File size: 131,679 Bytes
60f6e6e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
[2023-02-22 17:07:47,866][00749] Saving configuration to /content/train_dir/default_experiment/config.json...
[2023-02-22 17:07:47,869][00749] Rollout worker 0 uses device cpu
[2023-02-22 17:07:47,870][00749] Rollout worker 1 uses device cpu
[2023-02-22 17:07:47,872][00749] Rollout worker 2 uses device cpu
[2023-02-22 17:07:47,875][00749] Rollout worker 3 uses device cpu
[2023-02-22 17:07:47,876][00749] Rollout worker 4 uses device cpu
[2023-02-22 17:07:47,877][00749] Rollout worker 5 uses device cpu
[2023-02-22 17:07:47,879][00749] Rollout worker 6 uses device cpu
[2023-02-22 17:07:47,881][00749] Rollout worker 7 uses device cpu
[2023-02-22 17:07:47,996][00749] Using GPUs [0] for process 0 (actually maps to GPUs [0])
[2023-02-22 17:07:47,998][00749] InferenceWorker_p0-w0: min num requests: 2
[2023-02-22 17:07:48,029][00749] Starting all processes...
[2023-02-22 17:07:48,031][00749] Starting process learner_proc0
[2023-02-22 17:07:48,090][00749] Starting all processes...
[2023-02-22 17:07:48,099][00749] Starting process inference_proc0-0
[2023-02-22 17:07:48,100][00749] Starting process rollout_proc0
[2023-02-22 17:07:48,101][00749] Starting process rollout_proc1
[2023-02-22 17:07:48,102][00749] Starting process rollout_proc2
[2023-02-22 17:07:48,103][00749] Starting process rollout_proc3
[2023-02-22 17:07:48,104][00749] Starting process rollout_proc4
[2023-02-22 17:07:48,105][00749] Starting process rollout_proc5
[2023-02-22 17:07:48,105][00749] Starting process rollout_proc6
[2023-02-22 17:07:48,105][00749] Starting process rollout_proc7
[2023-02-22 17:07:50,175][09796] Worker 0 uses CPU cores [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
[2023-02-22 17:07:50,214][09794] Using GPUs [0] for process 0 (actually maps to GPUs [0])
[2023-02-22 17:07:50,214][09794] Set environment var CUDA_VISIBLE_DEVICES to '0' (GPU indices [0]) for inference process 0
[2023-02-22 17:07:50,278][09821] Worker 7 uses CPU cores [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
[2023-02-22 17:07:50,477][09780] Using GPUs [0] for process 0 (actually maps to GPUs [0])
[2023-02-22 17:07:50,477][09780] Set environment var CUDA_VISIBLE_DEVICES to '0' (GPU indices [0]) for learning process 0
[2023-02-22 17:07:50,509][09819] Worker 5 uses CPU cores [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
[2023-02-22 17:07:50,550][09798] Worker 3 uses CPU cores [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
[2023-02-22 17:07:50,557][09797] Worker 2 uses CPU cores [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
[2023-02-22 17:07:50,565][09816] Worker 6 uses CPU cores [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
[2023-02-22 17:07:50,595][09795] Worker 1 uses CPU cores [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
[2023-02-22 17:07:50,683][09818] Worker 4 uses CPU cores [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
[2023-02-22 17:07:50,992][09794] Num visible devices: 1
[2023-02-22 17:07:50,992][09780] Num visible devices: 1
[2023-02-22 17:07:51,010][09780] Starting seed is not provided
[2023-02-22 17:07:51,011][09780] Using GPUs [0] for process 0 (actually maps to GPUs [0])
[2023-02-22 17:07:51,011][09780] Initializing actor-critic model on device cuda:0
[2023-02-22 17:07:51,011][09780] RunningMeanStd input shape: (3, 72, 128)
[2023-02-22 17:07:51,013][09780] RunningMeanStd input shape: (1,)
[2023-02-22 17:07:51,026][09780] ConvEncoder: input_channels=3
[2023-02-22 17:07:51,307][09780] Conv encoder output size: 512
[2023-02-22 17:07:51,307][09780] Policy head output size: 512
[2023-02-22 17:07:51,352][09780] Created Actor Critic model with architecture:
[2023-02-22 17:07:51,352][09780] ActorCriticSharedWeights(
  (obs_normalizer): ObservationNormalizer(
    (running_mean_std): RunningMeanStdDictInPlace(
      (running_mean_std): ModuleDict(
        (obs): RunningMeanStdInPlace()
      )
    )
  )
  (returns_normalizer): RecursiveScriptModule(original_name=RunningMeanStdInPlace)
  (encoder): VizdoomEncoder(
    (basic_encoder): ConvEncoder(
      (enc): RecursiveScriptModule(
        original_name=ConvEncoderImpl
        (conv_head): RecursiveScriptModule(
          original_name=Sequential
          (0): RecursiveScriptModule(original_name=Conv2d)
          (1): RecursiveScriptModule(original_name=ELU)
          (2): RecursiveScriptModule(original_name=Conv2d)
          (3): RecursiveScriptModule(original_name=ELU)
          (4): RecursiveScriptModule(original_name=Conv2d)
          (5): RecursiveScriptModule(original_name=ELU)
        )
        (mlp_layers): RecursiveScriptModule(
          original_name=Sequential
          (0): RecursiveScriptModule(original_name=Linear)
          (1): RecursiveScriptModule(original_name=ELU)
        )
      )
    )
  )
  (core): ModelCoreRNN(
    (core): GRU(512, 512)
  )
  (decoder): MlpDecoder(
    (mlp): Identity()
  )
  (critic_linear): Linear(in_features=512, out_features=1, bias=True)
  (action_parameterization): ActionParameterizationDefault(
    (distribution_linear): Linear(in_features=512, out_features=5, bias=True)
  )
)
[2023-02-22 17:07:58,864][09780] Using optimizer <class 'torch.optim.adam.Adam'>
[2023-02-22 17:07:58,865][09780] No checkpoints found
[2023-02-22 17:07:58,865][09780] Did not load from checkpoint, starting from scratch!
[2023-02-22 17:07:58,866][09780] Initialized policy 0 weights for model version 0
[2023-02-22 17:07:58,868][09780] LearnerWorker_p0 finished initialization!
[2023-02-22 17:07:58,868][09780] Using GPUs [0] for process 0 (actually maps to GPUs [0])
[2023-02-22 17:07:58,979][09794] RunningMeanStd input shape: (3, 72, 128)
[2023-02-22 17:07:58,980][09794] RunningMeanStd input shape: (1,)
[2023-02-22 17:07:58,995][09794] ConvEncoder: input_channels=3
[2023-02-22 17:07:59,103][09794] Conv encoder output size: 512
[2023-02-22 17:07:59,104][09794] Policy head output size: 512
[2023-02-22 17:08:01,903][00749] Inference worker 0-0 is ready!
[2023-02-22 17:08:01,905][00749] All inference workers are ready! Signal rollout workers to start!
[2023-02-22 17:08:01,927][09819] Doom resolution: 160x120, resize resolution: (128, 72)
[2023-02-22 17:08:01,928][09797] Doom resolution: 160x120, resize resolution: (128, 72)
[2023-02-22 17:08:01,928][09818] Doom resolution: 160x120, resize resolution: (128, 72)
[2023-02-22 17:08:01,928][09796] Doom resolution: 160x120, resize resolution: (128, 72)
[2023-02-22 17:08:01,932][09795] Doom resolution: 160x120, resize resolution: (128, 72)
[2023-02-22 17:08:01,932][09821] Doom resolution: 160x120, resize resolution: (128, 72)
[2023-02-22 17:08:01,933][09816] Doom resolution: 160x120, resize resolution: (128, 72)
[2023-02-22 17:08:01,933][09798] Doom resolution: 160x120, resize resolution: (128, 72)
[2023-02-22 17:08:02,001][09821] VizDoom game.init() threw an exception ViZDoomUnexpectedExitException('Controlled ViZDoom instance exited unexpectedly.'). Terminate process...
[2023-02-22 17:08:02,001][09797] VizDoom game.init() threw an exception ViZDoomUnexpectedExitException('Controlled ViZDoom instance exited unexpectedly.'). Terminate process...
[2023-02-22 17:08:02,002][09821] EvtLoop [rollout_proc7_evt_loop, process=rollout_proc7] unhandled exception in slot='init' connected to emitter=Emitter(object_id='Sampler', signal_name='_inference_workers_initialized'), args=()
Traceback (most recent call last):
  File "/usr/local/lib/python3.8/dist-packages/sf_examples/vizdoom/doom/doom_gym.py", line 228, in _game_init
    self.game.init()
vizdoom.vizdoom.ViZDoomUnexpectedExitException: Controlled ViZDoom instance exited unexpectedly.

During handling of the above exception, another exception occurred:

Traceback (most recent call last):
  File "/usr/local/lib/python3.8/dist-packages/signal_slot/signal_slot.py", line 355, in _process_signal
    slot_callable(*args)
  File "/usr/local/lib/python3.8/dist-packages/sample_factory/algo/sampling/rollout_worker.py", line 150, in init
    env_runner.init(self.timing)
  File "/usr/local/lib/python3.8/dist-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 418, in init
    self._reset()
  File "/usr/local/lib/python3.8/dist-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 430, in _reset
    observations, info = e.reset(seed=seed)  # new way of doing seeding since Gym 0.26.0
  File "/usr/local/lib/python3.8/dist-packages/gym/core.py", line 323, in reset
    return self.env.reset(**kwargs)
  File "/usr/local/lib/python3.8/dist-packages/sample_factory/algo/utils/make_env.py", line 125, in reset
    obs, info = self.env.reset(**kwargs)
  File "/usr/local/lib/python3.8/dist-packages/sample_factory/algo/utils/make_env.py", line 110, in reset
    obs, info = self.env.reset(**kwargs)
  File "/usr/local/lib/python3.8/dist-packages/sf_examples/vizdoom/doom/wrappers/scenario_wrappers/gathering_reward_shaping.py", line 30, in reset
    return self.env.reset(**kwargs)
  File "/usr/local/lib/python3.8/dist-packages/gym/core.py", line 379, in reset
    obs, info = self.env.reset(**kwargs)
  File "/usr/local/lib/python3.8/dist-packages/sample_factory/envs/env_wrappers.py", line 84, in reset
    obs, info = self.env.reset(**kwargs)
  File "/usr/local/lib/python3.8/dist-packages/gym/core.py", line 323, in reset
    return self.env.reset(**kwargs)
  File "/usr/local/lib/python3.8/dist-packages/sf_examples/vizdoom/doom/wrappers/multiplayer_stats.py", line 51, in reset
    return self.env.reset(**kwargs)
  File "/usr/local/lib/python3.8/dist-packages/sf_examples/vizdoom/doom/doom_gym.py", line 323, in reset
    self._ensure_initialized()
  File "/usr/local/lib/python3.8/dist-packages/sf_examples/vizdoom/doom/doom_gym.py", line 274, in _ensure_initialized
    self.initialize()
  File "/usr/local/lib/python3.8/dist-packages/sf_examples/vizdoom/doom/doom_gym.py", line 269, in initialize
    self._game_init()
  File "/usr/local/lib/python3.8/dist-packages/sf_examples/vizdoom/doom/doom_gym.py", line 244, in _game_init
    raise EnvCriticalError()
sample_factory.envs.env_utils.EnvCriticalError
[2023-02-22 17:08:02,003][09821] Unhandled exception  in evt loop rollout_proc7_evt_loop
[2023-02-22 17:08:02,002][09797] EvtLoop [rollout_proc2_evt_loop, process=rollout_proc2] unhandled exception in slot='init' connected to emitter=Emitter(object_id='Sampler', signal_name='_inference_workers_initialized'), args=()
Traceback (most recent call last):
  File "/usr/local/lib/python3.8/dist-packages/sf_examples/vizdoom/doom/doom_gym.py", line 228, in _game_init
    self.game.init()
vizdoom.vizdoom.ViZDoomUnexpectedExitException: Controlled ViZDoom instance exited unexpectedly.

During handling of the above exception, another exception occurred:

Traceback (most recent call last):
  File "/usr/local/lib/python3.8/dist-packages/signal_slot/signal_slot.py", line 355, in _process_signal
    slot_callable(*args)
  File "/usr/local/lib/python3.8/dist-packages/sample_factory/algo/sampling/rollout_worker.py", line 150, in init
    env_runner.init(self.timing)
  File "/usr/local/lib/python3.8/dist-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 418, in init
    self._reset()
  File "/usr/local/lib/python3.8/dist-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 430, in _reset
    observations, info = e.reset(seed=seed)  # new way of doing seeding since Gym 0.26.0
  File "/usr/local/lib/python3.8/dist-packages/gym/core.py", line 323, in reset
    return self.env.reset(**kwargs)
  File "/usr/local/lib/python3.8/dist-packages/sample_factory/algo/utils/make_env.py", line 125, in reset
    obs, info = self.env.reset(**kwargs)
  File "/usr/local/lib/python3.8/dist-packages/sample_factory/algo/utils/make_env.py", line 110, in reset
    obs, info = self.env.reset(**kwargs)
  File "/usr/local/lib/python3.8/dist-packages/sf_examples/vizdoom/doom/wrappers/scenario_wrappers/gathering_reward_shaping.py", line 30, in reset
    return self.env.reset(**kwargs)
  File "/usr/local/lib/python3.8/dist-packages/gym/core.py", line 379, in reset
    obs, info = self.env.reset(**kwargs)
  File "/usr/local/lib/python3.8/dist-packages/sample_factory/envs/env_wrappers.py", line 84, in reset
    obs, info = self.env.reset(**kwargs)
  File "/usr/local/lib/python3.8/dist-packages/gym/core.py", line 323, in reset
    return self.env.reset(**kwargs)
  File "/usr/local/lib/python3.8/dist-packages/sf_examples/vizdoom/doom/wrappers/multiplayer_stats.py", line 51, in reset
    return self.env.reset(**kwargs)
  File "/usr/local/lib/python3.8/dist-packages/sf_examples/vizdoom/doom/doom_gym.py", line 323, in reset
    self._ensure_initialized()
  File "/usr/local/lib/python3.8/dist-packages/sf_examples/vizdoom/doom/doom_gym.py", line 274, in _ensure_initialized
    self.initialize()
  File "/usr/local/lib/python3.8/dist-packages/sf_examples/vizdoom/doom/doom_gym.py", line 269, in initialize
    self._game_init()
  File "/usr/local/lib/python3.8/dist-packages/sf_examples/vizdoom/doom/doom_gym.py", line 244, in _game_init
    raise EnvCriticalError()
sample_factory.envs.env_utils.EnvCriticalError
[2023-02-22 17:08:02,004][09797] Unhandled exception  in evt loop rollout_proc2_evt_loop
[2023-02-22 17:08:02,269][09795] Decorrelating experience for 0 frames...
[2023-02-22 17:08:02,343][09818] Decorrelating experience for 0 frames...
[2023-02-22 17:08:02,378][09798] Decorrelating experience for 0 frames...
[2023-02-22 17:08:02,378][09819] Decorrelating experience for 0 frames...
[2023-02-22 17:08:02,378][09816] Decorrelating experience for 0 frames...
[2023-02-22 17:08:02,378][09796] Decorrelating experience for 0 frames...
[2023-02-22 17:08:02,607][09818] Decorrelating experience for 32 frames...
[2023-02-22 17:08:02,668][09795] Decorrelating experience for 32 frames...
[2023-02-22 17:08:02,675][09796] Decorrelating experience for 32 frames...
[2023-02-22 17:08:02,677][09798] Decorrelating experience for 32 frames...
[2023-02-22 17:08:02,678][09819] Decorrelating experience for 32 frames...
[2023-02-22 17:08:02,691][09816] Decorrelating experience for 32 frames...
[2023-02-22 17:08:02,920][09818] Decorrelating experience for 64 frames...
[2023-02-22 17:08:03,005][00749] Fps is (10 sec: nan, 60 sec: nan, 300 sec: nan). Total num frames: 0. Throughput: 0: nan. Samples: 0. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
[2023-02-22 17:08:03,018][09819] Decorrelating experience for 64 frames...
[2023-02-22 17:08:03,024][09798] Decorrelating experience for 64 frames...
[2023-02-22 17:08:03,028][09796] Decorrelating experience for 64 frames...
[2023-02-22 17:08:03,029][09795] Decorrelating experience for 64 frames...
[2023-02-22 17:08:03,034][09816] Decorrelating experience for 64 frames...
[2023-02-22 17:08:03,355][09818] Decorrelating experience for 96 frames...
[2023-02-22 17:08:03,359][09819] Decorrelating experience for 96 frames...
[2023-02-22 17:08:03,363][09798] Decorrelating experience for 96 frames...
[2023-02-22 17:08:03,365][09795] Decorrelating experience for 96 frames...
[2023-02-22 17:08:03,367][09796] Decorrelating experience for 96 frames...
[2023-02-22 17:08:03,372][09816] Decorrelating experience for 96 frames...
[2023-02-22 17:08:07,999][00749] Heartbeat connected on InferenceWorker_p0-w0
[2023-02-22 17:08:08,005][00749] Fps is (10 sec: 0.0, 60 sec: 0.0, 300 sec: 0.0). Total num frames: 0. Throughput: 0: 416.0. Samples: 2080. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
[2023-02-22 17:08:08,008][00749] Avg episode reward: [(0, '2.501')]
[2023-02-22 17:08:08,011][00749] Heartbeat connected on RolloutWorker_w1
[2023-02-22 17:08:08,016][09780] Signal inference workers to stop experience collection...
[2023-02-22 17:08:08,014][00749] Heartbeat connected on RolloutWorker_w0
[2023-02-22 17:08:08,017][00749] Heartbeat connected on RolloutWorker_w3
[2023-02-22 17:08:08,019][09794] InferenceWorker_p0-w0: stopping experience collection
[2023-02-22 17:08:08,019][00749] Heartbeat connected on Batcher_0
[2023-02-22 17:08:08,023][00749] Heartbeat connected on RolloutWorker_w4
[2023-02-22 17:08:08,026][00749] Heartbeat connected on RolloutWorker_w5
[2023-02-22 17:08:08,028][00749] Heartbeat connected on RolloutWorker_w6
[2023-02-22 17:08:11,435][09780] Signal inference workers to resume experience collection...
[2023-02-22 17:08:11,436][09794] InferenceWorker_p0-w0: resuming experience collection
[2023-02-22 17:08:12,372][00749] Heartbeat connected on LearnerWorker_p0
[2023-02-22 17:08:13,005][00749] Fps is (10 sec: 1638.4, 60 sec: 1638.4, 300 sec: 1638.4). Total num frames: 16384. Throughput: 0: 246.6. Samples: 2466. Policy #0 lag: (min: 0.0, avg: 0.0, max: 0.0)
[2023-02-22 17:08:13,008][00749] Avg episode reward: [(0, '3.595')]
[2023-02-22 17:08:14,454][09794] Updated weights for policy 0, policy_version 10 (0.0366)
[2023-02-22 17:08:17,174][09794] Updated weights for policy 0, policy_version 20 (0.0011)
[2023-02-22 17:08:18,005][00749] Fps is (10 sec: 9420.9, 60 sec: 6280.5, 300 sec: 6280.5). Total num frames: 94208. Throughput: 0: 1329.6. Samples: 19944. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
[2023-02-22 17:08:18,008][00749] Avg episode reward: [(0, '4.345')]
[2023-02-22 17:08:19,764][09794] Updated weights for policy 0, policy_version 30 (0.0011)
[2023-02-22 17:08:22,497][09794] Updated weights for policy 0, policy_version 40 (0.0011)
[2023-02-22 17:08:23,005][00749] Fps is (10 sec: 15564.9, 60 sec: 8601.6, 300 sec: 8601.6). Total num frames: 172032. Throughput: 0: 2158.7. Samples: 43174. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
[2023-02-22 17:08:23,008][00749] Avg episode reward: [(0, '4.411')]
[2023-02-22 17:08:23,016][09780] Saving new best policy, reward=4.411!
[2023-02-22 17:08:25,097][09794] Updated weights for policy 0, policy_version 50 (0.0011)
[2023-02-22 17:08:27,690][09794] Updated weights for policy 0, policy_version 60 (0.0011)
[2023-02-22 17:08:28,005][00749] Fps is (10 sec: 15155.2, 60 sec: 9830.4, 300 sec: 9830.4). Total num frames: 245760. Throughput: 0: 2197.2. Samples: 54930. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
[2023-02-22 17:08:28,008][00749] Avg episode reward: [(0, '4.532')]
[2023-02-22 17:08:28,011][09780] Saving new best policy, reward=4.532!
[2023-02-22 17:08:30,522][09794] Updated weights for policy 0, policy_version 70 (0.0012)
[2023-02-22 17:08:33,005][00749] Fps is (10 sec: 14745.5, 60 sec: 10649.6, 300 sec: 10649.6). Total num frames: 319488. Throughput: 0: 2581.6. Samples: 77448. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
[2023-02-22 17:08:33,008][00749] Avg episode reward: [(0, '4.488')]
[2023-02-22 17:08:33,220][09794] Updated weights for policy 0, policy_version 80 (0.0011)
[2023-02-22 17:08:35,906][09794] Updated weights for policy 0, policy_version 90 (0.0010)
[2023-02-22 17:08:38,005][00749] Fps is (10 sec: 15155.2, 60 sec: 11351.8, 300 sec: 11351.8). Total num frames: 397312. Throughput: 0: 2866.2. Samples: 100316. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
[2023-02-22 17:08:38,008][00749] Avg episode reward: [(0, '4.653')]
[2023-02-22 17:08:38,037][09780] Saving new best policy, reward=4.653!
[2023-02-22 17:08:38,587][09794] Updated weights for policy 0, policy_version 100 (0.0011)
[2023-02-22 17:08:41,222][09794] Updated weights for policy 0, policy_version 110 (0.0011)
[2023-02-22 17:08:43,005][00749] Fps is (10 sec: 15564.9, 60 sec: 11878.4, 300 sec: 11878.4). Total num frames: 475136. Throughput: 0: 2799.4. Samples: 111976. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
[2023-02-22 17:08:43,008][00749] Avg episode reward: [(0, '4.463')]
[2023-02-22 17:08:43,992][09794] Updated weights for policy 0, policy_version 120 (0.0011)
[2023-02-22 17:08:46,813][09794] Updated weights for policy 0, policy_version 130 (0.0011)
[2023-02-22 17:08:48,005][00749] Fps is (10 sec: 15155.3, 60 sec: 12197.0, 300 sec: 12197.0). Total num frames: 548864. Throughput: 0: 2978.6. Samples: 134036. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2023-02-22 17:08:48,008][00749] Avg episode reward: [(0, '4.481')]
[2023-02-22 17:08:49,586][09794] Updated weights for policy 0, policy_version 140 (0.0011)
[2023-02-22 17:08:52,272][09794] Updated weights for policy 0, policy_version 150 (0.0010)
[2023-02-22 17:08:53,005][00749] Fps is (10 sec: 14745.4, 60 sec: 12451.8, 300 sec: 12451.8). Total num frames: 622592. Throughput: 0: 3436.2. Samples: 156708. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
[2023-02-22 17:08:53,007][00749] Avg episode reward: [(0, '4.402')]
[2023-02-22 17:08:54,830][09794] Updated weights for policy 0, policy_version 160 (0.0010)
[2023-02-22 17:08:57,485][09794] Updated weights for policy 0, policy_version 170 (0.0011)
[2023-02-22 17:08:58,005][00749] Fps is (10 sec: 15564.8, 60 sec: 12809.3, 300 sec: 12809.3). Total num frames: 704512. Throughput: 0: 3690.6. Samples: 168542. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
[2023-02-22 17:08:58,008][00749] Avg episode reward: [(0, '4.561')]
[2023-02-22 17:09:00,147][09794] Updated weights for policy 0, policy_version 180 (0.0011)
[2023-02-22 17:09:02,870][09794] Updated weights for policy 0, policy_version 190 (0.0011)
[2023-02-22 17:09:03,005][00749] Fps is (10 sec: 15565.0, 60 sec: 12970.7, 300 sec: 12970.7). Total num frames: 778240. Throughput: 0: 3812.7. Samples: 191514. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2023-02-22 17:09:03,008][00749] Avg episode reward: [(0, '4.500')]
[2023-02-22 17:09:05,640][09794] Updated weights for policy 0, policy_version 200 (0.0011)
[2023-02-22 17:09:08,005][00749] Fps is (10 sec: 14745.6, 60 sec: 14199.5, 300 sec: 13107.2). Total num frames: 851968. Throughput: 0: 3796.2. Samples: 214002. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
[2023-02-22 17:09:08,007][00749] Avg episode reward: [(0, '4.885')]
[2023-02-22 17:09:08,011][09780] Saving new best policy, reward=4.885!
[2023-02-22 17:09:08,341][09794] Updated weights for policy 0, policy_version 210 (0.0011)
[2023-02-22 17:09:10,912][09794] Updated weights for policy 0, policy_version 220 (0.0011)
[2023-02-22 17:09:13,005][00749] Fps is (10 sec: 15564.7, 60 sec: 15291.7, 300 sec: 13341.3). Total num frames: 933888. Throughput: 0: 3796.6. Samples: 225778. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2023-02-22 17:09:13,008][00749] Avg episode reward: [(0, '5.027')]
[2023-02-22 17:09:13,016][09780] Saving new best policy, reward=5.027!
[2023-02-22 17:09:13,497][09794] Updated weights for policy 0, policy_version 230 (0.0011)
[2023-02-22 17:09:16,161][09794] Updated weights for policy 0, policy_version 240 (0.0011)
[2023-02-22 17:09:18,005][00749] Fps is (10 sec: 15564.7, 60 sec: 15223.5, 300 sec: 13434.9). Total num frames: 1007616. Throughput: 0: 3816.6. Samples: 249196. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2023-02-22 17:09:18,008][00749] Avg episode reward: [(0, '5.004')]
[2023-02-22 17:09:18,862][09794] Updated weights for policy 0, policy_version 250 (0.0011)
[2023-02-22 17:09:21,397][09794] Updated weights for policy 0, policy_version 260 (0.0011)
[2023-02-22 17:09:23,005][00749] Fps is (10 sec: 15565.0, 60 sec: 15291.7, 300 sec: 13619.2). Total num frames: 1089536. Throughput: 0: 3833.6. Samples: 272828. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
[2023-02-22 17:09:23,008][00749] Avg episode reward: [(0, '4.915')]
[2023-02-22 17:09:23,944][09794] Updated weights for policy 0, policy_version 270 (0.0011)
[2023-02-22 17:09:26,554][09794] Updated weights for policy 0, policy_version 280 (0.0011)
[2023-02-22 17:09:28,005][00749] Fps is (10 sec: 15974.5, 60 sec: 15360.0, 300 sec: 13733.7). Total num frames: 1167360. Throughput: 0: 3838.7. Samples: 284716. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
[2023-02-22 17:09:28,008][00749] Avg episode reward: [(0, '6.150')]
[2023-02-22 17:09:28,010][09780] Saving new best policy, reward=6.150!
[2023-02-22 17:09:29,087][09794] Updated weights for policy 0, policy_version 290 (0.0010)
[2023-02-22 17:09:31,775][09794] Updated weights for policy 0, policy_version 300 (0.0011)
[2023-02-22 17:09:33,005][00749] Fps is (10 sec: 15564.7, 60 sec: 15428.3, 300 sec: 13835.4). Total num frames: 1245184. Throughput: 0: 3870.0. Samples: 308188. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2023-02-22 17:09:33,007][00749] Avg episode reward: [(0, '6.143')]
[2023-02-22 17:09:34,488][09794] Updated weights for policy 0, policy_version 310 (0.0011)
[2023-02-22 17:09:37,062][09794] Updated weights for policy 0, policy_version 320 (0.0010)
[2023-02-22 17:09:38,005][00749] Fps is (10 sec: 15564.8, 60 sec: 15428.3, 300 sec: 13926.4). Total num frames: 1323008. Throughput: 0: 3883.6. Samples: 331470. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2023-02-22 17:09:38,007][00749] Avg episode reward: [(0, '7.452')]
[2023-02-22 17:09:38,011][09780] Saving new best policy, reward=7.452!
[2023-02-22 17:09:39,662][09794] Updated weights for policy 0, policy_version 330 (0.0012)
[2023-02-22 17:09:42,190][09794] Updated weights for policy 0, policy_version 340 (0.0010)
[2023-02-22 17:09:43,005][00749] Fps is (10 sec: 15974.2, 60 sec: 15496.5, 300 sec: 14049.3). Total num frames: 1404928. Throughput: 0: 3888.8. Samples: 343538. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2023-02-22 17:09:43,008][00749] Avg episode reward: [(0, '8.480')]
[2023-02-22 17:09:43,017][09780] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000343_1404928.pth...
[2023-02-22 17:09:43,080][09780] Saving new best policy, reward=8.480!
[2023-02-22 17:09:44,782][09794] Updated weights for policy 0, policy_version 350 (0.0010)
[2023-02-22 17:09:47,465][09794] Updated weights for policy 0, policy_version 360 (0.0012)
[2023-02-22 17:09:48,005][00749] Fps is (10 sec: 15974.5, 60 sec: 15564.8, 300 sec: 14121.5). Total num frames: 1482752. Throughput: 0: 3899.5. Samples: 366990. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2023-02-22 17:09:48,008][00749] Avg episode reward: [(0, '10.903')]
[2023-02-22 17:09:48,010][09780] Saving new best policy, reward=10.903!
[2023-02-22 17:09:50,131][09794] Updated weights for policy 0, policy_version 370 (0.0011)
[2023-02-22 17:09:52,678][09794] Updated weights for policy 0, policy_version 380 (0.0011)
[2023-02-22 17:09:53,005][00749] Fps is (10 sec: 15565.1, 60 sec: 15633.1, 300 sec: 14187.1). Total num frames: 1560576. Throughput: 0: 3923.2. Samples: 390546. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
[2023-02-22 17:09:53,007][00749] Avg episode reward: [(0, '10.680')]
[2023-02-22 17:09:55,227][09794] Updated weights for policy 0, policy_version 390 (0.0011)
[2023-02-22 17:09:57,774][09794] Updated weights for policy 0, policy_version 400 (0.0011)
[2023-02-22 17:09:58,005][00749] Fps is (10 sec: 15564.7, 60 sec: 15564.8, 300 sec: 14247.0). Total num frames: 1638400. Throughput: 0: 3929.9. Samples: 402624. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
[2023-02-22 17:09:58,008][00749] Avg episode reward: [(0, '11.824')]
[2023-02-22 17:09:58,011][09780] Saving new best policy, reward=11.824!
[2023-02-22 17:10:00,439][09794] Updated weights for policy 0, policy_version 410 (0.0011)
[2023-02-22 17:10:03,005][00749] Fps is (10 sec: 15564.7, 60 sec: 15633.1, 300 sec: 14301.9). Total num frames: 1716224. Throughput: 0: 3929.7. Samples: 426032. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
[2023-02-22 17:10:03,007][00749] Avg episode reward: [(0, '12.799')]
[2023-02-22 17:10:03,017][09780] Saving new best policy, reward=12.799!
[2023-02-22 17:10:03,131][09794] Updated weights for policy 0, policy_version 420 (0.0011)
[2023-02-22 17:10:05,848][09794] Updated weights for policy 0, policy_version 430 (0.0010)
[2023-02-22 17:10:08,005][00749] Fps is (10 sec: 15564.8, 60 sec: 15701.3, 300 sec: 14352.4). Total num frames: 1794048. Throughput: 0: 3909.2. Samples: 448744. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
[2023-02-22 17:10:08,008][00749] Avg episode reward: [(0, '13.948')]
[2023-02-22 17:10:08,011][09780] Saving new best policy, reward=13.948!
[2023-02-22 17:10:08,538][09794] Updated weights for policy 0, policy_version 440 (0.0010)
[2023-02-22 17:10:11,210][09794] Updated weights for policy 0, policy_version 450 (0.0010)
[2023-02-22 17:10:13,005][00749] Fps is (10 sec: 15155.2, 60 sec: 15564.8, 300 sec: 14367.5). Total num frames: 1867776. Throughput: 0: 3897.8. Samples: 460116. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2023-02-22 17:10:13,007][00749] Avg episode reward: [(0, '14.487')]
[2023-02-22 17:10:13,014][09780] Saving new best policy, reward=14.487!
[2023-02-22 17:10:13,853][09794] Updated weights for policy 0, policy_version 460 (0.0011)
[2023-02-22 17:10:16,477][09794] Updated weights for policy 0, policy_version 470 (0.0011)
[2023-02-22 17:10:18,005][00749] Fps is (10 sec: 15155.2, 60 sec: 15633.1, 300 sec: 14411.9). Total num frames: 1945600. Throughput: 0: 3894.8. Samples: 483456. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2023-02-22 17:10:18,008][00749] Avg episode reward: [(0, '17.009')]
[2023-02-22 17:10:18,011][09780] Saving new best policy, reward=17.009!
[2023-02-22 17:10:19,125][09794] Updated weights for policy 0, policy_version 480 (0.0011)
[2023-02-22 17:10:21,766][09794] Updated weights for policy 0, policy_version 490 (0.0010)
[2023-02-22 17:10:23,005][00749] Fps is (10 sec: 15564.8, 60 sec: 15564.8, 300 sec: 14453.0). Total num frames: 2023424. Throughput: 0: 3898.6. Samples: 506906. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2023-02-22 17:10:23,008][00749] Avg episode reward: [(0, '15.362')]
[2023-02-22 17:10:24,301][09794] Updated weights for policy 0, policy_version 500 (0.0010)
[2023-02-22 17:10:26,900][09794] Updated weights for policy 0, policy_version 510 (0.0010)
[2023-02-22 17:10:28,005][00749] Fps is (10 sec: 15974.4, 60 sec: 15633.1, 300 sec: 14519.6). Total num frames: 2105344. Throughput: 0: 3894.8. Samples: 518804. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
[2023-02-22 17:10:28,008][00749] Avg episode reward: [(0, '16.369')]
[2023-02-22 17:10:29,471][09794] Updated weights for policy 0, policy_version 520 (0.0011)
[2023-02-22 17:10:32,150][09794] Updated weights for policy 0, policy_version 530 (0.0011)
[2023-02-22 17:10:33,005][00749] Fps is (10 sec: 15974.1, 60 sec: 15633.0, 300 sec: 14554.4). Total num frames: 2183168. Throughput: 0: 3895.7. Samples: 542296. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2023-02-22 17:10:33,008][00749] Avg episode reward: [(0, '16.850')]
[2023-02-22 17:10:34,855][09794] Updated weights for policy 0, policy_version 540 (0.0011)
[2023-02-22 17:10:37,425][09794] Updated weights for policy 0, policy_version 550 (0.0011)
[2023-02-22 17:10:38,005][00749] Fps is (10 sec: 15564.8, 60 sec: 15633.1, 300 sec: 14587.1). Total num frames: 2260992. Throughput: 0: 3888.2. Samples: 565514. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
[2023-02-22 17:10:38,008][00749] Avg episode reward: [(0, '14.840')]
[2023-02-22 17:10:40,015][09794] Updated weights for policy 0, policy_version 560 (0.0011)
[2023-02-22 17:10:42,616][09794] Updated weights for policy 0, policy_version 570 (0.0010)
[2023-02-22 17:10:43,005][00749] Fps is (10 sec: 15565.1, 60 sec: 15564.8, 300 sec: 14617.6). Total num frames: 2338816. Throughput: 0: 3884.2. Samples: 577414. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
[2023-02-22 17:10:43,007][00749] Avg episode reward: [(0, '17.547')]
[2023-02-22 17:10:43,018][09780] Saving new best policy, reward=17.547!
[2023-02-22 17:10:45,141][09794] Updated weights for policy 0, policy_version 580 (0.0011)
[2023-02-22 17:10:47,847][09794] Updated weights for policy 0, policy_version 590 (0.0011)
[2023-02-22 17:10:48,005][00749] Fps is (10 sec: 15564.6, 60 sec: 15564.8, 300 sec: 14646.3). Total num frames: 2416640. Throughput: 0: 3887.7. Samples: 600978. Policy #0 lag: (min: 0.0, avg: 0.3, max: 1.0)
[2023-02-22 17:10:48,008][00749] Avg episode reward: [(0, '17.049')]
[2023-02-22 17:10:50,644][09794] Updated weights for policy 0, policy_version 600 (0.0011)
[2023-02-22 17:10:53,005][00749] Fps is (10 sec: 15564.8, 60 sec: 15564.8, 300 sec: 14673.3). Total num frames: 2494464. Throughput: 0: 3893.2. Samples: 623936. Policy #0 lag: (min: 0.0, avg: 0.3, max: 1.0)
[2023-02-22 17:10:53,007][00749] Avg episode reward: [(0, '18.617')]
[2023-02-22 17:10:53,015][09780] Saving new best policy, reward=18.617!
[2023-02-22 17:10:53,185][09794] Updated weights for policy 0, policy_version 610 (0.0011)
[2023-02-22 17:10:55,762][09794] Updated weights for policy 0, policy_version 620 (0.0011)
[2023-02-22 17:10:58,005][00749] Fps is (10 sec: 15565.0, 60 sec: 15564.8, 300 sec: 14698.8). Total num frames: 2572288. Throughput: 0: 3904.8. Samples: 635830. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
[2023-02-22 17:10:58,008][00749] Avg episode reward: [(0, '16.774')]
[2023-02-22 17:10:58,404][09794] Updated weights for policy 0, policy_version 630 (0.0011)
[2023-02-22 17:11:00,940][09794] Updated weights for policy 0, policy_version 640 (0.0011)
[2023-02-22 17:11:03,005][00749] Fps is (10 sec: 15564.8, 60 sec: 15564.8, 300 sec: 14722.9). Total num frames: 2650112. Throughput: 0: 3910.8. Samples: 659444. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2023-02-22 17:11:03,009][00749] Avg episode reward: [(0, '23.356')]
[2023-02-22 17:11:03,018][09780] Saving new best policy, reward=23.356!
[2023-02-22 17:11:03,670][09794] Updated weights for policy 0, policy_version 650 (0.0011)
[2023-02-22 17:11:06,310][09794] Updated weights for policy 0, policy_version 660 (0.0010)
[2023-02-22 17:11:08,005][00749] Fps is (10 sec: 15564.8, 60 sec: 15564.8, 300 sec: 14745.6). Total num frames: 2727936. Throughput: 0: 3906.8. Samples: 682712. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
[2023-02-22 17:11:08,008][00749] Avg episode reward: [(0, '18.035')]
[2023-02-22 17:11:08,842][09794] Updated weights for policy 0, policy_version 670 (0.0011)
[2023-02-22 17:11:11,493][09794] Updated weights for policy 0, policy_version 680 (0.0010)
[2023-02-22 17:11:13,005][00749] Fps is (10 sec: 15564.6, 60 sec: 15633.0, 300 sec: 14767.2). Total num frames: 2805760. Throughput: 0: 3909.6. Samples: 694738. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2023-02-22 17:11:13,008][00749] Avg episode reward: [(0, '18.036')]
[2023-02-22 17:11:14,032][09794] Updated weights for policy 0, policy_version 690 (0.0011)
[2023-02-22 17:11:16,790][09794] Updated weights for policy 0, policy_version 700 (0.0011)
[2023-02-22 17:11:18,005][00749] Fps is (10 sec: 15564.8, 60 sec: 15633.1, 300 sec: 14787.6). Total num frames: 2883584. Throughput: 0: 3896.1. Samples: 717622. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
[2023-02-22 17:11:18,007][00749] Avg episode reward: [(0, '21.296')]
[2023-02-22 17:11:19,529][09794] Updated weights for policy 0, policy_version 710 (0.0011)
[2023-02-22 17:11:22,253][09794] Updated weights for policy 0, policy_version 720 (0.0010)
[2023-02-22 17:11:23,005][00749] Fps is (10 sec: 15155.1, 60 sec: 15564.8, 300 sec: 14786.6). Total num frames: 2957312. Throughput: 0: 3887.7. Samples: 740462. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2023-02-22 17:11:23,009][00749] Avg episode reward: [(0, '19.292')]
[2023-02-22 17:11:24,899][09794] Updated weights for policy 0, policy_version 730 (0.0011)
[2023-02-22 17:11:27,506][09794] Updated weights for policy 0, policy_version 740 (0.0011)
[2023-02-22 17:11:28,005][00749] Fps is (10 sec: 15155.3, 60 sec: 15496.6, 300 sec: 14805.6). Total num frames: 3035136. Throughput: 0: 3878.4. Samples: 751944. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2023-02-22 17:11:28,008][00749] Avg episode reward: [(0, '20.338')]
[2023-02-22 17:11:30,072][09794] Updated weights for policy 0, policy_version 750 (0.0011)
[2023-02-22 17:11:32,730][09794] Updated weights for policy 0, policy_version 760 (0.0011)
[2023-02-22 17:11:33,005][00749] Fps is (10 sec: 15974.6, 60 sec: 15564.8, 300 sec: 14843.1). Total num frames: 3117056. Throughput: 0: 3882.3. Samples: 775680. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2023-02-22 17:11:33,008][00749] Avg episode reward: [(0, '23.196')]
[2023-02-22 17:11:35,406][09794] Updated weights for policy 0, policy_version 770 (0.0011)
[2023-02-22 17:11:38,005][00749] Fps is (10 sec: 15564.7, 60 sec: 15496.5, 300 sec: 14840.9). Total num frames: 3190784. Throughput: 0: 3881.5. Samples: 798602. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2023-02-22 17:11:38,007][00749] Avg episode reward: [(0, '27.011')]
[2023-02-22 17:11:38,011][09780] Saving new best policy, reward=27.011!
[2023-02-22 17:11:38,129][09794] Updated weights for policy 0, policy_version 780 (0.0011)
[2023-02-22 17:11:40,650][09794] Updated weights for policy 0, policy_version 790 (0.0010)
[2023-02-22 17:11:43,005][00749] Fps is (10 sec: 15564.8, 60 sec: 15564.8, 300 sec: 14875.9). Total num frames: 3272704. Throughput: 0: 3879.1. Samples: 810392. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
[2023-02-22 17:11:43,008][00749] Avg episode reward: [(0, '26.513')]
[2023-02-22 17:11:43,020][09780] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000799_3272704.pth...
[2023-02-22 17:11:43,278][09794] Updated weights for policy 0, policy_version 800 (0.0011)
[2023-02-22 17:11:45,833][09794] Updated weights for policy 0, policy_version 810 (0.0010)
[2023-02-22 17:11:48,005][00749] Fps is (10 sec: 15974.4, 60 sec: 15564.8, 300 sec: 14891.2). Total num frames: 3350528. Throughput: 0: 3881.9. Samples: 834130. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
[2023-02-22 17:11:48,008][00749] Avg episode reward: [(0, '23.306')]
[2023-02-22 17:11:48,506][09794] Updated weights for policy 0, policy_version 820 (0.0011)
[2023-02-22 17:11:51,199][09794] Updated weights for policy 0, policy_version 830 (0.0011)
[2023-02-22 17:11:53,005][00749] Fps is (10 sec: 15155.2, 60 sec: 15496.5, 300 sec: 14888.1). Total num frames: 3424256. Throughput: 0: 3874.8. Samples: 857080. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2023-02-22 17:11:53,008][00749] Avg episode reward: [(0, '23.699')]
[2023-02-22 17:11:53,817][09794] Updated weights for policy 0, policy_version 840 (0.0011)
[2023-02-22 17:11:56,387][09794] Updated weights for policy 0, policy_version 850 (0.0011)
[2023-02-22 17:11:58,005][00749] Fps is (10 sec: 15564.7, 60 sec: 15564.8, 300 sec: 14919.9). Total num frames: 3506176. Throughput: 0: 3873.4. Samples: 869040. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
[2023-02-22 17:11:58,007][00749] Avg episode reward: [(0, '23.796')]
[2023-02-22 17:11:58,993][09794] Updated weights for policy 0, policy_version 860 (0.0011)
[2023-02-22 17:12:01,531][09794] Updated weights for policy 0, policy_version 870 (0.0010)
[2023-02-22 17:12:03,005][00749] Fps is (10 sec: 15974.3, 60 sec: 15564.8, 300 sec: 14933.3). Total num frames: 3584000. Throughput: 0: 3893.9. Samples: 892848. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2023-02-22 17:12:03,008][00749] Avg episode reward: [(0, '22.995')]
[2023-02-22 17:12:04,223][09794] Updated weights for policy 0, policy_version 880 (0.0010)
[2023-02-22 17:12:06,877][09794] Updated weights for policy 0, policy_version 890 (0.0011)
[2023-02-22 17:12:08,005][00749] Fps is (10 sec: 15564.9, 60 sec: 15564.8, 300 sec: 14946.2). Total num frames: 3661824. Throughput: 0: 3902.0. Samples: 916050. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2023-02-22 17:12:08,008][00749] Avg episode reward: [(0, '26.580')]
[2023-02-22 17:12:09,401][09794] Updated weights for policy 0, policy_version 900 (0.0011)
[2023-02-22 17:12:11,982][09794] Updated weights for policy 0, policy_version 910 (0.0011)
[2023-02-22 17:12:13,005][00749] Fps is (10 sec: 15564.8, 60 sec: 15564.8, 300 sec: 14958.6). Total num frames: 3739648. Throughput: 0: 3915.8. Samples: 928156. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2023-02-22 17:12:13,008][00749] Avg episode reward: [(0, '25.689')]
[2023-02-22 17:12:14,585][09794] Updated weights for policy 0, policy_version 920 (0.0010)
[2023-02-22 17:12:17,173][09794] Updated weights for policy 0, policy_version 930 (0.0011)
[2023-02-22 17:12:18,005][00749] Fps is (10 sec: 15974.5, 60 sec: 15633.1, 300 sec: 14986.5). Total num frames: 3821568. Throughput: 0: 3911.6. Samples: 951700. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
[2023-02-22 17:12:18,008][00749] Avg episode reward: [(0, '25.178')]
[2023-02-22 17:12:19,958][09794] Updated weights for policy 0, policy_version 940 (0.0011)
[2023-02-22 17:12:22,648][09794] Updated weights for policy 0, policy_version 950 (0.0011)
[2023-02-22 17:12:23,005][00749] Fps is (10 sec: 15564.9, 60 sec: 15633.1, 300 sec: 14981.9). Total num frames: 3895296. Throughput: 0: 3904.1. Samples: 974288. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
[2023-02-22 17:12:23,008][00749] Avg episode reward: [(0, '23.471')]
[2023-02-22 17:12:25,216][09794] Updated weights for policy 0, policy_version 960 (0.0010)
[2023-02-22 17:12:27,845][09794] Updated weights for policy 0, policy_version 970 (0.0011)
[2023-02-22 17:12:28,005][00749] Fps is (10 sec: 15155.2, 60 sec: 15633.1, 300 sec: 14992.9). Total num frames: 3973120. Throughput: 0: 3907.3. Samples: 986218. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
[2023-02-22 17:12:28,008][00749] Avg episode reward: [(0, '25.868')]
[2023-02-22 17:12:29,876][09780] Stopping Batcher_0...
[2023-02-22 17:12:29,876][00749] Component Batcher_0 stopped!
[2023-02-22 17:12:29,876][09780] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth...
[2023-02-22 17:12:29,878][00749] Component RolloutWorker_w2 process died already! Don't wait for it.
[2023-02-22 17:12:29,881][00749] Component RolloutWorker_w7 process died already! Don't wait for it.
[2023-02-22 17:12:29,877][09780] Loop batcher_evt_loop terminating...
[2023-02-22 17:12:29,887][09816] Stopping RolloutWorker_w6...
[2023-02-22 17:12:29,887][09816] Loop rollout_proc6_evt_loop terminating...
[2023-02-22 17:12:29,890][09798] Stopping RolloutWorker_w3...
[2023-02-22 17:12:29,890][09795] Stopping RolloutWorker_w1...
[2023-02-22 17:12:29,887][00749] Component RolloutWorker_w6 stopped!
[2023-02-22 17:12:29,891][09798] Loop rollout_proc3_evt_loop terminating...
[2023-02-22 17:12:29,891][09794] Weights refcount: 2 0
[2023-02-22 17:12:29,891][09795] Loop rollout_proc1_evt_loop terminating...
[2023-02-22 17:12:29,891][09819] Stopping RolloutWorker_w5...
[2023-02-22 17:12:29,891][09819] Loop rollout_proc5_evt_loop terminating...
[2023-02-22 17:12:29,893][09794] Stopping InferenceWorker_p0-w0...
[2023-02-22 17:12:29,893][09796] Stopping RolloutWorker_w0...
[2023-02-22 17:12:29,893][09794] Loop inference_proc0-0_evt_loop terminating...
[2023-02-22 17:12:29,891][00749] Component RolloutWorker_w3 stopped!
[2023-02-22 17:12:29,894][09796] Loop rollout_proc0_evt_loop terminating...
[2023-02-22 17:12:29,894][00749] Component RolloutWorker_w1 stopped!
[2023-02-22 17:12:29,896][09818] Stopping RolloutWorker_w4...
[2023-02-22 17:12:29,897][09818] Loop rollout_proc4_evt_loop terminating...
[2023-02-22 17:12:29,896][00749] Component RolloutWorker_w5 stopped!
[2023-02-22 17:12:29,899][00749] Component InferenceWorker_p0-w0 stopped!
[2023-02-22 17:12:29,902][00749] Component RolloutWorker_w0 stopped!
[2023-02-22 17:12:29,904][00749] Component RolloutWorker_w4 stopped!
[2023-02-22 17:12:29,935][09780] Removing /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000343_1404928.pth
[2023-02-22 17:12:29,941][09780] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth...
[2023-02-22 17:12:30,034][09780] Stopping LearnerWorker_p0...
[2023-02-22 17:12:30,035][09780] Loop learner_proc0_evt_loop terminating...
[2023-02-22 17:12:30,035][00749] Component LearnerWorker_p0 stopped!
[2023-02-22 17:12:30,037][00749] Waiting for process learner_proc0 to stop...
[2023-02-22 17:12:31,740][00749] Waiting for process inference_proc0-0 to join...
[2023-02-22 17:12:31,742][00749] Waiting for process rollout_proc0 to join...
[2023-02-22 17:12:31,744][00749] Waiting for process rollout_proc1 to join...
[2023-02-22 17:12:31,746][00749] Waiting for process rollout_proc2 to join...
[2023-02-22 17:12:31,747][00749] Waiting for process rollout_proc3 to join...
[2023-02-22 17:12:31,749][00749] Waiting for process rollout_proc4 to join...
[2023-02-22 17:12:31,751][00749] Waiting for process rollout_proc5 to join...
[2023-02-22 17:12:31,752][00749] Waiting for process rollout_proc6 to join...
[2023-02-22 17:12:31,754][00749] Waiting for process rollout_proc7 to join...
[2023-02-22 17:12:31,755][00749] Batcher 0 profile tree view:
batching: 15.6698, releasing_batches: 0.0232
[2023-02-22 17:12:31,756][00749] InferenceWorker_p0-w0 profile tree view:
wait_policy: 0.0000
  wait_policy_total: 4.6958
update_model: 4.0603
  weight_update: 0.0010
one_step: 0.0026
  handle_policy_step: 242.2526
    deserialize: 9.1828, stack: 1.5350, obs_to_device_normalize: 56.1599, forward: 112.3785, send_messages: 16.7795
    prepare_outputs: 34.6596
      to_cpu: 21.1398
[2023-02-22 17:12:31,758][00749] Learner 0 profile tree view:
misc: 0.0062, prepare_batch: 10.1016
train: 20.1066
  epoch_init: 0.0056, minibatch_init: 0.0060, losses_postprocess: 0.3786, kl_divergence: 0.5390, after_optimizer: 1.1418
  calculate_losses: 7.7604
    losses_init: 0.0036, forward_head: 1.1111, bptt_initial: 3.2359, tail: 0.6397, advantages_returns: 0.1729, losses: 1.0538
    bptt: 1.3628
      bptt_forward_core: 1.3112
  update: 9.9265
    clip: 1.1066
[2023-02-22 17:12:31,760][00749] RolloutWorker_w0 profile tree view:
wait_for_trajectories: 0.1947, enqueue_policy_requests: 10.0101, env_step: 162.3796, overhead: 13.3595, complete_rollouts: 0.3324
save_policy_outputs: 11.1506
  split_output_tensors: 5.4350
[2023-02-22 17:12:31,762][00749] Loop Runner_EvtLoop terminating...
[2023-02-22 17:12:31,764][00749] Runner profile tree view:
main_loop: 283.7353
[2023-02-22 17:12:31,766][00749] Collected {0: 4005888}, FPS: 14118.4
[2023-02-22 17:13:02,218][00749] Loading existing experiment configuration from /content/train_dir/default_experiment/config.json
[2023-02-22 17:13:02,220][00749] Overriding arg 'num_workers' with value 1 passed from command line
[2023-02-22 17:13:02,222][00749] Adding new argument 'no_render'=True that is not in the saved config file!
[2023-02-22 17:13:02,224][00749] Adding new argument 'save_video'=True that is not in the saved config file!
[2023-02-22 17:13:02,226][00749] Adding new argument 'video_frames'=1000000000.0 that is not in the saved config file!
[2023-02-22 17:13:02,227][00749] Adding new argument 'video_name'=None that is not in the saved config file!
[2023-02-22 17:13:02,230][00749] Adding new argument 'max_num_frames'=1000000000.0 that is not in the saved config file!
[2023-02-22 17:13:02,231][00749] Adding new argument 'max_num_episodes'=10 that is not in the saved config file!
[2023-02-22 17:13:02,233][00749] Adding new argument 'push_to_hub'=False that is not in the saved config file!
[2023-02-22 17:13:02,234][00749] Adding new argument 'hf_repository'=None that is not in the saved config file!
[2023-02-22 17:13:02,235][00749] Adding new argument 'policy_index'=0 that is not in the saved config file!
[2023-02-22 17:13:02,238][00749] Adding new argument 'eval_deterministic'=False that is not in the saved config file!
[2023-02-22 17:13:02,239][00749] Adding new argument 'train_script'=None that is not in the saved config file!
[2023-02-22 17:13:02,241][00749] Adding new argument 'enjoy_script'=None that is not in the saved config file!
[2023-02-22 17:13:02,242][00749] Using frameskip 1 and render_action_repeat=4 for evaluation
[2023-02-22 17:13:02,260][00749] Doom resolution: 160x120, resize resolution: (128, 72)
[2023-02-22 17:13:02,263][00749] RunningMeanStd input shape: (3, 72, 128)
[2023-02-22 17:13:02,267][00749] RunningMeanStd input shape: (1,)
[2023-02-22 17:13:02,288][00749] ConvEncoder: input_channels=3
[2023-02-22 17:13:03,190][00749] Conv encoder output size: 512
[2023-02-22 17:13:03,193][00749] Policy head output size: 512
[2023-02-22 17:13:06,134][00749] Loading state from checkpoint /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth...
[2023-02-22 17:13:08,006][00749] Num frames 100...
[2023-02-22 17:13:08,126][00749] Num frames 200...
[2023-02-22 17:13:08,247][00749] Num frames 300...
[2023-02-22 17:13:08,367][00749] Num frames 400...
[2023-02-22 17:13:08,489][00749] Num frames 500...
[2023-02-22 17:13:08,606][00749] Num frames 600...
[2023-02-22 17:13:08,730][00749] Num frames 700...
[2023-02-22 17:13:08,866][00749] Avg episode rewards: #0: 12.680, true rewards: #0: 7.680
[2023-02-22 17:13:08,868][00749] Avg episode reward: 12.680, avg true_objective: 7.680
[2023-02-22 17:13:08,912][00749] Num frames 800...
[2023-02-22 17:13:09,035][00749] Num frames 900...
[2023-02-22 17:13:09,161][00749] Num frames 1000...
[2023-02-22 17:13:09,278][00749] Num frames 1100...
[2023-02-22 17:13:09,400][00749] Num frames 1200...
[2023-02-22 17:13:09,520][00749] Num frames 1300...
[2023-02-22 17:13:09,636][00749] Num frames 1400...
[2023-02-22 17:13:09,787][00749] Num frames 1500...
[2023-02-22 17:13:09,909][00749] Num frames 1600...
[2023-02-22 17:13:10,031][00749] Num frames 1700...
[2023-02-22 17:13:10,154][00749] Num frames 1800...
[2023-02-22 17:13:10,274][00749] Num frames 1900...
[2023-02-22 17:13:10,400][00749] Num frames 2000...
[2023-02-22 17:13:10,525][00749] Num frames 2100...
[2023-02-22 17:13:10,649][00749] Num frames 2200...
[2023-02-22 17:13:10,778][00749] Num frames 2300...
[2023-02-22 17:13:10,902][00749] Num frames 2400...
[2023-02-22 17:13:11,029][00749] Num frames 2500...
[2023-02-22 17:13:11,149][00749] Num frames 2600...
[2023-02-22 17:13:11,272][00749] Num frames 2700...
[2023-02-22 17:13:11,401][00749] Num frames 2800...
[2023-02-22 17:13:11,542][00749] Avg episode rewards: #0: 37.339, true rewards: #0: 14.340
[2023-02-22 17:13:11,544][00749] Avg episode reward: 37.339, avg true_objective: 14.340
[2023-02-22 17:13:11,589][00749] Num frames 2900...
[2023-02-22 17:13:11,719][00749] Num frames 3000...
[2023-02-22 17:13:11,859][00749] Num frames 3100...
[2023-02-22 17:13:11,984][00749] Num frames 3200...
[2023-02-22 17:13:12,106][00749] Num frames 3300...
[2023-02-22 17:13:12,226][00749] Num frames 3400...
[2023-02-22 17:13:12,353][00749] Num frames 3500...
[2023-02-22 17:13:12,471][00749] Num frames 3600...
[2023-02-22 17:13:12,590][00749] Num frames 3700...
[2023-02-22 17:13:12,712][00749] Num frames 3800...
[2023-02-22 17:13:12,835][00749] Num frames 3900...
[2023-02-22 17:13:12,956][00749] Num frames 4000...
[2023-02-22 17:13:13,077][00749] Num frames 4100...
[2023-02-22 17:13:13,191][00749] Num frames 4200...
[2023-02-22 17:13:13,310][00749] Num frames 4300...
[2023-02-22 17:13:13,428][00749] Num frames 4400...
[2023-02-22 17:13:13,544][00749] Num frames 4500...
[2023-02-22 17:13:13,662][00749] Num frames 4600...
[2023-02-22 17:13:13,754][00749] Avg episode rewards: #0: 39.426, true rewards: #0: 15.427
[2023-02-22 17:13:13,757][00749] Avg episode reward: 39.426, avg true_objective: 15.427
[2023-02-22 17:13:13,848][00749] Num frames 4700...
[2023-02-22 17:13:13,971][00749] Num frames 4800...
[2023-02-22 17:13:14,086][00749] Num frames 4900...
[2023-02-22 17:13:14,211][00749] Num frames 5000...
[2023-02-22 17:13:14,328][00749] Num frames 5100...
[2023-02-22 17:13:14,441][00749] Num frames 5200...
[2023-02-22 17:13:14,563][00749] Num frames 5300...
[2023-02-22 17:13:14,687][00749] Num frames 5400...
[2023-02-22 17:13:14,807][00749] Num frames 5500...
[2023-02-22 17:13:14,934][00749] Num frames 5600...
[2023-02-22 17:13:15,050][00749] Num frames 5700...
[2023-02-22 17:13:15,173][00749] Num frames 5800...
[2023-02-22 17:13:15,293][00749] Num frames 5900...
[2023-02-22 17:13:15,417][00749] Num frames 6000...
[2023-02-22 17:13:15,543][00749] Num frames 6100...
[2023-02-22 17:13:15,664][00749] Num frames 6200...
[2023-02-22 17:13:15,785][00749] Num frames 6300...
[2023-02-22 17:13:15,908][00749] Num frames 6400...
[2023-02-22 17:13:16,028][00749] Num frames 6500...
[2023-02-22 17:13:16,103][00749] Avg episode rewards: #0: 42.539, true rewards: #0: 16.290
[2023-02-22 17:13:16,105][00749] Avg episode reward: 42.539, avg true_objective: 16.290
[2023-02-22 17:13:16,205][00749] Num frames 6600...
[2023-02-22 17:13:16,324][00749] Num frames 6700...
[2023-02-22 17:13:16,440][00749] Num frames 6800...
[2023-02-22 17:13:16,553][00749] Num frames 6900...
[2023-02-22 17:13:16,666][00749] Num frames 7000...
[2023-02-22 17:13:16,781][00749] Num frames 7100...
[2023-02-22 17:13:16,895][00749] Num frames 7200...
[2023-02-22 17:13:17,049][00749] Avg episode rewards: #0: 37.567, true rewards: #0: 14.568
[2023-02-22 17:13:17,051][00749] Avg episode reward: 37.567, avg true_objective: 14.568
[2023-02-22 17:13:17,074][00749] Num frames 7300...
[2023-02-22 17:13:17,191][00749] Num frames 7400...
[2023-02-22 17:13:17,312][00749] Num frames 7500...
[2023-02-22 17:13:17,430][00749] Num frames 7600...
[2023-02-22 17:13:17,545][00749] Num frames 7700...
[2023-02-22 17:13:17,668][00749] Num frames 7800...
[2023-02-22 17:13:17,791][00749] Num frames 7900...
[2023-02-22 17:13:17,915][00749] Num frames 8000...
[2023-02-22 17:13:18,035][00749] Num frames 8100...
[2023-02-22 17:13:18,149][00749] Avg episode rewards: #0: 34.746, true rewards: #0: 13.580
[2023-02-22 17:13:18,151][00749] Avg episode reward: 34.746, avg true_objective: 13.580
[2023-02-22 17:13:18,218][00749] Num frames 8200...
[2023-02-22 17:13:18,337][00749] Num frames 8300...
[2023-02-22 17:13:18,459][00749] Num frames 8400...
[2023-02-22 17:13:18,591][00749] Avg episode rewards: #0: 30.525, true rewards: #0: 12.097
[2023-02-22 17:13:18,593][00749] Avg episode reward: 30.525, avg true_objective: 12.097
[2023-02-22 17:13:18,634][00749] Num frames 8500...
[2023-02-22 17:13:18,760][00749] Num frames 8600...
[2023-02-22 17:13:18,881][00749] Num frames 8700...
[2023-02-22 17:13:18,997][00749] Num frames 8800...
[2023-02-22 17:13:19,116][00749] Num frames 8900...
[2023-02-22 17:13:19,232][00749] Num frames 9000...
[2023-02-22 17:13:19,352][00749] Num frames 9100...
[2023-02-22 17:13:19,476][00749] Num frames 9200...
[2023-02-22 17:13:19,595][00749] Num frames 9300...
[2023-02-22 17:13:19,719][00749] Num frames 9400...
[2023-02-22 17:13:19,841][00749] Num frames 9500...
[2023-02-22 17:13:19,960][00749] Num frames 9600...
[2023-02-22 17:13:20,088][00749] Num frames 9700...
[2023-02-22 17:13:20,208][00749] Num frames 9800...
[2023-02-22 17:13:20,331][00749] Num frames 9900...
[2023-02-22 17:13:20,474][00749] Avg episode rewards: #0: 30.965, true rewards: #0: 12.465
[2023-02-22 17:13:20,476][00749] Avg episode reward: 30.965, avg true_objective: 12.465
[2023-02-22 17:13:20,511][00749] Num frames 10000...
[2023-02-22 17:13:20,627][00749] Num frames 10100...
[2023-02-22 17:13:20,747][00749] Num frames 10200...
[2023-02-22 17:13:20,861][00749] Num frames 10300...
[2023-02-22 17:13:20,974][00749] Num frames 10400...
[2023-02-22 17:13:21,093][00749] Num frames 10500...
[2023-02-22 17:13:21,214][00749] Num frames 10600...
[2023-02-22 17:13:21,336][00749] Num frames 10700...
[2023-02-22 17:13:21,456][00749] Num frames 10800...
[2023-02-22 17:13:21,581][00749] Num frames 10900...
[2023-02-22 17:13:21,704][00749] Num frames 11000...
[2023-02-22 17:13:21,827][00749] Num frames 11100...
[2023-02-22 17:13:21,911][00749] Avg episode rewards: #0: 30.582, true rewards: #0: 12.360
[2023-02-22 17:13:21,913][00749] Avg episode reward: 30.582, avg true_objective: 12.360
[2023-02-22 17:13:22,010][00749] Num frames 11200...
[2023-02-22 17:13:22,133][00749] Num frames 11300...
[2023-02-22 17:13:22,247][00749] Num frames 11400...
[2023-02-22 17:13:22,364][00749] Num frames 11500...
[2023-02-22 17:13:22,494][00749] Num frames 11600...
[2023-02-22 17:13:22,621][00749] Num frames 11700...
[2023-02-22 17:13:22,745][00749] Num frames 11800...
[2023-02-22 17:13:22,868][00749] Num frames 11900...
[2023-02-22 17:13:22,993][00749] Num frames 12000...
[2023-02-22 17:13:23,118][00749] Num frames 12100...
[2023-02-22 17:13:23,240][00749] Num frames 12200...
[2023-02-22 17:13:23,371][00749] Num frames 12300...
[2023-02-22 17:13:23,501][00749] Num frames 12400...
[2023-02-22 17:13:23,629][00749] Num frames 12500...
[2023-02-22 17:13:23,809][00749] Avg episode rewards: #0: 31.395, true rewards: #0: 12.595
[2023-02-22 17:13:23,811][00749] Avg episode reward: 31.395, avg true_objective: 12.595
[2023-02-22 17:13:53,927][00749] Replay video saved to /content/train_dir/default_experiment/replay.mp4!
[2023-02-22 17:14:49,518][00749] Environment doom_basic already registered, overwriting...
[2023-02-22 17:14:49,520][00749] Environment doom_two_colors_easy already registered, overwriting...
[2023-02-22 17:14:49,522][00749] Environment doom_two_colors_hard already registered, overwriting...
[2023-02-22 17:14:49,524][00749] Environment doom_dm already registered, overwriting...
[2023-02-22 17:14:49,525][00749] Environment doom_dwango5 already registered, overwriting...
[2023-02-22 17:14:49,527][00749] Environment doom_my_way_home_flat_actions already registered, overwriting...
[2023-02-22 17:14:49,528][00749] Environment doom_defend_the_center_flat_actions already registered, overwriting...
[2023-02-22 17:14:49,531][00749] Environment doom_my_way_home already registered, overwriting...
[2023-02-22 17:14:49,532][00749] Environment doom_deadly_corridor already registered, overwriting...
[2023-02-22 17:14:49,533][00749] Environment doom_defend_the_center already registered, overwriting...
[2023-02-22 17:14:49,534][00749] Environment doom_defend_the_line already registered, overwriting...
[2023-02-22 17:14:49,537][00749] Environment doom_health_gathering already registered, overwriting...
[2023-02-22 17:14:49,539][00749] Environment doom_health_gathering_supreme already registered, overwriting...
[2023-02-22 17:14:49,541][00749] Environment doom_battle already registered, overwriting...
[2023-02-22 17:14:49,542][00749] Environment doom_battle2 already registered, overwriting...
[2023-02-22 17:14:49,544][00749] Environment doom_duel_bots already registered, overwriting...
[2023-02-22 17:14:49,546][00749] Environment doom_deathmatch_bots already registered, overwriting...
[2023-02-22 17:14:49,547][00749] Environment doom_duel already registered, overwriting...
[2023-02-22 17:14:49,548][00749] Environment doom_deathmatch_full already registered, overwriting...
[2023-02-22 17:14:49,550][00749] Environment doom_benchmark already registered, overwriting...
[2023-02-22 17:14:49,552][00749] register_encoder_factory: <function make_vizdoom_encoder at 0x7f92502d6790>
[2023-02-22 17:14:49,563][00749] Loading existing experiment configuration from /content/train_dir/default_experiment/config.json
[2023-02-22 17:14:49,564][00749] Overriding arg 'train_for_env_steps' with value 10000000 passed from command line
[2023-02-22 17:14:49,570][00749] Experiment dir /content/train_dir/default_experiment already exists!
[2023-02-22 17:14:49,571][00749] Resuming existing experiment from /content/train_dir/default_experiment...
[2023-02-22 17:14:49,572][00749] Weights and Biases integration disabled
[2023-02-22 17:14:49,578][00749] Environment var CUDA_VISIBLE_DEVICES is 0

[2023-02-22 17:14:51,165][00749] Starting experiment with the following configuration:
help=False
algo=APPO
env=doom_health_gathering_supreme
experiment=default_experiment
train_dir=/content/train_dir
restart_behavior=resume
device=gpu
seed=None
num_policies=1
async_rl=True
serial_mode=False
batched_sampling=False
num_batches_to_accumulate=2
worker_num_splits=2
policy_workers_per_policy=1
max_policy_lag=1000
num_workers=8
num_envs_per_worker=4
batch_size=1024
num_batches_per_epoch=1
num_epochs=1
rollout=32
recurrence=32
shuffle_minibatches=False
gamma=0.99
reward_scale=1.0
reward_clip=1000.0
value_bootstrap=False
normalize_returns=True
exploration_loss_coeff=0.001
value_loss_coeff=0.5
kl_loss_coeff=0.0
exploration_loss=symmetric_kl
gae_lambda=0.95
ppo_clip_ratio=0.1
ppo_clip_value=0.2
with_vtrace=False
vtrace_rho=1.0
vtrace_c=1.0
optimizer=adam
adam_eps=1e-06
adam_beta1=0.9
adam_beta2=0.999
max_grad_norm=4.0
learning_rate=0.0001
lr_schedule=constant
lr_schedule_kl_threshold=0.008
lr_adaptive_min=1e-06
lr_adaptive_max=0.01
obs_subtract_mean=0.0
obs_scale=255.0
normalize_input=True
normalize_input_keys=None
decorrelate_experience_max_seconds=0
decorrelate_envs_on_one_worker=True
actor_worker_gpus=[]
set_workers_cpu_affinity=True
force_envs_single_thread=False
default_niceness=0
log_to_file=True
experiment_summaries_interval=10
flush_summaries_interval=30
stats_avg=100
summaries_use_frameskip=True
heartbeat_interval=20
heartbeat_reporting_interval=600
train_for_env_steps=10000000
train_for_seconds=10000000000
save_every_sec=120
keep_checkpoints=2
load_checkpoint_kind=latest
save_milestones_sec=-1
save_best_every_sec=5
save_best_metric=reward
save_best_after=100000
benchmark=False
encoder_mlp_layers=[512, 512]
encoder_conv_architecture=convnet_simple
encoder_conv_mlp_layers=[512]
use_rnn=True
rnn_size=512
rnn_type=gru
rnn_num_layers=1
decoder_mlp_layers=[]
nonlinearity=elu
policy_initialization=orthogonal
policy_init_gain=1.0
actor_critic_share_weights=True
adaptive_stddev=True
continuous_tanh_scale=0.0
initial_stddev=1.0
use_env_info_cache=False
env_gpu_actions=False
env_gpu_observations=True
env_frameskip=4
env_framestack=1
pixel_format=CHW
use_record_episode_statistics=False
with_wandb=False
wandb_user=None
wandb_project=sample_factory
wandb_group=None
wandb_job_type=SF
wandb_tags=[]
with_pbt=False
pbt_mix_policies_in_one_env=True
pbt_period_env_steps=5000000
pbt_start_mutation=20000000
pbt_replace_fraction=0.3
pbt_mutation_rate=0.15
pbt_replace_reward_gap=0.1
pbt_replace_reward_gap_absolute=1e-06
pbt_optimize_gamma=False
pbt_target_objective=true_objective
pbt_perturb_min=1.1
pbt_perturb_max=1.5
num_agents=-1
num_humans=0
num_bots=-1
start_bot_difficulty=None
timelimit=None
res_w=128
res_h=72
wide_aspect_ratio=False
eval_env_frameskip=1
fps=35
command_line=--env=doom_health_gathering_supreme --num_workers=8 --num_envs_per_worker=4 --train_for_env_steps=4000000
cli_args={'env': 'doom_health_gathering_supreme', 'num_workers': 8, 'num_envs_per_worker': 4, 'train_for_env_steps': 4000000}
git_hash=unknown
git_repo_name=not a git repository
[2023-02-22 17:14:51,168][00749] Saving configuration to /content/train_dir/default_experiment/config.json...
[2023-02-22 17:14:51,171][00749] Rollout worker 0 uses device cpu
[2023-02-22 17:14:51,173][00749] Rollout worker 1 uses device cpu
[2023-02-22 17:14:51,174][00749] Rollout worker 2 uses device cpu
[2023-02-22 17:14:51,176][00749] Rollout worker 3 uses device cpu
[2023-02-22 17:14:51,177][00749] Rollout worker 4 uses device cpu
[2023-02-22 17:14:51,179][00749] Rollout worker 5 uses device cpu
[2023-02-22 17:14:51,180][00749] Rollout worker 6 uses device cpu
[2023-02-22 17:14:51,182][00749] Rollout worker 7 uses device cpu
[2023-02-22 17:14:51,224][00749] Using GPUs [0] for process 0 (actually maps to GPUs [0])
[2023-02-22 17:14:51,226][00749] InferenceWorker_p0-w0: min num requests: 2
[2023-02-22 17:14:51,257][00749] Starting all processes...
[2023-02-22 17:14:51,258][00749] Starting process learner_proc0
[2023-02-22 17:14:51,396][00749] Starting all processes...
[2023-02-22 17:14:51,402][00749] Starting process inference_proc0-0
[2023-02-22 17:14:51,403][00749] Starting process rollout_proc0
[2023-02-22 17:14:51,404][00749] Starting process rollout_proc1
[2023-02-22 17:14:51,405][00749] Starting process rollout_proc2
[2023-02-22 17:14:51,406][00749] Starting process rollout_proc3
[2023-02-22 17:14:51,407][00749] Starting process rollout_proc4
[2023-02-22 17:14:51,409][00749] Starting process rollout_proc5
[2023-02-22 17:14:51,412][00749] Starting process rollout_proc6
[2023-02-22 17:14:51,413][00749] Starting process rollout_proc7
[2023-02-22 17:14:53,642][12651] Using GPUs [0] for process 0 (actually maps to GPUs [0])
[2023-02-22 17:14:53,642][12651] Set environment var CUDA_VISIBLE_DEVICES to '0' (GPU indices [0]) for learning process 0
[2023-02-22 17:14:53,655][12651] Num visible devices: 1
[2023-02-22 17:14:53,681][12651] Starting seed is not provided
[2023-02-22 17:14:53,681][12651] Using GPUs [0] for process 0 (actually maps to GPUs [0])
[2023-02-22 17:14:53,681][12651] Initializing actor-critic model on device cuda:0
[2023-02-22 17:14:53,682][12651] RunningMeanStd input shape: (3, 72, 128)
[2023-02-22 17:14:53,683][12651] RunningMeanStd input shape: (1,)
[2023-02-22 17:14:53,708][12651] ConvEncoder: input_channels=3
[2023-02-22 17:14:53,909][12651] Conv encoder output size: 512
[2023-02-22 17:14:53,910][12651] Policy head output size: 512
[2023-02-22 17:14:53,940][12651] Created Actor Critic model with architecture:
[2023-02-22 17:14:53,940][12651] ActorCriticSharedWeights(
  (obs_normalizer): ObservationNormalizer(
    (running_mean_std): RunningMeanStdDictInPlace(
      (running_mean_std): ModuleDict(
        (obs): RunningMeanStdInPlace()
      )
    )
  )
  (returns_normalizer): RecursiveScriptModule(original_name=RunningMeanStdInPlace)
  (encoder): VizdoomEncoder(
    (basic_encoder): ConvEncoder(
      (enc): RecursiveScriptModule(
        original_name=ConvEncoderImpl
        (conv_head): RecursiveScriptModule(
          original_name=Sequential
          (0): RecursiveScriptModule(original_name=Conv2d)
          (1): RecursiveScriptModule(original_name=ELU)
          (2): RecursiveScriptModule(original_name=Conv2d)
          (3): RecursiveScriptModule(original_name=ELU)
          (4): RecursiveScriptModule(original_name=Conv2d)
          (5): RecursiveScriptModule(original_name=ELU)
        )
        (mlp_layers): RecursiveScriptModule(
          original_name=Sequential
          (0): RecursiveScriptModule(original_name=Linear)
          (1): RecursiveScriptModule(original_name=ELU)
        )
      )
    )
  )
  (core): ModelCoreRNN(
    (core): GRU(512, 512)
  )
  (decoder): MlpDecoder(
    (mlp): Identity()
  )
  (critic_linear): Linear(in_features=512, out_features=1, bias=True)
  (action_parameterization): ActionParameterizationDefault(
    (distribution_linear): Linear(in_features=512, out_features=5, bias=True)
  )
)
[2023-02-22 17:14:53,976][12666] Worker 0 uses CPU cores [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
[2023-02-22 17:14:53,987][12669] Worker 2 uses CPU cores [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
[2023-02-22 17:14:53,995][12667] Using GPUs [0] for process 0 (actually maps to GPUs [0])
[2023-02-22 17:14:53,995][12667] Set environment var CUDA_VISIBLE_DEVICES to '0' (GPU indices [0]) for inference process 0
[2023-02-22 17:14:54,006][12665] Worker 1 uses CPU cores [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
[2023-02-22 17:14:54,018][12667] Num visible devices: 1
[2023-02-22 17:14:54,029][12688] Worker 5 uses CPU cores [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
[2023-02-22 17:14:54,080][12676] Worker 4 uses CPU cores [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
[2023-02-22 17:14:54,325][12691] Worker 7 uses CPU cores [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
[2023-02-22 17:14:54,349][12690] Worker 3 uses CPU cores [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
[2023-02-22 17:14:54,368][12694] Worker 6 uses CPU cores [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
[2023-02-22 17:14:56,948][12651] Using optimizer <class 'torch.optim.adam.Adam'>
[2023-02-22 17:14:56,948][12651] Loading state from checkpoint /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth...
[2023-02-22 17:14:56,976][12651] Loading model from checkpoint
[2023-02-22 17:14:56,981][12651] Loaded experiment state at self.train_step=978, self.env_steps=4005888
[2023-02-22 17:14:56,981][12651] Initialized policy 0 weights for model version 978
[2023-02-22 17:14:56,983][12651] LearnerWorker_p0 finished initialization!
[2023-02-22 17:14:56,983][12651] Using GPUs [0] for process 0 (actually maps to GPUs [0])
[2023-02-22 17:14:57,093][12667] RunningMeanStd input shape: (3, 72, 128)
[2023-02-22 17:14:57,094][12667] RunningMeanStd input shape: (1,)
[2023-02-22 17:14:57,108][12667] ConvEncoder: input_channels=3
[2023-02-22 17:14:57,214][12667] Conv encoder output size: 512
[2023-02-22 17:14:57,215][12667] Policy head output size: 512
[2023-02-22 17:14:59,577][00749] Fps is (10 sec: nan, 60 sec: nan, 300 sec: nan). Total num frames: 4005888. Throughput: 0: nan. Samples: 0. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
[2023-02-22 17:15:00,036][00749] Inference worker 0-0 is ready!
[2023-02-22 17:15:00,038][00749] All inference workers are ready! Signal rollout workers to start!
[2023-02-22 17:15:00,058][12688] Doom resolution: 160x120, resize resolution: (128, 72)
[2023-02-22 17:15:00,060][12694] Doom resolution: 160x120, resize resolution: (128, 72)
[2023-02-22 17:15:00,063][12691] Doom resolution: 160x120, resize resolution: (128, 72)
[2023-02-22 17:15:00,064][12665] Doom resolution: 160x120, resize resolution: (128, 72)
[2023-02-22 17:15:00,064][12666] Doom resolution: 160x120, resize resolution: (128, 72)
[2023-02-22 17:15:00,064][12676] Doom resolution: 160x120, resize resolution: (128, 72)
[2023-02-22 17:15:00,064][12669] Doom resolution: 160x120, resize resolution: (128, 72)
[2023-02-22 17:15:00,065][12690] Doom resolution: 160x120, resize resolution: (128, 72)
[2023-02-22 17:15:00,369][12688] Decorrelating experience for 0 frames...
[2023-02-22 17:15:00,369][12694] Decorrelating experience for 0 frames...
[2023-02-22 17:15:00,385][12690] Decorrelating experience for 0 frames...
[2023-02-22 17:15:00,386][12676] Decorrelating experience for 0 frames...
[2023-02-22 17:15:00,387][12666] Decorrelating experience for 0 frames...
[2023-02-22 17:15:00,387][12691] Decorrelating experience for 0 frames...
[2023-02-22 17:15:00,641][12694] Decorrelating experience for 32 frames...
[2023-02-22 17:15:00,644][12688] Decorrelating experience for 32 frames...
[2023-02-22 17:15:00,677][12676] Decorrelating experience for 32 frames...
[2023-02-22 17:15:00,677][12691] Decorrelating experience for 32 frames...
[2023-02-22 17:15:00,679][12665] Decorrelating experience for 0 frames...
[2023-02-22 17:15:00,683][12690] Decorrelating experience for 32 frames...
[2023-02-22 17:15:00,909][12669] Decorrelating experience for 0 frames...
[2023-02-22 17:15:00,965][12666] Decorrelating experience for 32 frames...
[2023-02-22 17:15:00,972][12694] Decorrelating experience for 64 frames...
[2023-02-22 17:15:00,974][12688] Decorrelating experience for 64 frames...
[2023-02-22 17:15:01,006][12676] Decorrelating experience for 64 frames...
[2023-02-22 17:15:01,015][12690] Decorrelating experience for 64 frames...
[2023-02-22 17:15:01,193][12665] Decorrelating experience for 32 frames...
[2023-02-22 17:15:01,243][12691] Decorrelating experience for 64 frames...
[2023-02-22 17:15:01,331][12690] Decorrelating experience for 96 frames...
[2023-02-22 17:15:01,333][12694] Decorrelating experience for 96 frames...
[2023-02-22 17:15:01,342][12669] Decorrelating experience for 32 frames...
[2023-02-22 17:15:01,433][12688] Decorrelating experience for 96 frames...
[2023-02-22 17:15:01,439][12666] Decorrelating experience for 64 frames...
[2023-02-22 17:15:01,499][12676] Decorrelating experience for 96 frames...
[2023-02-22 17:15:01,641][12665] Decorrelating experience for 64 frames...
[2023-02-22 17:15:01,697][12691] Decorrelating experience for 96 frames...
[2023-02-22 17:15:01,750][12666] Decorrelating experience for 96 frames...
[2023-02-22 17:15:01,928][12665] Decorrelating experience for 96 frames...
[2023-02-22 17:15:01,928][12669] Decorrelating experience for 64 frames...
[2023-02-22 17:15:02,213][12669] Decorrelating experience for 96 frames...
[2023-02-22 17:15:03,441][12651] Signal inference workers to stop experience collection...
[2023-02-22 17:15:03,446][12667] InferenceWorker_p0-w0: stopping experience collection
[2023-02-22 17:15:04,577][00749] Fps is (10 sec: 0.0, 60 sec: 0.0, 300 sec: 0.0). Total num frames: 4005888. Throughput: 0: 119.6. Samples: 598. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
[2023-02-22 17:15:04,579][00749] Avg episode reward: [(0, '3.663')]
[2023-02-22 17:15:05,446][12651] Signal inference workers to resume experience collection...
[2023-02-22 17:15:05,447][12667] InferenceWorker_p0-w0: resuming experience collection
[2023-02-22 17:15:08,087][12667] Updated weights for policy 0, policy_version 988 (0.0392)
[2023-02-22 17:15:09,577][00749] Fps is (10 sec: 6553.6, 60 sec: 6553.6, 300 sec: 6553.6). Total num frames: 4071424. Throughput: 0: 1483.8. Samples: 14838. Policy #0 lag: (min: 0.0, avg: 0.3, max: 1.0)
[2023-02-22 17:15:09,581][00749] Avg episode reward: [(0, '21.836')]
[2023-02-22 17:15:10,395][12667] Updated weights for policy 0, policy_version 998 (0.0012)
[2023-02-22 17:15:11,217][00749] Heartbeat connected on Batcher_0
[2023-02-22 17:15:11,220][00749] Heartbeat connected on LearnerWorker_p0
[2023-02-22 17:15:11,228][00749] Heartbeat connected on InferenceWorker_p0-w0
[2023-02-22 17:15:11,237][00749] Heartbeat connected on RolloutWorker_w1
[2023-02-22 17:15:11,240][00749] Heartbeat connected on RolloutWorker_w0
[2023-02-22 17:15:11,242][00749] Heartbeat connected on RolloutWorker_w2
[2023-02-22 17:15:11,246][00749] Heartbeat connected on RolloutWorker_w4
[2023-02-22 17:15:11,249][00749] Heartbeat connected on RolloutWorker_w3
[2023-02-22 17:15:11,251][00749] Heartbeat connected on RolloutWorker_w5
[2023-02-22 17:15:11,259][00749] Heartbeat connected on RolloutWorker_w6
[2023-02-22 17:15:11,264][00749] Heartbeat connected on RolloutWorker_w7
[2023-02-22 17:15:12,626][12667] Updated weights for policy 0, policy_version 1008 (0.0012)
[2023-02-22 17:15:14,577][00749] Fps is (10 sec: 15974.3, 60 sec: 10649.6, 300 sec: 10649.6). Total num frames: 4165632. Throughput: 0: 1898.7. Samples: 28480. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
[2023-02-22 17:15:14,580][00749] Avg episode reward: [(0, '28.559')]
[2023-02-22 17:15:14,583][12651] Saving new best policy, reward=28.559!
[2023-02-22 17:15:14,792][12667] Updated weights for policy 0, policy_version 1018 (0.0012)
[2023-02-22 17:15:17,011][12667] Updated weights for policy 0, policy_version 1028 (0.0012)
[2023-02-22 17:15:19,265][12667] Updated weights for policy 0, policy_version 1038 (0.0011)
[2023-02-22 17:15:19,577][00749] Fps is (10 sec: 18432.1, 60 sec: 12492.8, 300 sec: 12492.8). Total num frames: 4255744. Throughput: 0: 2842.5. Samples: 56850. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
[2023-02-22 17:15:19,580][00749] Avg episode reward: [(0, '25.155')]
[2023-02-22 17:15:21,552][12667] Updated weights for policy 0, policy_version 1048 (0.0012)
[2023-02-22 17:15:23,856][12667] Updated weights for policy 0, policy_version 1058 (0.0011)
[2023-02-22 17:15:24,577][00749] Fps is (10 sec: 18022.2, 60 sec: 13598.7, 300 sec: 13598.7). Total num frames: 4345856. Throughput: 0: 3341.7. Samples: 83542. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
[2023-02-22 17:15:24,580][00749] Avg episode reward: [(0, '25.223')]
[2023-02-22 17:15:26,188][12667] Updated weights for policy 0, policy_version 1068 (0.0012)
[2023-02-22 17:15:28,404][12667] Updated weights for policy 0, policy_version 1078 (0.0012)
[2023-02-22 17:15:29,577][00749] Fps is (10 sec: 18022.3, 60 sec: 14336.0, 300 sec: 14336.0). Total num frames: 4435968. Throughput: 0: 3227.7. Samples: 96830. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2023-02-22 17:15:29,579][00749] Avg episode reward: [(0, '24.037')]
[2023-02-22 17:15:30,564][12667] Updated weights for policy 0, policy_version 1088 (0.0011)
[2023-02-22 17:15:32,720][12667] Updated weights for policy 0, policy_version 1098 (0.0011)
[2023-02-22 17:15:34,577][00749] Fps is (10 sec: 18432.2, 60 sec: 14979.7, 300 sec: 14979.7). Total num frames: 4530176. Throughput: 0: 3579.1. Samples: 125268. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
[2023-02-22 17:15:34,580][00749] Avg episode reward: [(0, '23.371')]
[2023-02-22 17:15:34,959][12667] Updated weights for policy 0, policy_version 1108 (0.0011)
[2023-02-22 17:15:37,190][12667] Updated weights for policy 0, policy_version 1118 (0.0012)
[2023-02-22 17:15:39,577][00749] Fps is (10 sec: 18022.5, 60 sec: 15257.6, 300 sec: 15257.6). Total num frames: 4616192. Throughput: 0: 3801.4. Samples: 152056. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
[2023-02-22 17:15:39,579][00749] Avg episode reward: [(0, '24.356')]
[2023-02-22 17:15:39,615][12667] Updated weights for policy 0, policy_version 1128 (0.0013)
[2023-02-22 17:15:41,987][12667] Updated weights for policy 0, policy_version 1138 (0.0012)
[2023-02-22 17:15:44,372][12667] Updated weights for policy 0, policy_version 1148 (0.0012)
[2023-02-22 17:15:44,577][00749] Fps is (10 sec: 17612.8, 60 sec: 15564.8, 300 sec: 15564.8). Total num frames: 4706304. Throughput: 0: 3665.6. Samples: 164950. Policy #0 lag: (min: 0.0, avg: 0.9, max: 2.0)
[2023-02-22 17:15:44,579][00749] Avg episode reward: [(0, '27.289')]
[2023-02-22 17:15:46,521][12667] Updated weights for policy 0, policy_version 1158 (0.0011)
[2023-02-22 17:15:48,703][12667] Updated weights for policy 0, policy_version 1168 (0.0012)
[2023-02-22 17:15:49,577][00749] Fps is (10 sec: 18431.8, 60 sec: 15892.4, 300 sec: 15892.4). Total num frames: 4800512. Throughput: 0: 4261.9. Samples: 192386. Policy #0 lag: (min: 0.0, avg: 0.9, max: 2.0)
[2023-02-22 17:15:49,579][00749] Avg episode reward: [(0, '26.497')]
[2023-02-22 17:15:50,855][12667] Updated weights for policy 0, policy_version 1178 (0.0012)
[2023-02-22 17:15:52,975][12667] Updated weights for policy 0, policy_version 1188 (0.0012)
[2023-02-22 17:15:54,577][00749] Fps is (10 sec: 18841.5, 60 sec: 16160.6, 300 sec: 16160.6). Total num frames: 4894720. Throughput: 0: 4571.6. Samples: 220560. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2023-02-22 17:15:54,580][00749] Avg episode reward: [(0, '26.735')]
[2023-02-22 17:15:55,233][12667] Updated weights for policy 0, policy_version 1198 (0.0012)
[2023-02-22 17:15:57,559][12667] Updated weights for policy 0, policy_version 1208 (0.0012)
[2023-02-22 17:15:59,577][00749] Fps is (10 sec: 18022.1, 60 sec: 16247.4, 300 sec: 16247.4). Total num frames: 4980736. Throughput: 0: 4567.4. Samples: 234014. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
[2023-02-22 17:15:59,582][00749] Avg episode reward: [(0, '27.523')]
[2023-02-22 17:15:59,839][12667] Updated weights for policy 0, policy_version 1218 (0.0011)
[2023-02-22 17:16:02,023][12667] Updated weights for policy 0, policy_version 1228 (0.0011)
[2023-02-22 17:16:04,192][12667] Updated weights for policy 0, policy_version 1238 (0.0011)
[2023-02-22 17:16:04,577][00749] Fps is (10 sec: 18022.5, 60 sec: 17817.6, 300 sec: 16447.0). Total num frames: 5074944. Throughput: 0: 4549.5. Samples: 261578. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2023-02-22 17:16:04,580][00749] Avg episode reward: [(0, '29.141')]
[2023-02-22 17:16:04,609][12651] Saving new best policy, reward=29.141!
[2023-02-22 17:16:06,339][12667] Updated weights for policy 0, policy_version 1248 (0.0011)
[2023-02-22 17:16:08,448][12667] Updated weights for policy 0, policy_version 1258 (0.0012)
[2023-02-22 17:16:09,577][00749] Fps is (10 sec: 19251.7, 60 sec: 18363.7, 300 sec: 16676.6). Total num frames: 5173248. Throughput: 0: 4595.4. Samples: 290334. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2023-02-22 17:16:09,580][00749] Avg episode reward: [(0, '26.210')]
[2023-02-22 17:16:10,603][12667] Updated weights for policy 0, policy_version 1268 (0.0011)
[2023-02-22 17:16:12,880][12667] Updated weights for policy 0, policy_version 1278 (0.0011)
[2023-02-22 17:16:14,577][00749] Fps is (10 sec: 18841.6, 60 sec: 18295.5, 300 sec: 16766.3). Total num frames: 5263360. Throughput: 0: 4606.2. Samples: 304110. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2023-02-22 17:16:14,580][00749] Avg episode reward: [(0, '23.567')]
[2023-02-22 17:16:15,161][12667] Updated weights for policy 0, policy_version 1288 (0.0012)
[2023-02-22 17:16:17,450][12667] Updated weights for policy 0, policy_version 1298 (0.0012)
[2023-02-22 17:16:19,577][00749] Fps is (10 sec: 18022.4, 60 sec: 18295.5, 300 sec: 16844.8). Total num frames: 5353472. Throughput: 0: 4579.4. Samples: 331340. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2023-02-22 17:16:19,580][00749] Avg episode reward: [(0, '25.683')]
[2023-02-22 17:16:19,606][12667] Updated weights for policy 0, policy_version 1308 (0.0011)
[2023-02-22 17:16:21,751][12667] Updated weights for policy 0, policy_version 1318 (0.0011)
[2023-02-22 17:16:23,927][12667] Updated weights for policy 0, policy_version 1328 (0.0012)
[2023-02-22 17:16:24,577][00749] Fps is (10 sec: 18432.0, 60 sec: 18363.8, 300 sec: 16962.3). Total num frames: 5447680. Throughput: 0: 4613.5. Samples: 359662. Policy #0 lag: (min: 0.0, avg: 0.7, max: 1.0)
[2023-02-22 17:16:24,579][00749] Avg episode reward: [(0, '28.218')]
[2023-02-22 17:16:26,117][12667] Updated weights for policy 0, policy_version 1338 (0.0012)
[2023-02-22 17:16:28,410][12667] Updated weights for policy 0, policy_version 1348 (0.0012)
[2023-02-22 17:16:29,577][00749] Fps is (10 sec: 18431.9, 60 sec: 18363.7, 300 sec: 17021.1). Total num frames: 5537792. Throughput: 0: 4636.4. Samples: 373588. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2023-02-22 17:16:29,580][00749] Avg episode reward: [(0, '28.872')]
[2023-02-22 17:16:30,863][12667] Updated weights for policy 0, policy_version 1358 (0.0012)
[2023-02-22 17:16:33,273][12667] Updated weights for policy 0, policy_version 1368 (0.0012)
[2023-02-22 17:16:34,577][00749] Fps is (10 sec: 17612.7, 60 sec: 18227.2, 300 sec: 17030.7). Total num frames: 5623808. Throughput: 0: 4590.6. Samples: 398962. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2023-02-22 17:16:34,580][00749] Avg episode reward: [(0, '27.851')]
[2023-02-22 17:16:35,530][12667] Updated weights for policy 0, policy_version 1378 (0.0012)
[2023-02-22 17:16:37,738][12667] Updated weights for policy 0, policy_version 1388 (0.0011)
[2023-02-22 17:16:39,577][00749] Fps is (10 sec: 18022.5, 60 sec: 18363.7, 300 sec: 17121.3). Total num frames: 5718016. Throughput: 0: 4578.7. Samples: 426600. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2023-02-22 17:16:39,580][00749] Avg episode reward: [(0, '28.400')]
[2023-02-22 17:16:39,893][12667] Updated weights for policy 0, policy_version 1398 (0.0011)
[2023-02-22 17:16:42,153][12667] Updated weights for policy 0, policy_version 1408 (0.0011)
[2023-02-22 17:16:44,494][12667] Updated weights for policy 0, policy_version 1418 (0.0013)
[2023-02-22 17:16:44,577][00749] Fps is (10 sec: 18432.1, 60 sec: 18363.7, 300 sec: 17164.2). Total num frames: 5808128. Throughput: 0: 4586.9. Samples: 440422. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2023-02-22 17:16:44,579][00749] Avg episode reward: [(0, '28.873')]
[2023-02-22 17:16:47,005][12667] Updated weights for policy 0, policy_version 1428 (0.0012)
[2023-02-22 17:16:49,415][12667] Updated weights for policy 0, policy_version 1438 (0.0012)
[2023-02-22 17:16:49,577][00749] Fps is (10 sec: 17203.2, 60 sec: 18159.0, 300 sec: 17128.7). Total num frames: 5890048. Throughput: 0: 4539.0. Samples: 465832. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2023-02-22 17:16:49,580][00749] Avg episode reward: [(0, '27.286')]
[2023-02-22 17:16:49,588][12651] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000001438_5890048.pth...
[2023-02-22 17:16:49,663][12651] Removing /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000799_3272704.pth
[2023-02-22 17:16:51,691][12667] Updated weights for policy 0, policy_version 1448 (0.0012)
[2023-02-22 17:16:53,942][12667] Updated weights for policy 0, policy_version 1458 (0.0012)
[2023-02-22 17:16:54,577][00749] Fps is (10 sec: 17203.2, 60 sec: 18090.7, 300 sec: 17167.6). Total num frames: 5980160. Throughput: 0: 4497.2. Samples: 492710. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
[2023-02-22 17:16:54,580][00749] Avg episode reward: [(0, '24.833')]
[2023-02-22 17:16:56,179][12667] Updated weights for policy 0, policy_version 1468 (0.0012)
[2023-02-22 17:16:58,380][12667] Updated weights for policy 0, policy_version 1478 (0.0012)
[2023-02-22 17:16:59,577][00749] Fps is (10 sec: 18432.0, 60 sec: 18227.3, 300 sec: 17237.3). Total num frames: 6074368. Throughput: 0: 4498.0. Samples: 506522. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2023-02-22 17:16:59,579][00749] Avg episode reward: [(0, '29.474')]
[2023-02-22 17:16:59,588][12651] Saving new best policy, reward=29.474!
[2023-02-22 17:17:00,715][12667] Updated weights for policy 0, policy_version 1488 (0.0012)
[2023-02-22 17:17:03,053][12667] Updated weights for policy 0, policy_version 1498 (0.0011)
[2023-02-22 17:17:04,577][00749] Fps is (10 sec: 18022.4, 60 sec: 18090.7, 300 sec: 17236.0). Total num frames: 6160384. Throughput: 0: 4486.9. Samples: 533248. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
[2023-02-22 17:17:04,579][00749] Avg episode reward: [(0, '31.539')]
[2023-02-22 17:17:04,582][12651] Saving new best policy, reward=31.539!
[2023-02-22 17:17:05,441][12667] Updated weights for policy 0, policy_version 1508 (0.0012)
[2023-02-22 17:17:07,768][12667] Updated weights for policy 0, policy_version 1518 (0.0012)
[2023-02-22 17:17:09,577][00749] Fps is (10 sec: 17203.2, 60 sec: 17885.9, 300 sec: 17234.7). Total num frames: 6246400. Throughput: 0: 4440.7. Samples: 559494. Policy #0 lag: (min: 0.0, avg: 0.9, max: 2.0)
[2023-02-22 17:17:09,579][00749] Avg episode reward: [(0, '28.257')]
[2023-02-22 17:17:10,043][12667] Updated weights for policy 0, policy_version 1528 (0.0012)
[2023-02-22 17:17:12,327][12667] Updated weights for policy 0, policy_version 1538 (0.0012)
[2023-02-22 17:17:14,547][12667] Updated weights for policy 0, policy_version 1548 (0.0012)
[2023-02-22 17:17:14,577][00749] Fps is (10 sec: 18022.4, 60 sec: 17954.1, 300 sec: 17294.2). Total num frames: 6340608. Throughput: 0: 4432.2. Samples: 573036. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
[2023-02-22 17:17:14,580][00749] Avg episode reward: [(0, '27.934')]
[2023-02-22 17:17:16,913][12667] Updated weights for policy 0, policy_version 1558 (0.0012)
[2023-02-22 17:17:19,289][12667] Updated weights for policy 0, policy_version 1568 (0.0013)
[2023-02-22 17:17:19,577][00749] Fps is (10 sec: 18022.4, 60 sec: 17885.9, 300 sec: 17291.0). Total num frames: 6426624. Throughput: 0: 4459.9. Samples: 599658. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
[2023-02-22 17:17:19,580][00749] Avg episode reward: [(0, '27.044')]
[2023-02-22 17:17:21,693][12667] Updated weights for policy 0, policy_version 1578 (0.0012)
[2023-02-22 17:17:23,883][12667] Updated weights for policy 0, policy_version 1588 (0.0012)
[2023-02-22 17:17:24,577][00749] Fps is (10 sec: 17612.9, 60 sec: 17817.6, 300 sec: 17316.2). Total num frames: 6516736. Throughput: 0: 4437.6. Samples: 626290. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
[2023-02-22 17:17:24,580][00749] Avg episode reward: [(0, '26.844')]
[2023-02-22 17:17:26,022][12667] Updated weights for policy 0, policy_version 1598 (0.0011)
[2023-02-22 17:17:28,146][12667] Updated weights for policy 0, policy_version 1608 (0.0011)
[2023-02-22 17:17:29,577][00749] Fps is (10 sec: 18432.0, 60 sec: 17885.9, 300 sec: 17367.0). Total num frames: 6610944. Throughput: 0: 4448.6. Samples: 640610. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2023-02-22 17:17:29,580][00749] Avg episode reward: [(0, '29.013')]
[2023-02-22 17:17:30,300][12667] Updated weights for policy 0, policy_version 1618 (0.0012)
[2023-02-22 17:17:32,493][12667] Updated weights for policy 0, policy_version 1628 (0.0012)
[2023-02-22 17:17:34,577][00749] Fps is (10 sec: 18841.6, 60 sec: 18022.4, 300 sec: 17414.6). Total num frames: 6705152. Throughput: 0: 4508.9. Samples: 668732. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2023-02-22 17:17:34,580][00749] Avg episode reward: [(0, '29.995')]
[2023-02-22 17:17:34,785][12667] Updated weights for policy 0, policy_version 1638 (0.0012)
[2023-02-22 17:17:37,086][12667] Updated weights for policy 0, policy_version 1648 (0.0012)
[2023-02-22 17:17:39,329][12667] Updated weights for policy 0, policy_version 1658 (0.0012)
[2023-02-22 17:17:39,577][00749] Fps is (10 sec: 18432.0, 60 sec: 17954.1, 300 sec: 17433.6). Total num frames: 6795264. Throughput: 0: 4513.4. Samples: 695812. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2023-02-22 17:17:39,579][00749] Avg episode reward: [(0, '27.739')]
[2023-02-22 17:17:41,562][12667] Updated weights for policy 0, policy_version 1668 (0.0012)
[2023-02-22 17:17:43,706][12667] Updated weights for policy 0, policy_version 1678 (0.0012)
[2023-02-22 17:17:44,577][00749] Fps is (10 sec: 18022.4, 60 sec: 17954.1, 300 sec: 17451.4). Total num frames: 6885376. Throughput: 0: 4512.4. Samples: 709582. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2023-02-22 17:17:44,580][00749] Avg episode reward: [(0, '28.337')]
[2023-02-22 17:17:45,988][12667] Updated weights for policy 0, policy_version 1688 (0.0012)
[2023-02-22 17:17:48,333][12667] Updated weights for policy 0, policy_version 1698 (0.0012)
[2023-02-22 17:17:49,577][00749] Fps is (10 sec: 17612.7, 60 sec: 18022.4, 300 sec: 17444.1). Total num frames: 6971392. Throughput: 0: 4523.0. Samples: 736784. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2023-02-22 17:17:49,579][00749] Avg episode reward: [(0, '28.114')]
[2023-02-22 17:17:50,843][12667] Updated weights for policy 0, policy_version 1708 (0.0011)
[2023-02-22 17:17:53,176][12667] Updated weights for policy 0, policy_version 1718 (0.0011)
[2023-02-22 17:17:54,577][00749] Fps is (10 sec: 17203.2, 60 sec: 17954.1, 300 sec: 17437.3). Total num frames: 7057408. Throughput: 0: 4509.1. Samples: 762402. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
[2023-02-22 17:17:54,580][00749] Avg episode reward: [(0, '32.414')]
[2023-02-22 17:17:54,583][12651] Saving new best policy, reward=32.414!
[2023-02-22 17:17:55,501][12667] Updated weights for policy 0, policy_version 1728 (0.0012)
[2023-02-22 17:17:57,701][12667] Updated weights for policy 0, policy_version 1738 (0.0012)
[2023-02-22 17:17:59,577][00749] Fps is (10 sec: 18022.4, 60 sec: 17954.1, 300 sec: 17476.3). Total num frames: 7151616. Throughput: 0: 4507.6. Samples: 775880. Policy #0 lag: (min: 0.0, avg: 0.7, max: 1.0)
[2023-02-22 17:17:59,580][00749] Avg episode reward: [(0, '28.919')]
[2023-02-22 17:17:59,845][12667] Updated weights for policy 0, policy_version 1748 (0.0011)
[2023-02-22 17:18:02,052][12667] Updated weights for policy 0, policy_version 1758 (0.0011)
[2023-02-22 17:18:04,246][12667] Updated weights for policy 0, policy_version 1768 (0.0012)
[2023-02-22 17:18:04,577][00749] Fps is (10 sec: 18841.6, 60 sec: 18090.7, 300 sec: 17513.2). Total num frames: 7245824. Throughput: 0: 4544.5. Samples: 804160. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
[2023-02-22 17:18:04,580][00749] Avg episode reward: [(0, '28.644')]
[2023-02-22 17:18:06,555][12667] Updated weights for policy 0, policy_version 1778 (0.0011)
[2023-02-22 17:18:08,850][12667] Updated weights for policy 0, policy_version 1788 (0.0012)
[2023-02-22 17:18:09,577][00749] Fps is (10 sec: 18432.0, 60 sec: 18158.9, 300 sec: 17526.6). Total num frames: 7335936. Throughput: 0: 4552.0. Samples: 831130. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
[2023-02-22 17:18:09,579][00749] Avg episode reward: [(0, '30.284')]
[2023-02-22 17:18:11,187][12667] Updated weights for policy 0, policy_version 1798 (0.0012)
[2023-02-22 17:18:13,364][12667] Updated weights for policy 0, policy_version 1808 (0.0011)
[2023-02-22 17:18:14,577][00749] Fps is (10 sec: 18022.3, 60 sec: 18090.7, 300 sec: 17539.3). Total num frames: 7426048. Throughput: 0: 4531.5. Samples: 844526. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
[2023-02-22 17:18:14,580][00749] Avg episode reward: [(0, '29.378')]
[2023-02-22 17:18:15,621][12667] Updated weights for policy 0, policy_version 1818 (0.0011)
[2023-02-22 17:18:17,847][12667] Updated weights for policy 0, policy_version 1828 (0.0012)
[2023-02-22 17:18:19,577][00749] Fps is (10 sec: 18022.4, 60 sec: 18158.9, 300 sec: 17551.4). Total num frames: 7516160. Throughput: 0: 4519.9. Samples: 872128. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2023-02-22 17:18:19,579][00749] Avg episode reward: [(0, '29.589')]
[2023-02-22 17:18:20,064][12667] Updated weights for policy 0, policy_version 1838 (0.0011)
[2023-02-22 17:18:22,368][12667] Updated weights for policy 0, policy_version 1848 (0.0012)
[2023-02-22 17:18:24,577][00749] Fps is (10 sec: 18022.4, 60 sec: 18158.9, 300 sec: 17562.8). Total num frames: 7606272. Throughput: 0: 4520.6. Samples: 899238. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
[2023-02-22 17:18:24,579][00749] Avg episode reward: [(0, '26.927')]
[2023-02-22 17:18:24,673][12667] Updated weights for policy 0, policy_version 1858 (0.0012)
[2023-02-22 17:18:27,058][12667] Updated weights for policy 0, policy_version 1868 (0.0013)
[2023-02-22 17:18:29,269][12667] Updated weights for policy 0, policy_version 1878 (0.0012)
[2023-02-22 17:18:29,577][00749] Fps is (10 sec: 18022.6, 60 sec: 18090.7, 300 sec: 17573.8). Total num frames: 7696384. Throughput: 0: 4499.2. Samples: 912046. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
[2023-02-22 17:18:29,580][00749] Avg episode reward: [(0, '29.100')]
[2023-02-22 17:18:31,440][12667] Updated weights for policy 0, policy_version 1888 (0.0011)
[2023-02-22 17:18:33,641][12667] Updated weights for policy 0, policy_version 1898 (0.0012)
[2023-02-22 17:18:34,577][00749] Fps is (10 sec: 18432.1, 60 sec: 18090.7, 300 sec: 17603.3). Total num frames: 7790592. Throughput: 0: 4519.6. Samples: 940164. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
[2023-02-22 17:18:34,580][00749] Avg episode reward: [(0, '31.288')]
[2023-02-22 17:18:35,884][12667] Updated weights for policy 0, policy_version 1908 (0.0011)
[2023-02-22 17:18:38,093][12667] Updated weights for policy 0, policy_version 1918 (0.0011)
[2023-02-22 17:18:39,577][00749] Fps is (10 sec: 18431.8, 60 sec: 18090.7, 300 sec: 17612.8). Total num frames: 7880704. Throughput: 0: 4557.6. Samples: 967494. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
[2023-02-22 17:18:39,579][00749] Avg episode reward: [(0, '32.394')]
[2023-02-22 17:18:39,589][12651] Saving new best policy, reward=32.494!
[2023-02-22 17:18:40,430][12667] Updated weights for policy 0, policy_version 1928 (0.0012)
[2023-02-22 17:18:42,813][12667] Updated weights for policy 0, policy_version 1938 (0.0011)
[2023-02-22 17:18:44,577][00749] Fps is (10 sec: 17612.7, 60 sec: 18022.4, 300 sec: 17603.7). Total num frames: 7966720. Throughput: 0: 4548.8. Samples: 980576. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
[2023-02-22 17:18:44,579][00749] Avg episode reward: [(0, '29.406')]
[2023-02-22 17:18:45,116][12667] Updated weights for policy 0, policy_version 1948 (0.0011)
[2023-02-22 17:18:47,365][12667] Updated weights for policy 0, policy_version 1958 (0.0012)
[2023-02-22 17:18:49,539][12667] Updated weights for policy 0, policy_version 1968 (0.0011)
[2023-02-22 17:18:49,577][00749] Fps is (10 sec: 18022.5, 60 sec: 18158.9, 300 sec: 17630.6). Total num frames: 8060928. Throughput: 0: 4516.9. Samples: 1007422. Policy #0 lag: (min: 0.0, avg: 0.7, max: 1.0)
[2023-02-22 17:18:49,580][00749] Avg episode reward: [(0, '27.639')]
[2023-02-22 17:18:49,590][12651] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000001968_8060928.pth...
[2023-02-22 17:18:49,659][12651] Removing /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth
[2023-02-22 17:18:51,771][12667] Updated weights for policy 0, policy_version 1978 (0.0011)
[2023-02-22 17:18:53,890][12667] Updated weights for policy 0, policy_version 1988 (0.0011)
[2023-02-22 17:18:54,577][00749] Fps is (10 sec: 18432.0, 60 sec: 18227.2, 300 sec: 17638.9). Total num frames: 8151040. Throughput: 0: 4544.4. Samples: 1035628. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
[2023-02-22 17:18:54,580][00749] Avg episode reward: [(0, '29.411')]
[2023-02-22 17:18:56,244][12667] Updated weights for policy 0, policy_version 1998 (0.0012)
[2023-02-22 17:18:58,601][12667] Updated weights for policy 0, policy_version 2008 (0.0012)
[2023-02-22 17:18:59,577][00749] Fps is (10 sec: 18022.4, 60 sec: 18159.0, 300 sec: 17646.9). Total num frames: 8241152. Throughput: 0: 4534.8. Samples: 1048592. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2023-02-22 17:18:59,579][00749] Avg episode reward: [(0, '30.931')]
[2023-02-22 17:19:00,851][12667] Updated weights for policy 0, policy_version 2018 (0.0012)
[2023-02-22 17:19:03,046][12667] Updated weights for policy 0, policy_version 2028 (0.0011)
[2023-02-22 17:19:04,577][00749] Fps is (10 sec: 18432.0, 60 sec: 18158.9, 300 sec: 17671.3). Total num frames: 8335360. Throughput: 0: 4532.5. Samples: 1076092. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
[2023-02-22 17:19:04,579][00749] Avg episode reward: [(0, '30.807')]
[2023-02-22 17:19:05,188][12667] Updated weights for policy 0, policy_version 2038 (0.0011)
[2023-02-22 17:19:07,363][12667] Updated weights for policy 0, policy_version 2048 (0.0011)
[2023-02-22 17:19:09,461][12667] Updated weights for policy 0, policy_version 2058 (0.0011)
[2023-02-22 17:19:09,577][00749] Fps is (10 sec: 18841.7, 60 sec: 18227.2, 300 sec: 17694.7). Total num frames: 8429568. Throughput: 0: 4565.2. Samples: 1104670. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
[2023-02-22 17:19:09,579][00749] Avg episode reward: [(0, '28.827')]
[2023-02-22 17:19:11,724][12667] Updated weights for policy 0, policy_version 2068 (0.0012)
[2023-02-22 17:19:14,033][12667] Updated weights for policy 0, policy_version 2078 (0.0012)
[2023-02-22 17:19:14,577][00749] Fps is (10 sec: 18431.9, 60 sec: 18227.2, 300 sec: 17701.1). Total num frames: 8519680. Throughput: 0: 4585.8. Samples: 1118406. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2023-02-22 17:19:14,580][00749] Avg episode reward: [(0, '28.564')]
[2023-02-22 17:19:16,264][12667] Updated weights for policy 0, policy_version 2088 (0.0012)
[2023-02-22 17:19:18,449][12667] Updated weights for policy 0, policy_version 2098 (0.0011)
[2023-02-22 17:19:19,577][00749] Fps is (10 sec: 18431.9, 60 sec: 18295.5, 300 sec: 17723.1). Total num frames: 8613888. Throughput: 0: 4569.0. Samples: 1145770. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2023-02-22 17:19:19,579][00749] Avg episode reward: [(0, '30.227')]
[2023-02-22 17:19:20,669][12667] Updated weights for policy 0, policy_version 2108 (0.0012)
[2023-02-22 17:19:22,816][12667] Updated weights for policy 0, policy_version 2118 (0.0012)
[2023-02-22 17:19:24,577][00749] Fps is (10 sec: 18841.7, 60 sec: 18363.7, 300 sec: 17744.2). Total num frames: 8708096. Throughput: 0: 4586.8. Samples: 1173898. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2023-02-22 17:19:24,581][00749] Avg episode reward: [(0, '31.986')]
[2023-02-22 17:19:24,965][12667] Updated weights for policy 0, policy_version 2128 (0.0011)
[2023-02-22 17:19:27,183][12667] Updated weights for policy 0, policy_version 2138 (0.0012)
[2023-02-22 17:19:29,462][12667] Updated weights for policy 0, policy_version 2148 (0.0012)
[2023-02-22 17:19:29,577][00749] Fps is (10 sec: 18432.0, 60 sec: 18363.7, 300 sec: 17749.3). Total num frames: 8798208. Throughput: 0: 4608.6. Samples: 1187962. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2023-02-22 17:19:29,580][00749] Avg episode reward: [(0, '28.608')]
[2023-02-22 17:19:31,779][12667] Updated weights for policy 0, policy_version 2158 (0.0012)
[2023-02-22 17:19:34,102][12667] Updated weights for policy 0, policy_version 2168 (0.0012)
[2023-02-22 17:19:34,577][00749] Fps is (10 sec: 18022.4, 60 sec: 18295.5, 300 sec: 17754.3). Total num frames: 8888320. Throughput: 0: 4602.4. Samples: 1214530. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
[2023-02-22 17:19:34,580][00749] Avg episode reward: [(0, '29.909')]
[2023-02-22 17:19:36,277][12667] Updated weights for policy 0, policy_version 2178 (0.0012)
[2023-02-22 17:19:38,406][12667] Updated weights for policy 0, policy_version 2188 (0.0011)
[2023-02-22 17:19:39,577][00749] Fps is (10 sec: 18432.0, 60 sec: 18363.7, 300 sec: 17773.7). Total num frames: 8982528. Throughput: 0: 4605.9. Samples: 1242892. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
[2023-02-22 17:19:39,580][00749] Avg episode reward: [(0, '29.624')]
[2023-02-22 17:19:40,610][12667] Updated weights for policy 0, policy_version 2198 (0.0012)
[2023-02-22 17:19:42,787][12667] Updated weights for policy 0, policy_version 2208 (0.0011)
[2023-02-22 17:19:44,577][00749] Fps is (10 sec: 18431.9, 60 sec: 18432.0, 300 sec: 17778.1). Total num frames: 9072640. Throughput: 0: 4626.1. Samples: 1256766. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
[2023-02-22 17:19:44,579][00749] Avg episode reward: [(0, '33.328')]
[2023-02-22 17:19:44,581][12651] Saving new best policy, reward=33.328!
[2023-02-22 17:19:45,108][12667] Updated weights for policy 0, policy_version 2218 (0.0012)
[2023-02-22 17:19:47,517][12667] Updated weights for policy 0, policy_version 2228 (0.0012)
[2023-02-22 17:19:49,577][00749] Fps is (10 sec: 17612.8, 60 sec: 18295.5, 300 sec: 17768.2). Total num frames: 9158656. Throughput: 0: 4602.1. Samples: 1283186. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
[2023-02-22 17:19:49,579][00749] Avg episode reward: [(0, '31.378')]
[2023-02-22 17:19:49,824][12667] Updated weights for policy 0, policy_version 2238 (0.0012)
[2023-02-22 17:19:52,022][12667] Updated weights for policy 0, policy_version 2248 (0.0011)
[2023-02-22 17:19:54,231][12667] Updated weights for policy 0, policy_version 2258 (0.0012)
[2023-02-22 17:19:54,577][00749] Fps is (10 sec: 18022.6, 60 sec: 18363.8, 300 sec: 17786.4). Total num frames: 9252864. Throughput: 0: 4578.4. Samples: 1310700. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
[2023-02-22 17:19:54,579][00749] Avg episode reward: [(0, '30.788')]
[2023-02-22 17:19:56,405][12667] Updated weights for policy 0, policy_version 2268 (0.0011)
[2023-02-22 17:19:58,587][12667] Updated weights for policy 0, policy_version 2278 (0.0012)
[2023-02-22 17:19:59,577][00749] Fps is (10 sec: 18841.5, 60 sec: 18432.0, 300 sec: 18105.7). Total num frames: 9347072. Throughput: 0: 4587.8. Samples: 1324858. Policy #0 lag: (min: 0.0, avg: 0.9, max: 2.0)
[2023-02-22 17:19:59,581][00749] Avg episode reward: [(0, '28.207')]
[2023-02-22 17:20:00,925][12667] Updated weights for policy 0, policy_version 2288 (0.0012)
[2023-02-22 17:20:03,246][12667] Updated weights for policy 0, policy_version 2298 (0.0012)
[2023-02-22 17:20:04,577][00749] Fps is (10 sec: 18022.3, 60 sec: 18295.5, 300 sec: 18175.1). Total num frames: 9433088. Throughput: 0: 4573.4. Samples: 1351574. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
[2023-02-22 17:20:04,579][00749] Avg episode reward: [(0, '26.676')]
[2023-02-22 17:20:05,561][12667] Updated weights for policy 0, policy_version 2308 (0.0012)
[2023-02-22 17:20:07,782][12667] Updated weights for policy 0, policy_version 2318 (0.0012)
[2023-02-22 17:20:09,577][00749] Fps is (10 sec: 18022.5, 60 sec: 18295.4, 300 sec: 18175.1). Total num frames: 9527296. Throughput: 0: 4556.0. Samples: 1378920. Policy #0 lag: (min: 0.0, avg: 0.9, max: 2.0)
[2023-02-22 17:20:09,585][00749] Avg episode reward: [(0, '28.470')]
[2023-02-22 17:20:09,991][12667] Updated weights for policy 0, policy_version 2328 (0.0012)
[2023-02-22 17:20:12,136][12667] Updated weights for policy 0, policy_version 2338 (0.0011)
[2023-02-22 17:20:14,275][12667] Updated weights for policy 0, policy_version 2348 (0.0012)
[2023-02-22 17:20:14,577][00749] Fps is (10 sec: 18841.6, 60 sec: 18363.7, 300 sec: 18189.0). Total num frames: 9621504. Throughput: 0: 4560.5. Samples: 1393186. Policy #0 lag: (min: 0.0, avg: 0.9, max: 2.0)
[2023-02-22 17:20:14,579][00749] Avg episode reward: [(0, '28.858')]
[2023-02-22 17:20:16,534][12667] Updated weights for policy 0, policy_version 2358 (0.0012)
[2023-02-22 17:20:18,944][12667] Updated weights for policy 0, policy_version 2368 (0.0012)
[2023-02-22 17:20:19,577][00749] Fps is (10 sec: 18022.5, 60 sec: 18227.2, 300 sec: 18175.1). Total num frames: 9707520. Throughput: 0: 4577.1. Samples: 1420498. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
[2023-02-22 17:20:19,580][00749] Avg episode reward: [(0, '29.435')]
[2023-02-22 17:20:21,316][12667] Updated weights for policy 0, policy_version 2378 (0.0012)
[2023-02-22 17:20:23,584][12667] Updated weights for policy 0, policy_version 2388 (0.0011)
[2023-02-22 17:20:24,577][00749] Fps is (10 sec: 17612.8, 60 sec: 18158.9, 300 sec: 18175.1). Total num frames: 9797632. Throughput: 0: 4529.2. Samples: 1446706. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
[2023-02-22 17:20:24,580][00749] Avg episode reward: [(0, '29.524')]
[2023-02-22 17:20:25,865][12667] Updated weights for policy 0, policy_version 2398 (0.0011)
[2023-02-22 17:20:28,114][12667] Updated weights for policy 0, policy_version 2408 (0.0012)
[2023-02-22 17:20:29,577][00749] Fps is (10 sec: 18022.3, 60 sec: 18158.9, 300 sec: 18161.2). Total num frames: 9887744. Throughput: 0: 4520.3. Samples: 1460178. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
[2023-02-22 17:20:29,580][00749] Avg episode reward: [(0, '32.055')]
[2023-02-22 17:20:30,347][12667] Updated weights for policy 0, policy_version 2418 (0.0011)
[2023-02-22 17:20:32,616][12667] Updated weights for policy 0, policy_version 2428 (0.0012)
[2023-02-22 17:20:34,577][00749] Fps is (10 sec: 18022.4, 60 sec: 18158.9, 300 sec: 18175.1). Total num frames: 9977856. Throughput: 0: 4540.8. Samples: 1487524. Policy #0 lag: (min: 0.0, avg: 0.9, max: 2.0)
[2023-02-22 17:20:34,580][00749] Avg episode reward: [(0, '29.049')]
[2023-02-22 17:20:35,006][12667] Updated weights for policy 0, policy_version 2438 (0.0012)
[2023-02-22 17:20:36,175][00749] Component Batcher_0 stopped!
[2023-02-22 17:20:36,175][12651] Stopping Batcher_0...
[2023-02-22 17:20:36,176][12651] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000002443_10006528.pth...
[2023-02-22 17:20:36,179][12651] Loop batcher_evt_loop terminating...
[2023-02-22 17:20:36,188][12666] Stopping RolloutWorker_w0...
[2023-02-22 17:20:36,189][12666] Loop rollout_proc0_evt_loop terminating...
[2023-02-22 17:20:36,189][12694] Stopping RolloutWorker_w6...
[2023-02-22 17:20:36,190][12694] Loop rollout_proc6_evt_loop terminating...
[2023-02-22 17:20:36,190][12676] Stopping RolloutWorker_w4...
[2023-02-22 17:20:36,191][12676] Loop rollout_proc4_evt_loop terminating...
[2023-02-22 17:20:36,191][12667] Weights refcount: 2 0
[2023-02-22 17:20:36,189][00749] Component RolloutWorker_w0 stopped!
[2023-02-22 17:20:36,192][12665] Stopping RolloutWorker_w1...
[2023-02-22 17:20:36,193][12667] Stopping InferenceWorker_p0-w0...
[2023-02-22 17:20:36,193][12665] Loop rollout_proc1_evt_loop terminating...
[2023-02-22 17:20:36,193][12667] Loop inference_proc0-0_evt_loop terminating...
[2023-02-22 17:20:36,192][00749] Component RolloutWorker_w6 stopped!
[2023-02-22 17:20:36,195][12691] Stopping RolloutWorker_w7...
[2023-02-22 17:20:36,196][12691] Loop rollout_proc7_evt_loop terminating...
[2023-02-22 17:20:36,197][12669] Stopping RolloutWorker_w2...
[2023-02-22 17:20:36,198][12669] Loop rollout_proc2_evt_loop terminating...
[2023-02-22 17:20:36,195][00749] Component RolloutWorker_w4 stopped!
[2023-02-22 17:20:36,201][12688] Stopping RolloutWorker_w5...
[2023-02-22 17:20:36,201][12688] Loop rollout_proc5_evt_loop terminating...
[2023-02-22 17:20:36,199][00749] Component RolloutWorker_w1 stopped!
[2023-02-22 17:20:36,202][00749] Component InferenceWorker_p0-w0 stopped!
[2023-02-22 17:20:36,209][00749] Component RolloutWorker_w7 stopped!
[2023-02-22 17:20:36,212][00749] Component RolloutWorker_w2 stopped!
[2023-02-22 17:20:36,214][00749] Component RolloutWorker_w5 stopped!
[2023-02-22 17:20:36,220][12690] Stopping RolloutWorker_w3...
[2023-02-22 17:20:36,221][12690] Loop rollout_proc3_evt_loop terminating...
[2023-02-22 17:20:36,220][00749] Component RolloutWorker_w3 stopped!
[2023-02-22 17:20:36,262][12651] Removing /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000001438_5890048.pth
[2023-02-22 17:20:36,270][12651] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000002443_10006528.pth...
[2023-02-22 17:20:36,378][12651] Stopping LearnerWorker_p0...
[2023-02-22 17:20:36,379][12651] Loop learner_proc0_evt_loop terminating...
[2023-02-22 17:20:36,378][00749] Component LearnerWorker_p0 stopped!
[2023-02-22 17:20:36,381][00749] Waiting for process learner_proc0 to stop...
[2023-02-22 17:20:37,344][00749] Waiting for process inference_proc0-0 to join...
[2023-02-22 17:20:37,347][00749] Waiting for process rollout_proc0 to join...
[2023-02-22 17:20:37,349][00749] Waiting for process rollout_proc1 to join...
[2023-02-22 17:20:37,351][00749] Waiting for process rollout_proc2 to join...
[2023-02-22 17:20:37,353][00749] Waiting for process rollout_proc3 to join...
[2023-02-22 17:20:37,355][00749] Waiting for process rollout_proc4 to join...
[2023-02-22 17:20:37,357][00749] Waiting for process rollout_proc5 to join...
[2023-02-22 17:20:37,359][00749] Waiting for process rollout_proc6 to join...
[2023-02-22 17:20:37,360][00749] Waiting for process rollout_proc7 to join...
[2023-02-22 17:20:37,362][00749] Batcher 0 profile tree view:
batching: 24.2280, releasing_batches: 0.0354
[2023-02-22 17:20:37,364][00749] InferenceWorker_p0-w0 profile tree view:
wait_policy: 0.0001
  wait_policy_total: 5.5906
update_model: 5.5410
  weight_update: 0.0012
one_step: 0.0027
  handle_policy_step: 306.3254
    deserialize: 13.2310, stack: 2.0325, obs_to_device_normalize: 73.5097, forward: 139.4729, send_messages: 23.7876
    prepare_outputs: 40.5463
      to_cpu: 24.4073
[2023-02-22 17:20:37,366][00749] Learner 0 profile tree view:
misc: 0.0084, prepare_batch: 13.7076
train: 35.2174
  epoch_init: 0.0095, minibatch_init: 0.0091, losses_postprocess: 0.4432, kl_divergence: 0.5678, after_optimizer: 1.1132
  calculate_losses: 11.8007
    losses_init: 0.0050, forward_head: 1.7413, bptt_initial: 4.6428, tail: 1.0238, advantages_returns: 0.2733, losses: 1.7093
    bptt: 2.1245
      bptt_forward_core: 2.0417
  update: 20.7020
    clip: 1.8659
[2023-02-22 17:20:37,367][00749] RolloutWorker_w0 profile tree view:
wait_for_trajectories: 0.2373, enqueue_policy_requests: 12.2633, env_step: 210.3821, overhead: 15.8349, complete_rollouts: 0.4234
save_policy_outputs: 13.8777
  split_output_tensors: 6.7645
[2023-02-22 17:20:37,369][00749] RolloutWorker_w7 profile tree view:
wait_for_trajectories: 0.2384, enqueue_policy_requests: 12.2324, env_step: 210.3702, overhead: 15.7652, complete_rollouts: 0.3998
save_policy_outputs: 13.9366
  split_output_tensors: 6.7449
[2023-02-22 17:20:37,370][00749] Loop Runner_EvtLoop terminating...
[2023-02-22 17:20:37,372][00749] Runner profile tree view:
main_loop: 346.1152
[2023-02-22 17:20:37,373][00749] Collected {0: 10006528}, FPS: 17337.1
[2023-02-22 17:20:50,104][00749] Loading existing experiment configuration from /content/train_dir/default_experiment/config.json
[2023-02-22 17:20:50,106][00749] Overriding arg 'num_workers' with value 1 passed from command line
[2023-02-22 17:20:50,107][00749] Adding new argument 'no_render'=True that is not in the saved config file!
[2023-02-22 17:20:50,109][00749] Adding new argument 'save_video'=True that is not in the saved config file!
[2023-02-22 17:20:50,110][00749] Adding new argument 'video_frames'=1000000000.0 that is not in the saved config file!
[2023-02-22 17:20:50,112][00749] Adding new argument 'video_name'=None that is not in the saved config file!
[2023-02-22 17:20:50,114][00749] Adding new argument 'max_num_frames'=1000000000.0 that is not in the saved config file!
[2023-02-22 17:20:50,115][00749] Adding new argument 'max_num_episodes'=10 that is not in the saved config file!
[2023-02-22 17:20:50,117][00749] Adding new argument 'push_to_hub'=False that is not in the saved config file!
[2023-02-22 17:20:50,119][00749] Adding new argument 'hf_repository'=None that is not in the saved config file!
[2023-02-22 17:20:50,121][00749] Adding new argument 'policy_index'=0 that is not in the saved config file!
[2023-02-22 17:20:50,122][00749] Adding new argument 'eval_deterministic'=False that is not in the saved config file!
[2023-02-22 17:20:50,124][00749] Adding new argument 'train_script'=None that is not in the saved config file!
[2023-02-22 17:20:50,126][00749] Adding new argument 'enjoy_script'=None that is not in the saved config file!
[2023-02-22 17:20:50,128][00749] Using frameskip 1 and render_action_repeat=4 for evaluation
[2023-02-22 17:20:50,145][00749] RunningMeanStd input shape: (3, 72, 128)
[2023-02-22 17:20:50,148][00749] RunningMeanStd input shape: (1,)
[2023-02-22 17:20:50,163][00749] ConvEncoder: input_channels=3
[2023-02-22 17:20:50,207][00749] Conv encoder output size: 512
[2023-02-22 17:20:50,209][00749] Policy head output size: 512
[2023-02-22 17:20:50,233][00749] Loading state from checkpoint /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000002443_10006528.pth...
[2023-02-22 17:20:50,732][00749] Num frames 100...
[2023-02-22 17:20:50,859][00749] Num frames 200...
[2023-02-22 17:20:50,987][00749] Num frames 300...
[2023-02-22 17:20:51,114][00749] Num frames 400...
[2023-02-22 17:20:51,236][00749] Num frames 500...
[2023-02-22 17:20:51,344][00749] Avg episode rewards: #0: 10.440, true rewards: #0: 5.440
[2023-02-22 17:20:51,346][00749] Avg episode reward: 10.440, avg true_objective: 5.440
[2023-02-22 17:20:51,417][00749] Num frames 600...
[2023-02-22 17:20:51,537][00749] Num frames 700...
[2023-02-22 17:20:51,685][00749] Num frames 800...
[2023-02-22 17:20:51,805][00749] Num frames 900...
[2023-02-22 17:20:51,925][00749] Num frames 1000...
[2023-02-22 17:20:52,048][00749] Num frames 1100...
[2023-02-22 17:20:52,172][00749] Num frames 1200...
[2023-02-22 17:20:52,287][00749] Avg episode rewards: #0: 10.740, true rewards: #0: 6.240
[2023-02-22 17:20:52,289][00749] Avg episode reward: 10.740, avg true_objective: 6.240
[2023-02-22 17:20:52,358][00749] Num frames 1300...
[2023-02-22 17:20:52,480][00749] Num frames 1400...
[2023-02-22 17:20:52,597][00749] Num frames 1500...
[2023-02-22 17:20:52,718][00749] Num frames 1600...
[2023-02-22 17:20:52,836][00749] Num frames 1700...
[2023-02-22 17:20:52,955][00749] Num frames 1800...
[2023-02-22 17:20:53,073][00749] Num frames 1900...
[2023-02-22 17:20:53,196][00749] Num frames 2000...
[2023-02-22 17:20:53,318][00749] Num frames 2100...
[2023-02-22 17:20:53,437][00749] Num frames 2200...
[2023-02-22 17:20:53,555][00749] Num frames 2300...
[2023-02-22 17:20:53,679][00749] Num frames 2400...
[2023-02-22 17:20:53,799][00749] Num frames 2500...
[2023-02-22 17:20:53,965][00749] Avg episode rewards: #0: 17.307, true rewards: #0: 8.640
[2023-02-22 17:20:53,967][00749] Avg episode reward: 17.307, avg true_objective: 8.640
[2023-02-22 17:20:53,980][00749] Num frames 2600...
[2023-02-22 17:20:54,101][00749] Num frames 2700...
[2023-02-22 17:20:54,218][00749] Num frames 2800...
[2023-02-22 17:20:54,338][00749] Num frames 2900...
[2023-02-22 17:20:54,458][00749] Num frames 3000...
[2023-02-22 17:20:54,573][00749] Num frames 3100...
[2023-02-22 17:20:54,702][00749] Num frames 3200...
[2023-02-22 17:20:54,873][00749] Avg episode rewards: #0: 15.990, true rewards: #0: 8.240
[2023-02-22 17:20:54,875][00749] Avg episode reward: 15.990, avg true_objective: 8.240
[2023-02-22 17:20:54,882][00749] Num frames 3300...
[2023-02-22 17:20:55,004][00749] Num frames 3400...
[2023-02-22 17:20:55,127][00749] Num frames 3500...
[2023-02-22 17:20:55,250][00749] Num frames 3600...
[2023-02-22 17:20:55,372][00749] Num frames 3700...
[2023-02-22 17:20:55,491][00749] Num frames 3800...
[2023-02-22 17:20:55,610][00749] Num frames 3900...
[2023-02-22 17:20:55,732][00749] Num frames 4000...
[2023-02-22 17:20:55,849][00749] Num frames 4100...
[2023-02-22 17:20:55,969][00749] Num frames 4200...
[2023-02-22 17:20:56,086][00749] Num frames 4300...
[2023-02-22 17:20:56,205][00749] Num frames 4400...
[2023-02-22 17:20:56,280][00749] Avg episode rewards: #0: 17.632, true rewards: #0: 8.832
[2023-02-22 17:20:56,283][00749] Avg episode reward: 17.632, avg true_objective: 8.832
[2023-02-22 17:20:56,386][00749] Num frames 4500...
[2023-02-22 17:20:56,507][00749] Num frames 4600...
[2023-02-22 17:20:56,629][00749] Num frames 4700...
[2023-02-22 17:20:56,751][00749] Num frames 4800...
[2023-02-22 17:20:56,866][00749] Num frames 4900...
[2023-02-22 17:20:56,983][00749] Num frames 5000...
[2023-02-22 17:20:57,102][00749] Num frames 5100...
[2023-02-22 17:20:57,227][00749] Num frames 5200...
[2023-02-22 17:20:57,350][00749] Num frames 5300...
[2023-02-22 17:20:57,474][00749] Num frames 5400...
[2023-02-22 17:20:57,596][00749] Num frames 5500...
[2023-02-22 17:20:57,734][00749] Num frames 5600...
[2023-02-22 17:20:57,857][00749] Num frames 5700...
[2023-02-22 17:20:57,981][00749] Num frames 5800...
[2023-02-22 17:20:58,112][00749] Num frames 5900...
[2023-02-22 17:20:58,252][00749] Avg episode rewards: #0: 21.442, true rewards: #0: 9.942
[2023-02-22 17:20:58,254][00749] Avg episode reward: 21.442, avg true_objective: 9.942
[2023-02-22 17:20:58,299][00749] Num frames 6000...
[2023-02-22 17:20:58,420][00749] Num frames 6100...
[2023-02-22 17:20:58,542][00749] Num frames 6200...
[2023-02-22 17:20:58,662][00749] Num frames 6300...
[2023-02-22 17:20:58,794][00749] Num frames 6400...
[2023-02-22 17:20:58,910][00749] Num frames 6500...
[2023-02-22 17:20:59,033][00749] Num frames 6600...
[2023-02-22 17:20:59,159][00749] Num frames 6700...
[2023-02-22 17:20:59,280][00749] Num frames 6800...
[2023-02-22 17:20:59,409][00749] Num frames 6900...
[2023-02-22 17:20:59,538][00749] Num frames 7000...
[2023-02-22 17:20:59,668][00749] Num frames 7100...
[2023-02-22 17:20:59,798][00749] Num frames 7200...
[2023-02-22 17:20:59,893][00749] Avg episode rewards: #0: 22.760, true rewards: #0: 10.331
[2023-02-22 17:20:59,896][00749] Avg episode reward: 22.760, avg true_objective: 10.331
[2023-02-22 17:20:59,987][00749] Num frames 7300...
[2023-02-22 17:21:00,117][00749] Num frames 7400...
[2023-02-22 17:21:00,242][00749] Num frames 7500...
[2023-02-22 17:21:00,376][00749] Num frames 7600...
[2023-02-22 17:21:00,507][00749] Num frames 7700...
[2023-02-22 17:21:00,639][00749] Num frames 7800...
[2023-02-22 17:21:00,776][00749] Num frames 7900...
[2023-02-22 17:21:00,899][00749] Num frames 8000...
[2023-02-22 17:21:01,025][00749] Num frames 8100...
[2023-02-22 17:21:01,155][00749] Num frames 8200...
[2023-02-22 17:21:01,292][00749] Num frames 8300...
[2023-02-22 17:21:01,459][00749] Avg episode rewards: #0: 23.481, true rewards: #0: 10.481
[2023-02-22 17:21:01,461][00749] Avg episode reward: 23.481, avg true_objective: 10.481
[2023-02-22 17:21:01,483][00749] Num frames 8400...
[2023-02-22 17:21:01,613][00749] Num frames 8500...
[2023-02-22 17:21:01,735][00749] Num frames 8600...
[2023-02-22 17:21:01,862][00749] Num frames 8700...
[2023-02-22 17:21:01,989][00749] Num frames 8800...
[2023-02-22 17:21:02,123][00749] Num frames 8900...
[2023-02-22 17:21:02,254][00749] Num frames 9000...
[2023-02-22 17:21:02,381][00749] Num frames 9100...
[2023-02-22 17:21:02,507][00749] Num frames 9200...
[2023-02-22 17:21:02,632][00749] Num frames 9300...
[2023-02-22 17:21:02,767][00749] Num frames 9400...
[2023-02-22 17:21:02,901][00749] Num frames 9500...
[2023-02-22 17:21:03,073][00749] Avg episode rewards: #0: 24.428, true rewards: #0: 10.650
[2023-02-22 17:21:03,075][00749] Avg episode reward: 24.428, avg true_objective: 10.650
[2023-02-22 17:21:03,097][00749] Num frames 9600...
[2023-02-22 17:21:03,230][00749] Num frames 9700...
[2023-02-22 17:21:03,355][00749] Num frames 9800...
[2023-02-22 17:21:03,477][00749] Num frames 9900...
[2023-02-22 17:21:03,604][00749] Num frames 10000...
[2023-02-22 17:21:03,723][00749] Num frames 10100...
[2023-02-22 17:21:03,844][00749] Num frames 10200...
[2023-02-22 17:21:03,987][00749] Num frames 10300...
[2023-02-22 17:21:04,117][00749] Num frames 10400...
[2023-02-22 17:21:04,195][00749] Avg episode rewards: #0: 23.617, true rewards: #0: 10.417
[2023-02-22 17:21:04,197][00749] Avg episode reward: 23.617, avg true_objective: 10.417
[2023-02-22 17:21:29,053][00749] Replay video saved to /content/train_dir/default_experiment/replay.mp4!
[2023-02-22 17:22:18,221][00749] Loading existing experiment configuration from /content/train_dir/default_experiment/config.json
[2023-02-22 17:22:18,223][00749] Overriding arg 'num_workers' with value 1 passed from command line
[2023-02-22 17:22:18,224][00749] Adding new argument 'no_render'=True that is not in the saved config file!
[2023-02-22 17:22:18,226][00749] Adding new argument 'save_video'=True that is not in the saved config file!
[2023-02-22 17:22:18,229][00749] Adding new argument 'video_frames'=1000000000.0 that is not in the saved config file!
[2023-02-22 17:22:18,232][00749] Adding new argument 'video_name'=None that is not in the saved config file!
[2023-02-22 17:22:18,234][00749] Adding new argument 'max_num_frames'=100000 that is not in the saved config file!
[2023-02-22 17:22:18,235][00749] Adding new argument 'max_num_episodes'=10 that is not in the saved config file!
[2023-02-22 17:22:18,238][00749] Adding new argument 'push_to_hub'=True that is not in the saved config file!
[2023-02-22 17:22:18,239][00749] Adding new argument 'hf_repository'='marik0/rl_course_vizdoom_health_gathering_supreme' that is not in the saved config file!
[2023-02-22 17:22:18,241][00749] Adding new argument 'policy_index'=0 that is not in the saved config file!
[2023-02-22 17:22:18,242][00749] Adding new argument 'eval_deterministic'=False that is not in the saved config file!
[2023-02-22 17:22:18,246][00749] Adding new argument 'train_script'=None that is not in the saved config file!
[2023-02-22 17:22:18,248][00749] Adding new argument 'enjoy_script'=None that is not in the saved config file!
[2023-02-22 17:22:18,250][00749] Using frameskip 1 and render_action_repeat=4 for evaluation
[2023-02-22 17:22:18,269][00749] RunningMeanStd input shape: (3, 72, 128)
[2023-02-22 17:22:18,273][00749] RunningMeanStd input shape: (1,)
[2023-02-22 17:22:18,288][00749] ConvEncoder: input_channels=3
[2023-02-22 17:22:18,334][00749] Conv encoder output size: 512
[2023-02-22 17:22:18,336][00749] Policy head output size: 512
[2023-02-22 17:22:18,359][00749] Loading state from checkpoint /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000002443_10006528.pth...
[2023-02-22 17:22:18,843][00749] Num frames 100...
[2023-02-22 17:22:18,969][00749] Num frames 200...
[2023-02-22 17:22:19,092][00749] Num frames 300...
[2023-02-22 17:22:19,219][00749] Num frames 400...
[2023-02-22 17:22:19,357][00749] Num frames 500...
[2023-02-22 17:22:19,481][00749] Num frames 600...
[2023-02-22 17:22:19,597][00749] Num frames 700...
[2023-02-22 17:22:19,713][00749] Num frames 800...
[2023-02-22 17:22:19,824][00749] Num frames 900...
[2023-02-22 17:22:19,945][00749] Num frames 1000...
[2023-02-22 17:22:20,060][00749] Num frames 1100...
[2023-02-22 17:22:20,178][00749] Num frames 1200...
[2023-02-22 17:22:20,296][00749] Num frames 1300...
[2023-02-22 17:22:20,413][00749] Num frames 1400...
[2023-02-22 17:22:20,512][00749] Avg episode rewards: #0: 35.400, true rewards: #0: 14.400
[2023-02-22 17:22:20,514][00749] Avg episode reward: 35.400, avg true_objective: 14.400
[2023-02-22 17:22:20,582][00749] Num frames 1500...
[2023-02-22 17:22:20,709][00749] Num frames 1600...
[2023-02-22 17:22:20,829][00749] Num frames 1700...
[2023-02-22 17:22:20,947][00749] Num frames 1800...
[2023-02-22 17:22:21,059][00749] Num frames 1900...
[2023-02-22 17:22:21,178][00749] Num frames 2000...
[2023-02-22 17:22:21,295][00749] Num frames 2100...
[2023-02-22 17:22:21,414][00749] Num frames 2200...
[2023-02-22 17:22:21,533][00749] Num frames 2300...
[2023-02-22 17:22:21,651][00749] Num frames 2400...
[2023-02-22 17:22:21,772][00749] Num frames 2500...
[2023-02-22 17:22:21,892][00749] Num frames 2600...
[2023-02-22 17:22:22,007][00749] Num frames 2700...
[2023-02-22 17:22:22,127][00749] Num frames 2800...
[2023-02-22 17:22:22,244][00749] Num frames 2900...
[2023-02-22 17:22:22,316][00749] Avg episode rewards: #0: 33.560, true rewards: #0: 14.560
[2023-02-22 17:22:22,318][00749] Avg episode reward: 33.560, avg true_objective: 14.560
[2023-02-22 17:22:22,425][00749] Num frames 3000...
[2023-02-22 17:22:22,542][00749] Num frames 3100...
[2023-02-22 17:22:22,662][00749] Num frames 3200...
[2023-02-22 17:22:22,779][00749] Num frames 3300...
[2023-02-22 17:22:22,891][00749] Num frames 3400...
[2023-02-22 17:22:23,011][00749] Num frames 3500...
[2023-02-22 17:22:23,128][00749] Num frames 3600...
[2023-02-22 17:22:23,244][00749] Num frames 3700...
[2023-02-22 17:22:23,358][00749] Num frames 3800...
[2023-02-22 17:22:23,470][00749] Num frames 3900...
[2023-02-22 17:22:23,592][00749] Num frames 4000...
[2023-02-22 17:22:23,712][00749] Num frames 4100...
[2023-02-22 17:22:23,832][00749] Num frames 4200...
[2023-02-22 17:22:23,946][00749] Num frames 4300...
[2023-02-22 17:22:24,065][00749] Num frames 4400...
[2023-02-22 17:22:24,178][00749] Avg episode rewards: #0: 35.493, true rewards: #0: 14.827
[2023-02-22 17:22:24,180][00749] Avg episode reward: 35.493, avg true_objective: 14.827
[2023-02-22 17:22:24,242][00749] Num frames 4500...
[2023-02-22 17:22:24,356][00749] Num frames 4600...
[2023-02-22 17:22:24,473][00749] Num frames 4700...
[2023-02-22 17:22:24,588][00749] Num frames 4800...
[2023-02-22 17:22:24,707][00749] Num frames 4900...
[2023-02-22 17:22:24,823][00749] Num frames 5000...
[2023-02-22 17:22:24,942][00749] Avg episode rewards: #0: 30.140, true rewards: #0: 12.640
[2023-02-22 17:22:24,944][00749] Avg episode reward: 30.140, avg true_objective: 12.640
[2023-02-22 17:22:25,000][00749] Num frames 5100...
[2023-02-22 17:22:25,123][00749] Num frames 5200...
[2023-02-22 17:22:25,238][00749] Num frames 5300...
[2023-02-22 17:22:25,361][00749] Num frames 5400...
[2023-02-22 17:22:25,481][00749] Num frames 5500...
[2023-02-22 17:22:25,599][00749] Num frames 5600...
[2023-02-22 17:22:25,718][00749] Num frames 5700...
[2023-02-22 17:22:25,849][00749] Num frames 5800...
[2023-02-22 17:22:25,961][00749] Num frames 5900...
[2023-02-22 17:22:26,075][00749] Num frames 6000...
[2023-02-22 17:22:26,198][00749] Num frames 6100...
[2023-02-22 17:22:26,273][00749] Avg episode rewards: #0: 29.428, true rewards: #0: 12.228
[2023-02-22 17:22:26,276][00749] Avg episode reward: 29.428, avg true_objective: 12.228
[2023-02-22 17:22:26,378][00749] Num frames 6200...
[2023-02-22 17:22:26,495][00749] Num frames 6300...
[2023-02-22 17:22:26,611][00749] Num frames 6400...
[2023-02-22 17:22:26,727][00749] Num frames 6500...
[2023-02-22 17:22:26,843][00749] Num frames 6600...
[2023-02-22 17:22:26,955][00749] Num frames 6700...
[2023-02-22 17:22:27,073][00749] Num frames 6800...
[2023-02-22 17:22:27,190][00749] Num frames 6900...
[2023-02-22 17:22:27,305][00749] Num frames 7000...
[2023-02-22 17:22:27,418][00749] Num frames 7100...
[2023-02-22 17:22:27,539][00749] Num frames 7200...
[2023-02-22 17:22:27,602][00749] Avg episode rewards: #0: 29.008, true rewards: #0: 12.008
[2023-02-22 17:22:27,603][00749] Avg episode reward: 29.008, avg true_objective: 12.008
[2023-02-22 17:22:27,712][00749] Num frames 7300...
[2023-02-22 17:22:27,825][00749] Num frames 7400...
[2023-02-22 17:22:27,941][00749] Num frames 7500...
[2023-02-22 17:22:28,054][00749] Num frames 7600...
[2023-02-22 17:22:28,167][00749] Num frames 7700...
[2023-02-22 17:22:28,283][00749] Num frames 7800...
[2023-02-22 17:22:28,400][00749] Num frames 7900...
[2023-02-22 17:22:28,520][00749] Num frames 8000...
[2023-02-22 17:22:28,634][00749] Num frames 8100...
[2023-02-22 17:22:28,755][00749] Num frames 8200...
[2023-02-22 17:22:28,880][00749] Num frames 8300...
[2023-02-22 17:22:28,999][00749] Num frames 8400...
[2023-02-22 17:22:29,114][00749] Num frames 8500...
[2023-02-22 17:22:29,230][00749] Num frames 8600...
[2023-02-22 17:22:29,344][00749] Num frames 8700...
[2023-02-22 17:22:29,465][00749] Num frames 8800...
[2023-02-22 17:22:29,594][00749] Num frames 8900...
[2023-02-22 17:22:29,730][00749] Avg episode rewards: #0: 31.664, true rewards: #0: 12.807
[2023-02-22 17:22:29,732][00749] Avg episode reward: 31.664, avg true_objective: 12.807
[2023-02-22 17:22:29,773][00749] Num frames 9000...
[2023-02-22 17:22:29,887][00749] Num frames 9100...
[2023-02-22 17:22:30,005][00749] Num frames 9200...
[2023-02-22 17:22:30,122][00749] Num frames 9300...
[2023-02-22 17:22:30,241][00749] Num frames 9400...
[2023-02-22 17:22:30,355][00749] Num frames 9500...
[2023-02-22 17:22:30,468][00749] Num frames 9600...
[2023-02-22 17:22:30,586][00749] Num frames 9700...
[2023-02-22 17:22:30,709][00749] Num frames 9800...
[2023-02-22 17:22:30,827][00749] Num frames 9900...
[2023-02-22 17:22:30,948][00749] Num frames 10000...
[2023-02-22 17:22:31,074][00749] Num frames 10100...
[2023-02-22 17:22:31,198][00749] Num frames 10200...
[2023-02-22 17:22:31,320][00749] Num frames 10300...
[2023-02-22 17:22:31,442][00749] Num frames 10400...
[2023-02-22 17:22:31,564][00749] Num frames 10500...
[2023-02-22 17:22:31,685][00749] Num frames 10600...
[2023-02-22 17:22:31,817][00749] Num frames 10700...
[2023-02-22 17:22:31,963][00749] Num frames 10800...
[2023-02-22 17:22:32,089][00749] Num frames 10900...
[2023-02-22 17:22:32,169][00749] Avg episode rewards: #0: 33.646, true rewards: #0: 13.646
[2023-02-22 17:22:32,171][00749] Avg episode reward: 33.646, avg true_objective: 13.646
[2023-02-22 17:22:32,271][00749] Num frames 11000...
[2023-02-22 17:22:32,392][00749] Num frames 11100...
[2023-02-22 17:22:32,511][00749] Num frames 11200...
[2023-02-22 17:22:32,627][00749] Num frames 11300...
[2023-02-22 17:22:32,746][00749] Num frames 11400...
[2023-02-22 17:22:32,863][00749] Num frames 11500...
[2023-02-22 17:22:32,982][00749] Num frames 11600...
[2023-02-22 17:22:33,098][00749] Num frames 11700...
[2023-02-22 17:22:33,211][00749] Num frames 11800...
[2023-02-22 17:22:33,329][00749] Num frames 11900...
[2023-02-22 17:22:33,451][00749] Num frames 12000...
[2023-02-22 17:22:33,569][00749] Num frames 12100...
[2023-02-22 17:22:33,685][00749] Num frames 12200...
[2023-02-22 17:22:33,802][00749] Num frames 12300...
[2023-02-22 17:22:33,918][00749] Num frames 12400...
[2023-02-22 17:22:34,043][00749] Num frames 12500...
[2023-02-22 17:22:34,161][00749] Num frames 12600...
[2023-02-22 17:22:34,280][00749] Num frames 12700...
[2023-02-22 17:22:34,398][00749] Num frames 12800...
[2023-02-22 17:22:34,518][00749] Num frames 12900...
[2023-02-22 17:22:34,651][00749] Avg episode rewards: #0: 35.294, true rewards: #0: 14.406
[2023-02-22 17:22:34,654][00749] Avg episode reward: 35.294, avg true_objective: 14.406
[2023-02-22 17:22:34,698][00749] Num frames 13000...
[2023-02-22 17:22:34,811][00749] Num frames 13100...
[2023-02-22 17:22:34,927][00749] Num frames 13200...
[2023-02-22 17:22:35,040][00749] Num frames 13300...
[2023-02-22 17:22:35,159][00749] Num frames 13400...
[2023-02-22 17:22:35,281][00749] Num frames 13500...
[2023-02-22 17:22:35,401][00749] Num frames 13600...
[2023-02-22 17:22:35,519][00749] Num frames 13700...
[2023-02-22 17:22:35,633][00749] Num frames 13800...
[2023-02-22 17:22:35,755][00749] Num frames 13900...
[2023-02-22 17:22:35,886][00749] Num frames 14000...
[2023-02-22 17:22:36,007][00749] Num frames 14100...
[2023-02-22 17:22:36,161][00749] Avg episode rewards: #0: 34.181, true rewards: #0: 14.181
[2023-02-22 17:22:36,163][00749] Avg episode reward: 34.181, avg true_objective: 14.181
[2023-02-22 17:23:09,875][00749] Replay video saved to /content/train_dir/default_experiment/replay.mp4!