAlIaUUpRoFU3oA2gWR0Ch/iqbBoEkdX2UKGgGaAloD0MIvrwA++gEOECUhpRSlGgVTQYBaBZHQKIBfZi/fwZ1fZQoaAZoCWgPQwhBSYEFMBdiQJSGlFKUaBVN6ANoFkdAogKCN+9alnV9lChoBmgJaA9DCDDZeLBFcWNAlIaUUpRoFU3oA2gWR0CiBSp2U0N0dX2UKGgGaAloD0MI4ExMF2LZYECUhpRSlGgVTegDaBZHQKIGn101ZT11fZQoaAZoCWgPQwiNgApHELFjQJSGlFKUaBVN6ANoFkdAogg4exOclXV9lChoBmgJaA9DCLpJDAIrW1ZAlIaUUpRoFU3oA2gWR0CiCJyiVSn+dX2UKGgGaAloD0MIKAtfX+viMUCUhpRSlGgVS/9oFkdAogqLIHTqjnV9lChoBmgJaA9DCIv/O6JCBGVAlIaUUpRoFU3oA2gWR0CiCpxcVxjsdWUu"
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 132,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
trained_lunar_lander_v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:05cd2aaffdf66162d777fdb354c6c927d4586cc6aea38ca2f185c4d3861de3be
|
3 |
+
size 84829
|
trained_lunar_lander_v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f365836ee2b7d0fc9631373967faeba7dc8e2d64bd776aff9a06a3bdc72ab979
|
3 |
+
size 43201
|
trained_lunar_lander_v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
trained_lunar_lander_v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|