Initial commit
Browse files- .gitattributes +1 -0
- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +106 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 1461.19 +/- 59.11
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3e6a1dece826b8ce37c7dd231f0fff5aa8fcaefe6fca43fa308c7c3ef9e2e543
|
3 |
+
size 129260
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fb6622aa280>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb6622aa310>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb6622aa3a0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb6622aa430>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fb6622aa4c0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fb6622aa550>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7fb6622aa5e0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb6622aa670>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fb6622aa700>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb6622aa790>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb6622aa820>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb6622aa8b0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7fb6622a5690>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"observation_space": {
|
36 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
37 |
+
":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
38 |
+
"dtype": "float32",
|
39 |
+
"_shape": [
|
40 |
+
28
|
41 |
+
],
|
42 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
43 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
44 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
46 |
+
"_np_random": null
|
47 |
+
},
|
48 |
+
"action_space": {
|
49 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
50 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
51 |
+
"dtype": "float32",
|
52 |
+
"_shape": [
|
53 |
+
8
|
54 |
+
],
|
55 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
56 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
57 |
+
"bounded_below": "[ True True True True True True True True]",
|
58 |
+
"bounded_above": "[ True True True True True True True True]",
|
59 |
+
"_np_random": null
|
60 |
+
},
|
61 |
+
"n_envs": 4,
|
62 |
+
"num_timesteps": 2000000,
|
63 |
+
"_total_timesteps": 2000000,
|
64 |
+
"_num_timesteps_at_start": 0,
|
65 |
+
"seed": null,
|
66 |
+
"action_noise": null,
|
67 |
+
"start_time": 1674387816803976993,
|
68 |
+
"learning_rate": 0.00096,
|
69 |
+
"tensorboard_log": null,
|
70 |
+
"lr_schedule": {
|
71 |
+
":type:": "<class 'function'>",
|
72 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
73 |
+
},
|
74 |
+
"_last_obs": {
|
75 |
+
":type:": "<class 'numpy.ndarray'>",
|
76 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAP/mRz/XYRs+4fInP0LZtj/TZq2+ZyB8P++bGL/w1Vm/UuM/v378fj+phKM/kDT1PifVJb2qBDM/RdoQPyfofb0RsAO+ILjivljNDr8jTsE+30CfP+EJWLstOPo/elOCvyn1Bj9jZbo+rHfmv1W0bb82Nro/dH2Bvuw9yj7PLQ9AkhPcv0WAoT+LcU+/lLqnv234ID9riuY/6Zi4PxAP0757nFq96E8SP+MFED/SXPQ8FZp2vyIoAL/+u92+vS5JP4X1Rr/3HxS97+/TP7bq070p9QY/Y2W6PjouDj9VtG2/wjavP+xB/jz6Chc/SaEEQBbvlr+ZEmM/6FJCv4K/o7/EYzs/7D8oPya1kT/Utyu+tIplPnY94L5A7Q8/QoYdPWSIXb/d3oa/vwXOvn9FZj++wIg+J9o2wIXC+z9kIRk9KfUGP2Nluj46Lg4/VbRtv09/Wj8A12i9AjcJP0QJ5z8kKXK/U9aiP72RN7/xXzy/iu6bvufJxz+gTFY/LFuYPixWZD/Lxo4/53wIPw1LET4ZUJa+qls+v8GDQr+EEPA+5EGMPx75hr8OSus/SrBNPin1Bj83zC/AOi4OP1W0bb+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
77 |
+
},
|
78 |
+
"_last_episode_starts": {
|
79 |
+
":type:": "<class 'numpy.ndarray'>",
|
80 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
81 |
+
},
|
82 |
+
"_last_original_obs": {
|
83 |
+
":type:": "<class 'numpy.ndarray'>",
|
84 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADhSwW3AACAPwAAAAAAAAAAAAAAAAAAAAAAAACANBOkPAAAAABPpADAAAAAAMgffb0AAAAAZeP6PwAAAACQSwm+AAAAABvF9z8AAAAAUnfyPQAAAACkXey/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAiFNUNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgPj8Hb0AAAAA61HbvwAAAAAOyRg9AAAAAFf06z8AAAAA6lvYuwAAAACTTNo/AAAAAF13ir0AAAAA98nxvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFct2jYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBQvcG9AAAAAIuQ5L8AAAAAVMhEPQAAAABkkuE/AAAAAIwDKjwAAAAAiqT5PwAAAACZ7wS+AAAAAJot/78AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAy8oM0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA//rxvQAAAADts+e/AAAAAI5CuL0AAAAAzzLqPwAAAABpZk68AAAAAHB13D8AAAAAIxg4PAAAAACMavO/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
85 |
+
},
|
86 |
+
"_episode_num": 0,
|
87 |
+
"use_sde": true,
|
88 |
+
"sde_sample_freq": -1,
|
89 |
+
"_current_progress_remaining": 0.0,
|
90 |
+
"ep_info_buffer": {
|
91 |
+
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJdWDl/6O5uMAWyUTegDjAF0lEdAp31kP4EfT3V9lChoBkdAmX8JaJQ+EGgHTegDaAhHQKd9yW9DhLp1fZQoaAZHQJawWN6w+t9oB03oA2gIR0CnfuKk2xY8dX2UKGgGR0CW274s3AEdaAdN6ANoCEdAp4J2j4593XV9lChoBkdAl0NXwTdtVWgHTegDaAhHQKeJrlDF6zF1fZQoaAZHQJgaaZuyeI5oB03oA2gIR0CniggQYk3TdX2UKGgGR0CUWeYhdMTOaAdN6ANoCEdAp4sJkPMB63V9lChoBkdAk0+mj9GZu2gHTegDaAhHQKeOeiOearp1fZQoaAZHQJkisIa99MNoB03oA2gIR0CnlbGqHXVcdX2UKGgGR0CYhQCjUNKAaAdN6ANoCEdAp5YKm/FirnV9lChoBkdAk1hEgGKQ72gHTegDaAhHQKeXDIFNcnp1fZQoaAZHQJhOF8iOeatoB03oA2gIR0CnmnYc3l0YdX2UKGgGR0CaPb9UCJXRaAdN6ANoCEdAp6GIQz1scnV9lChoBkdAl2gJYcNpd2gHTegDaAhHQKeh4sUZeiV1fZQoaAZHQJc2BO58Sf1oB03oA2gIR0CnouknssxxdX2UKGgGR0CXHsS5y2hJaAdN6ANoCEdAp6ZWxKQJX3V9lChoBkdAmL+S5I6KcmgHTegDaAhHQKetd/3nIQx1fZQoaAZHQJV8IEHMUypoB03oA2gIR0Cnrc8R+SbIdX2UKGgGR0CUpMFhXr+paAdN6ANoCEdAp67b7Ikqt3V9lChoBkdAitaO938n/mgHTegDaAhHQKeyQesgdOt1fZQoaAZHQJMm2Ce2/i5oB03oA2gIR0CnuZkyULUkdX2UKGgGR0CRiLj+rELqaAdN6ANoCEdAp7n4/s3Q2XV9lChoBkdAkXSPMfRu0mgHTegDaAhHQKe7Fyo4uK51fZQoaAZHQH+OgzLwF1VoB03oA2gIR0CnvolUZNwjdX2UKGgGR0CQfIL/CIk7aAdN6ANoCEdAp8W+UnogWHV9lChoBkdAlCImtdRiw2gHTegDaAhHQKfGGCe2/i51fZQoaAZHQJLXPNr0rbxoB03oA2gIR0CnxyL/S6UadX2UKGgGR0CUL6GSZBszaAdN6ANoCEdAp8qOLxZuAXV9lChoBkdAkgOoUnG83GgHTegDaAhHQKfRvI7Njb11fZQoaAZHQJJUTTYukDZoB03oA2gIR0Cn0hcRlHz6dX2UKGgGR0CLypPY4ACGaAdN6ANoCEdAp9MePPszEnV9lChoBkdAkF62SIP9UGgHTegDaAhHQKfWdronrpt1fZQoaAZHQJZS+Mglnh9oB03oA2gIR0Cn3Zkk0JnhdX2UKGgGR0CWKxa9sabXaAdN6ANoCEdAp93v+fh/AnV9lChoBkdAmSEMR+SbIGgHTegDaAhHQKfe8l9jPOZ1fZQoaAZHQJZik9QoCuFoB03oA2gIR0Cn4lVea8YidX2UKGgGR0CZciMfigkDaAdN6ANoCEdAp+lyx3V093V9lChoBkdAmuh7+Haew2gHTegDaAhHQKfpyMvRJEp1fZQoaAZHQJqmTaCcwxpoB03oA2gIR0Cn6snBDXvqdX2UKGgGR0CYW4gydnTRaAdN6ANoCEdAp+4uknCwbHV9lChoBkdAmCStyo4uLGgHTegDaAhHQKf1RW8RL9N1fZQoaAZHQJraxVo6CDpoB03oA2gIR0Cn9aISteUqdX2UKGgGR0CW0AAlv60qaAdN6ANoCEdAp/bERJ2+wnV9lChoBkdAnQvq1Cw8n2gHTegDaAhHQKf6WpKjBVN1fZQoaAZHQJh0LyQPqcFoB03oA2gIR0CoAY2cSXdCdX2UKGgGR0CbzfZ39rGjaAdN6ANoCEdAqAHqItUXHnV9lChoBkdAmQPwfdRBNWgHTegDaAhHQKgC9l8PWhB1fZQoaAZHQJeFjy08eS1oB03oA2gIR0CoBmQfZElWdX2UKGgGR0CWHNc/dIoWaAdN6ANoCEdAqA2TE74i5nV9lChoBkdAkpHxIBikPGgHTegDaAhHQKgN730wrUd1fZQoaAZHQJh3QbEP1+RoB03oA2gIR0CoDvJswco6dX2UKGgGR0CaNLGH58BuaAdN6ANoCEdAqBJjY287IXV9lChoBkdAmPIFBppN9GgHTegDaAhHQKgZipH7P6d1fZQoaAZHQJolwN/e+EhoB03oA2gIR0CoGeIfCAMEdX2UKGgGR0CZsV/iYLLIaAdN6ANoCEdAqBrmSt/4I3V9lChoBkdAmKDNEgGKRGgHTegDaAhHQKgeUdz4k/t1fZQoaAZHQJdV5s0pEx9oB03oA2gIR0CoJXB86V+rdX2UKGgGR0CZZGE12q1gaAdN6ANoCEdAqCXJUFSsKnV9lChoBkdAl8vvatcOb2gHTegDaAhHQKgmz4+KTB91fZQoaAZHQJcdcbn5i3JoB03oA2gIR0CoKjJLM9r5dX2UKGgGR0CYgQvRqoIfaAdN6ANoCEdAqDFbkU9IPXV9lChoBkdAmnBPpIMBqGgHTegDaAhHQKgxtAGjbi91fZQoaAZHQJro3rv9cbBoB03oA2gIR0CoMs9Qfp2VdX2UKGgGR0CZ8JOxjawmaAdN6ANoCEdAqDZxLuhK2HV9lChoBkdAmE+IfbKzRmgHTegDaAhHQKg9k+AVfu11fZQoaAZHQJmkXcsUZeloB03oA2gIR0CoPe6n752ydX2UKGgGR0Cbb6UgSvkjaAdN6ANoCEdAqD73b/Ot4nV9lChoBkdAl6rZBC2MKmgHTegDaAhHQKhCV9ph4MZ1fZQoaAZHQJuAttrKvFFoB03oA2gIR0CoSX/oaDPGdX2UKGgGR0CYOYob4rSWaAdN6ANoCEdAqEnXRXwLE3V9lChoBkdAlvwKCHymRGgHTegDaAhHQKhK38MNMGp1fZQoaAZHQJlYKk2xY7toB03oA2gIR0CoTkCtJWeZdX2UKGgGR0CXI03VkMCtaAdN6ANoCEdAqFViNp/PPnV9lChoBkdAl2cdLxqfvmgHTegDaAhHQKhVtzPKMeh1fZQoaAZHQJgVXpTuOS5oB03oA2gIR0CoVr54fOlgdX2UKGgGR0CaLdRKHwgDaAdN6ANoCEdAqFopKDkELnV9lChoBkdAl7Mf/m1YyWgHTegDaAhHQKhhUeqaPS51fZQoaAZHQJl8x/b0voNoB03oA2gIR0CoYa2pAD7qdX2UKGgGR0CZh1hbW3BpaAdN6ANoCEdAqGK3VqesgnV9lChoBkdAk6eUdV/+bWgHTegDaAhHQKhmG7yxzJZ1fZQoaAZHQJm07RiPQv9oB03oA2gIR0CobTfHPu5SdX2UKGgGR0CWj9IFeOXFaAdN6ANoCEdAqG2NbcGke3V9lChoBkdAkGsfV7Qb/GgHTegDaAhHQKhulMj/uLJ1fZQoaAZHQJNly6Zpi7VoB03oA2gIR0CocjBP0qYrdX2UKGgGR0CWKm+3pfQbaAdN6ANoCEdAqHld7BwdbXV9lChoBkdAmIsIpQUHp2gHTegDaAhHQKh5tNGEwnJ1fZQoaAZHQJbFT1xsEaFoB03oA2gIR0CoesGbCrLhdX2UKGgGR0CZAWiYsunNaAdN6ANoCEdAqH4pntfG/HV9lChoBkdAl0CZAQg9vGgHTegDaAhHQKiFT+qioKl1fZQoaAZHQJY+9VghKUVoB03oA2gIR0CohanJcPe6dX2UKGgGR0CW2uKoAGSqaAdN6ANoCEdAqIa3EETxonV9lChoBkdAjS4GAskIHGgHTegDaAhHQKiKGBfa6Bl1fZQoaAZHQJIrdIg/1QJoB03oA2gIR0CokTj+aScLdX2UKGgGR0BiOPgYP5HmaAdN6ANoCEdAqJGRMN+b3HV9lChoBkdAlY1rDZUT+WgHTegDaAhHQKiSmjKPn0V1fZQoaAZHQJKBIPtlZoxoB03oA2gIR0ColfKU/wAmdX2UKGgGR0CVJUiDM/yHaAdN6ANoCEdAqJ0Wo73fynV9lChoBkdAlK+0VWS2Y2gHTegDaAhHQKidbj5sTFl1fZQoaAZHQJWV/225QP9oB03oA2gIR0Conm+WGATadX2UKGgGR0CWTJKrq+rVaAdN6ANoCEdAqKHfChvitXVlLg=="
|
93 |
+
},
|
94 |
+
"ep_success_buffer": {
|
95 |
+
":type:": "<class 'collections.deque'>",
|
96 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
97 |
+
},
|
98 |
+
"_n_updates": 62500,
|
99 |
+
"n_steps": 8,
|
100 |
+
"gamma": 0.99,
|
101 |
+
"gae_lambda": 0.9,
|
102 |
+
"ent_coef": 0.0,
|
103 |
+
"vf_coef": 0.4,
|
104 |
+
"max_grad_norm": 0.5,
|
105 |
+
"normalize_advantage": false
|
106 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5e8cd5ce1c85908a5adfa39519ce973961b008af0bf4b57b53a3e1aee38c87af
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0ec57c506015542605d48917c2bf2b8febb9b66fde083e87ac9493c4f422b50a
|
3 |
+
size 56958
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fb6622aa280>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb6622aa310>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb6622aa3a0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb6622aa430>", "_build": "<function ActorCriticPolicy._build at 0x7fb6622aa4c0>", "forward": "<function ActorCriticPolicy.forward at 0x7fb6622aa550>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fb6622aa5e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb6622aa670>", "_predict": "<function ActorCriticPolicy._predict at 0x7fb6622aa700>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb6622aa790>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb6622aa820>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb6622aa8b0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fb6622a5690>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674387816803976993, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAP/mRz/XYRs+4fInP0LZtj/TZq2+ZyB8P++bGL/w1Vm/UuM/v378fj+phKM/kDT1PifVJb2qBDM/RdoQPyfofb0RsAO+ILjivljNDr8jTsE+30CfP+EJWLstOPo/elOCvyn1Bj9jZbo+rHfmv1W0bb82Nro/dH2Bvuw9yj7PLQ9AkhPcv0WAoT+LcU+/lLqnv234ID9riuY/6Zi4PxAP0757nFq96E8SP+MFED/SXPQ8FZp2vyIoAL/+u92+vS5JP4X1Rr/3HxS97+/TP7bq070p9QY/Y2W6PjouDj9VtG2/wjavP+xB/jz6Chc/SaEEQBbvlr+ZEmM/6FJCv4K/o7/EYzs/7D8oPya1kT/Utyu+tIplPnY94L5A7Q8/QoYdPWSIXb/d3oa/vwXOvn9FZj++wIg+J9o2wIXC+z9kIRk9KfUGP2Nluj46Lg4/VbRtv09/Wj8A12i9AjcJP0QJ5z8kKXK/U9aiP72RN7/xXzy/iu6bvufJxz+gTFY/LFuYPixWZD/Lxo4/53wIPw1LET4ZUJa+qls+v8GDQr+EEPA+5EGMPx75hr8OSus/SrBNPin1Bj83zC/AOi4OP1W0bb+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADhSwW3AACAPwAAAAAAAAAAAAAAAAAAAAAAAACANBOkPAAAAABPpADAAAAAAMgffb0AAAAAZeP6PwAAAACQSwm+AAAAABvF9z8AAAAAUnfyPQAAAACkXey/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAiFNUNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgPj8Hb0AAAAA61HbvwAAAAAOyRg9AAAAAFf06z8AAAAA6lvYuwAAAACTTNo/AAAAAF13ir0AAAAA98nxvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFct2jYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBQvcG9AAAAAIuQ5L8AAAAAVMhEPQAAAABkkuE/AAAAAIwDKjwAAAAAiqT5PwAAAACZ7wS+AAAAAJot/78AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAy8oM0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA//rxvQAAAADts+e/AAAAAI5CuL0AAAAAzzLqPwAAAABpZk68AAAAAHB13D8AAAAAIxg4PAAAAACMavO/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJdWDl/6O5uMAWyUTegDjAF0lEdAp31kP4EfT3V9lChoBkdAmX8JaJQ+EGgHTegDaAhHQKd9yW9DhLp1fZQoaAZHQJawWN6w+t9oB03oA2gIR0CnfuKk2xY8dX2UKGgGR0CW274s3AEdaAdN6ANoCEdAp4J2j4593XV9lChoBkdAl0NXwTdtVWgHTegDaAhHQKeJrlDF6zF1fZQoaAZHQJgaaZuyeI5oB03oA2gIR0CniggQYk3TdX2UKGgGR0CUWeYhdMTOaAdN6ANoCEdAp4sJkPMB63V9lChoBkdAk0+mj9GZu2gHTegDaAhHQKeOeiOearp1fZQoaAZHQJkisIa99MNoB03oA2gIR0CnlbGqHXVcdX2UKGgGR0CYhQCjUNKAaAdN6ANoCEdAp5YKm/FirnV9lChoBkdAk1hEgGKQ72gHTegDaAhHQKeXDIFNcnp1fZQoaAZHQJhOF8iOeatoB03oA2gIR0CnmnYc3l0YdX2UKGgGR0CaPb9UCJXRaAdN6ANoCEdAp6GIQz1scnV9lChoBkdAl2gJYcNpd2gHTegDaAhHQKeh4sUZeiV1fZQoaAZHQJc2BO58Sf1oB03oA2gIR0CnouknssxxdX2UKGgGR0CXHsS5y2hJaAdN6ANoCEdAp6ZWxKQJX3V9lChoBkdAmL+S5I6KcmgHTegDaAhHQKetd/3nIQx1fZQoaAZHQJV8IEHMUypoB03oA2gIR0Cnrc8R+SbIdX2UKGgGR0CUpMFhXr+paAdN6ANoCEdAp67b7Ikqt3V9lChoBkdAitaO938n/mgHTegDaAhHQKeyQesgdOt1fZQoaAZHQJMm2Ce2/i5oB03oA2gIR0CnuZkyULUkdX2UKGgGR0CRiLj+rELqaAdN6ANoCEdAp7n4/s3Q2XV9lChoBkdAkXSPMfRu0mgHTegDaAhHQKe7Fyo4uK51fZQoaAZHQH+OgzLwF1VoB03oA2gIR0CnvolUZNwjdX2UKGgGR0CQfIL/CIk7aAdN6ANoCEdAp8W+UnogWHV9lChoBkdAlCImtdRiw2gHTegDaAhHQKfGGCe2/i51fZQoaAZHQJLXPNr0rbxoB03oA2gIR0CnxyL/S6UadX2UKGgGR0CUL6GSZBszaAdN6ANoCEdAp8qOLxZuAXV9lChoBkdAkgOoUnG83GgHTegDaAhHQKfRvI7Njb11fZQoaAZHQJJUTTYukDZoB03oA2gIR0Cn0hcRlHz6dX2UKGgGR0CLypPY4ACGaAdN6ANoCEdAp9MePPszEnV9lChoBkdAkF62SIP9UGgHTegDaAhHQKfWdronrpt1fZQoaAZHQJZS+Mglnh9oB03oA2gIR0Cn3Zkk0JnhdX2UKGgGR0CWKxa9sabXaAdN6ANoCEdAp93v+fh/AnV9lChoBkdAmSEMR+SbIGgHTegDaAhHQKfe8l9jPOZ1fZQoaAZHQJZik9QoCuFoB03oA2gIR0Cn4lVea8YidX2UKGgGR0CZciMfigkDaAdN6ANoCEdAp+lyx3V093V9lChoBkdAmuh7+Haew2gHTegDaAhHQKfpyMvRJEp1fZQoaAZHQJqmTaCcwxpoB03oA2gIR0Cn6snBDXvqdX2UKGgGR0CYW4gydnTRaAdN6ANoCEdAp+4uknCwbHV9lChoBkdAmCStyo4uLGgHTegDaAhHQKf1RW8RL9N1fZQoaAZHQJraxVo6CDpoB03oA2gIR0Cn9aISteUqdX2UKGgGR0CW0AAlv60qaAdN6ANoCEdAp/bERJ2+wnV9lChoBkdAnQvq1Cw8n2gHTegDaAhHQKf6WpKjBVN1fZQoaAZHQJh0LyQPqcFoB03oA2gIR0CoAY2cSXdCdX2UKGgGR0CbzfZ39rGjaAdN6ANoCEdAqAHqItUXHnV9lChoBkdAmQPwfdRBNWgHTegDaAhHQKgC9l8PWhB1fZQoaAZHQJeFjy08eS1oB03oA2gIR0CoBmQfZElWdX2UKGgGR0CWHNc/dIoWaAdN6ANoCEdAqA2TE74i5nV9lChoBkdAkpHxIBikPGgHTegDaAhHQKgN730wrUd1fZQoaAZHQJh3QbEP1+RoB03oA2gIR0CoDvJswco6dX2UKGgGR0CaNLGH58BuaAdN6ANoCEdAqBJjY287IXV9lChoBkdAmPIFBppN9GgHTegDaAhHQKgZipH7P6d1fZQoaAZHQJolwN/e+EhoB03oA2gIR0CoGeIfCAMEdX2UKGgGR0CZsV/iYLLIaAdN6ANoCEdAqBrmSt/4I3V9lChoBkdAmKDNEgGKRGgHTegDaAhHQKgeUdz4k/t1fZQoaAZHQJdV5s0pEx9oB03oA2gIR0CoJXB86V+rdX2UKGgGR0CZZGE12q1gaAdN6ANoCEdAqCXJUFSsKnV9lChoBkdAl8vvatcOb2gHTegDaAhHQKgmz4+KTB91fZQoaAZHQJcdcbn5i3JoB03oA2gIR0CoKjJLM9r5dX2UKGgGR0CYgQvRqoIfaAdN6ANoCEdAqDFbkU9IPXV9lChoBkdAmnBPpIMBqGgHTegDaAhHQKgxtAGjbi91fZQoaAZHQJro3rv9cbBoB03oA2gIR0CoMs9Qfp2VdX2UKGgGR0CZ8JOxjawmaAdN6ANoCEdAqDZxLuhK2HV9lChoBkdAmE+IfbKzRmgHTegDaAhHQKg9k+AVfu11fZQoaAZHQJmkXcsUZeloB03oA2gIR0CoPe6n752ydX2UKGgGR0Cbb6UgSvkjaAdN6ANoCEdAqD73b/Ot4nV9lChoBkdAl6rZBC2MKmgHTegDaAhHQKhCV9ph4MZ1fZQoaAZHQJuAttrKvFFoB03oA2gIR0CoSX/oaDPGdX2UKGgGR0CYOYob4rSWaAdN6ANoCEdAqEnXRXwLE3V9lChoBkdAlvwKCHymRGgHTegDaAhHQKhK38MNMGp1fZQoaAZHQJlYKk2xY7toB03oA2gIR0CoTkCtJWeZdX2UKGgGR0CXI03VkMCtaAdN6ANoCEdAqFViNp/PPnV9lChoBkdAl2cdLxqfvmgHTegDaAhHQKhVtzPKMeh1fZQoaAZHQJgVXpTuOS5oB03oA2gIR0CoVr54fOlgdX2UKGgGR0CaLdRKHwgDaAdN6ANoCEdAqFopKDkELnV9lChoBkdAl7Mf/m1YyWgHTegDaAhHQKhhUeqaPS51fZQoaAZHQJl8x/b0voNoB03oA2gIR0CoYa2pAD7qdX2UKGgGR0CZh1hbW3BpaAdN6ANoCEdAqGK3VqesgnV9lChoBkdAk6eUdV/+bWgHTegDaAhHQKhmG7yxzJZ1fZQoaAZHQJm07RiPQv9oB03oA2gIR0CobTfHPu5SdX2UKGgGR0CWj9IFeOXFaAdN6ANoCEdAqG2NbcGke3V9lChoBkdAkGsfV7Qb/GgHTegDaAhHQKhulMj/uLJ1fZQoaAZHQJNly6Zpi7VoB03oA2gIR0CocjBP0qYrdX2UKGgGR0CWKm+3pfQbaAdN6ANoCEdAqHld7BwdbXV9lChoBkdAmIsIpQUHp2gHTegDaAhHQKh5tNGEwnJ1fZQoaAZHQJbFT1xsEaFoB03oA2gIR0CoesGbCrLhdX2UKGgGR0CZAWiYsunNaAdN6ANoCEdAqH4pntfG/HV9lChoBkdAl0CZAQg9vGgHTegDaAhHQKiFT+qioKl1fZQoaAZHQJY+9VghKUVoB03oA2gIR0CohanJcPe6dX2UKGgGR0CW2uKoAGSqaAdN6ANoCEdAqIa3EETxonV9lChoBkdAjS4GAskIHGgHTegDaAhHQKiKGBfa6Bl1fZQoaAZHQJIrdIg/1QJoB03oA2gIR0CokTj+aScLdX2UKGgGR0BiOPgYP5HmaAdN6ANoCEdAqJGRMN+b3HV9lChoBkdAlY1rDZUT+WgHTegDaAhHQKiSmjKPn0V1fZQoaAZHQJKBIPtlZoxoB03oA2gIR0ColfKU/wAmdX2UKGgGR0CVJUiDM/yHaAdN6ANoCEdAqJ0Wo73fynV9lChoBkdAlK+0VWS2Y2gHTegDaAhHQKidbj5sTFl1fZQoaAZHQJWV/225QP9oB03oA2gIR0Conm+WGATadX2UKGgGR0CWTJKrq+rVaAdN6ANoCEdAqKHfChvitXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ad59c9ed048db9e8c152a1abc8961904891bd0521f85a1f5b027aa2450421945
|
3 |
+
size 1076318
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1461.1899053041009, "std_reward": 59.109504475764034, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-22T13:15:45.055657"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d187c3ace100927d14189f7e63dac658337969ea6631e21f036b28686019351d
|
3 |
+
size 2136
|