marimurta commited on
Commit
b72a609
1 Parent(s): f77194b

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 976.82 +/- 210.06
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a80fa7d8c4ceee27fdf98d41ddc7600d20f76c78b75c131903111c35d6995d44
3
+ size 129002
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f19f262df70>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f19f2631040>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f19f26310d0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f19f2631160>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f19f26311f0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f19f2631280>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f19f2631310>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f19f26313a0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f19f2631430>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f19f26314c0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f19f2631550>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f19f26315e0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f19f262fdc0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 2000000,
63
+ "_total_timesteps": 2000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1680108875977425934,
68
+ "learning_rate": 0.00096,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAJZnPkDT4DI9TzEOPx8Cmb8iIgg/zMYpPUsUqT54ZgU/hbRQvs+EO7/kTyPAsZ2dvHsb3T4dWSy/a5AQQF53aL8tmlu+SLyBvuw2IUCCyY+/mIkmP3PRd7+N2hXA7TwUP73hrL+t8yjAOoQIwEN5hL+ZMdG8ISvBPxpxmMD3/ZG/2xmUPjL+SD0NpIS/VKmzPz17wL8lEN659JaFv9dGkLwDfvQ/EUUqO8rflr/c+uM8UNi+P/8h8ro8uRbA+g3aPHQRnL+IwLE6KL9MP6IKzrw3ij0/4PLBPpEH8D7TWnc/lHVZP+bna7/wm0w++Jksv2Exrb9lh/i/Nj60vgxEX79mN+o+qNxRwLE65T9QFaW/yo15vy7ThT8VTsQ+QyZNwJskz7+Hovg+FROGP6oQ5j43H9o/4x0MwD/XEb+L3Lg/N4o9P63zKMA6hAjAQ3mEv9HBLb7VcT0+dx0NP64EMj7e4gy/fcAbP9viAL8zC4a+kvGav9scrD6Y4+E+GIm8PpW7Gz6qjIk+dWNNP6yr9TwKMCE+V7avvlkYrb09BJo+7bwovYq7uz+8Iwu/F2W7vzeKPT/g8sE+kQfwPkN5hL+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACDXiG2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACApZ2QPQAAAAC+5uW/AAAAAD8N770AAAAAdDPkPwAAAACEJcC3AAAAAKa82j8AAAAAjuKcvQAAAACxfd6/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0NV7NQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgHIkND0AAAAAQaPcvwAAAABO2IU9AAAAANhQ2z8AAAAA4GEBPQAAAADaeP8/AAAAAICFSDwAAAAAgEUAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACF5nTYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAaXQm9AAAAAJ8g5r8AAAAAR3YKPgAAAABMDe8/AAAAACYRlLkAAAAAziPZPwAAAABR/R29AAAAAEfv6L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABtOis2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAHEO9vQAAAAAeeeG/AAAAADkc1z0AAAAArTftPwAAAAAlH/k8AAAAAB/Y2D8AAAAAOonoPQAAAADnY+2/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVQAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJMD9AbADaKMAWyUTegDjAF0lEdAq3HhqASWaHV9lChoBkdAlDQ29Htnf2gHTegDaAhHQKtyqO2AoXt1fZQoaAZHQHLl517pmmNoB03oA2gIR0CrfrpuVHFxdX2UKGgGR0COYQ9IPK+0aAdN6ANoCEdAq4GeI/JNkHV9lChoBkdAkusuC5EtumgHTegDaAhHQKuBololD4R1fZQoaAZHQJR1rWtlqahoB03oA2gIR0CrgmvLPldUdX2UKGgGR0CSr4TZxrBTaAdN6ANoCEdAq4v8wnH/+HV9lChoBkdAkS16fOD8L2gHTegDaAhHQKuONaPjn3d1fZQoaAZHQJLn1ocrAgxoB03oA2gIR0CrjjlV1fVqdX2UKGgGR0CK3b/S6UaAaAdN6ANoCEdAq479JlJ6IHV9lChoBkdAdjNBzmwJPmgHTegDaAhHQKuabn13+uN1fZQoaAZHQJO5tLIxQBRoB03oA2gIR0Crnb2sq8UVdX2UKGgGR0CTaTzjFQ2uaAdN6ANoCEdAq53EK9f1H3V9lChoBkdAg7/0FB6a9mgHTegDaAhHQKue0kSElE91fZQoaAZHQI2/41rIo3JoB03oA2gIR0CrqBQ5vLowdX2UKGgGR0CUynzF+/g0aAdN6ANoCEdAq6o5wfhddHV9lChoBkdAlnQ2YBvJimgHTegDaAhHQKuqPXvH93t1fZQoaAZHQJX4FaJQ+EBoB03oA2gIR0CrqwajnFHbdX2UKGgGR0CUieXiR4hVaAdN6ANoCEdAq7UR02cawXV9lChoBkdAlqd/EGZ/kWgHTegDaAhHQKu4NQ8fV7R1fZQoaAZHQJXx9Zs9B8hoB03oA2gIR0CruDtyHVPOdX2UKGgGR0CRoLA3kxREaAdN6ANoCEdAq7ldhJAdGXV9lChoBkdAk52OnAIppmgHTegDaAhHQKvD1kT6BRR1fZQoaAZHQJWnJJyyUs5oB03oA2gIR0Crxf1f3N9qdX2UKGgGR0CWL5xyXD3uaAdN6ANoCEdAq8YBVZLZjHV9lChoBkdAlRT7NSqEOGgHTegDaAhHQKvGxk+X7ch1fZQoaAZHQJaDmXLNfPZoB03oA2gIR0Crz/mhufmLdX2UKGgGR0CWnhWUbDMvaAdN6ANoCEdAq9LQ/mknC3V9lChoBkdAleJW8Zk08GgHTegDaAhHQKvS1qlgtvp1fZQoaAZHQJYfp8uzyBloB03oA2gIR0Cr090t7KJVdX2UKGgGR0CUJgfvF3pwaAdN6ANoCEdAq99wE6kqMHV9lChoBkdAlEmFrylN12gHTegDaAhHQKvhhx82Ji11fZQoaAZHQJSWMddVvMtoB03oA2gIR0Cr4Yrs8gZCdX2UKGgGR0CU4O6Vt4zKaAdN6ANoCEdAq+JMRg7YCnV9lChoBkdAkfAyYPXkHWgHTegDaAhHQKvrlmU4aP11fZQoaAZHQJHKXTw2ETRoB03oA2gIR0Cr7b1nVXmvdX2UKGgGR0CTvs+8oQWfaAdN6ANoCEdAq+3BQvYe1nV9lChoBkdAlVS7WRRuTGgHTegDaAhHQKvugIHC4z91fZQoaAZHQJRR1h/iHZdoB03oA2gIR0Cr+0NdAxBWdX2UKGgGR0CCr+rz5GjLaAdN6ANoCEdAq/1rOcDr7nV9lChoBkdAk33rWEsasWgHTegDaAhHQKv9bxuKoAJ1fZQoaAZHQJIqR+RYA81oB03oA2gIR0Cr/jfLDAJtdX2UKGgGR0CQWvu3MINWaAdN6ANoCEdArAd9me18cHV9lChoBkdAlIeOOXE61mgHTegDaAhHQKwJpnjhky11fZQoaAZHQJJNeXsw+MZoB03oA2gIR0CsCao+W4VidX2UKGgGR0CRyNVPepGXaAdN6ANoCEdArApuyX2M9HV9lChoBkdAjdAZfMOf/WgHTegDaAhHQKwXJGG21D11fZQoaAZHQJMLHQ8fV7RoB03oA2gIR0CsGUtZ3cHodX2UKGgGR0CBHlLhaTwEaAdN6ANoCEdArBlO/1xsEnV9lChoBkdAkT/m0zCUHWgHTegDaAhHQKwaDYDDCP91fZQoaAZHQG9oGT9sJppoB00BAmgIR0CsHWcMNMGpdX2UKGgGR0CRYNXcQAdXaAdN6ANoCEdArCWnGZNO/XV9lChoBkdAkhmp5/smfGgHTegDaAhHQKwlqxtYSxt1fZQoaAZHQIO6W+bmU4doB03oA2gIR0CsJnZhScbzdX2UKGgGR0CAEj7HhjvvaAdN6ANoCEdArCnWuxKQJXV9lChoBkdAkZPLhNucc2gHTegDaAhHQKw1ei22G7B1fZQoaAZHQJFWjFFUhmpoB03oA2gIR0CsNX3vH93sdX2UKGgGR0CGO03Ns3yaaAdN6ANoCEdArDY/o9s7+3V9lChoBkdAhLASckMTe2gHTegDaAhHQKw5vBFd9lV1fZQoaAZHQIjUT3AVO9FoB03oA2gIR0CsQiB3zMA4dX2UKGgGR0CDA7O1v2oOaAdN6ANoCEdArEIkJdB0IXV9lChoBkdAeMvRNRFZxWgHTegDaAhHQKxC41Z1V5t1fZQoaAZHQIPN/VbzK9xoB03oA2gIR0CsRkvCdjG2dX2UKGgGR0B+7NM9KVY7aAdN6ANoCEdArFHe0E5hjXV9lChoBkdAdffUFSsKcGgHTegDaAhHQKxR5fR/mT11fZQoaAZHQIInWHi3ocJoB03oA2gIR0CsUuxbr1M/dX2UKGgGR0BbzqnvUjLTaAdLpWgIR0CsVP8mShaldX2UKGgGR0BXgH4oJAt4aAdLZGgIR0CsVkLLIPsidX2UKGgGR0CAoGyY5T60aAdN6ANoCEdArFZjT8YQ8XV9lChoBkdAfBJitaIN3GgHTegDaAhHQKxek2tuDSR1fZQoaAZHQINlhKg7HQ1oB03oA2gIR0CsXpcg6ltTdX2UKGgGR0CLZUYUnG83aAdN6ANoCEdArGKB//echHV9lChoBkdAjJYjC53C9GgHTegDaAhHQKxiomWMS9N1fZQoaAZHQInvo+nqFAVoB03oA2gIR0CsbM9Htnf3dX2UKGgGR0CDwsEcsDnvaAdN6ANoCEdArGzWFUQ043V9lChoBkdAXPHiADq4Y2gHS8JoCEdArHCF8iOea3V9lChoBkdAeSEPvKEFn2gHTegDaAhHQKxyNxYq5LB1fZQoaAZHQIjkPyCnP3VoB03oA2gIR0CsclUEHMUzdX2UKGgGR0B6Gh26kIomaAdN6ANoCEdArHqGhf0Eo3V9lChoBkdAjJJipvP1MGgHTegDaAhHQKx9uHnlnyx1fZQoaAZHQIjNJ1DBuXNoB03oA2gIR0CsgCWmxdIHdX2UKGgGR0CHXtYhdMTOaAdN6ANoCEdArIBYRmK64HV9lChoBkdAaPrVPN3W4GgHTegDaAhHQKyNLL39JjF1fZQoaAZHQHk2ceGO+7FoB03oA2gIR0CskCCGvfTDdX2UKGgGR0CH+1L/S6UaaAdN6ANoCEdArJHASrYGuHV9lChoBkdAgDZM5XEIgWgHTegDaAhHQKyR3jZL7Gh1fZQoaAZHQJFRzzVc2R9oB03oA2gIR0CsmhJYT0xudX2UKGgGR0CRN54nF5v+aAdN6ANoCEdArJyJWxQizXV9lChoBkdAfEirGipNsWgHTegDaAhHQKyeLj+aScN1fZQoaAZHQIPQTf51vEVoB03oA2gIR0CsnkxFI/Z/dX2UKGgGR0CFa7gpjMFEaAdN6ANoCEdArKiMlme18nV9lChoBkdAkLSMt03fh2gHTegDaAhHQKysOE2YOUd1fZQoaAZHQH2ROK4x1xNoB03oA2gIR0Csrf5a/yoXdX2UKGgGR0CPXk814xDcaAdN6ANoCEdArK4ciOearnV9lChoBkdAf8MWcjJMg2gHTegDaAhHQKy2dU9ZA6d1fZQoaAZHQJAaYn9ehPFoB03oA2gIR0CsuOpJ5E+gdX2UKGgGR0CTDAkIX0oSaAdN6ANoCEdArLqPD7655XV9lChoBkdAey+ksz2vjmgHTegDaAhHQKy6rMGorFx1fZQoaAZHQFj60th/iHZoB0uOaAhHQKy8WDDCP6t1fZQoaAZHQILVBbILgGdoB03oA2gIR0Csw/ZgPVd5dWUu"
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 65656,
99
+ "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f7ecbd2383c367c97d56d43ee0decae295301f5fe2f936e1ab3ef208726d9264
3
+ size 56062
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3abc0658504f3e67842af7554dd22fb0a77eadd725fceedcf269e6802940b83c
3
+ size 56830
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: False
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f19f262df70>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f19f2631040>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f19f26310d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f19f2631160>", "_build": "<function ActorCriticPolicy._build at 0x7f19f26311f0>", "forward": "<function ActorCriticPolicy.forward at 0x7f19f2631280>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f19f2631310>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f19f26313a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f19f2631430>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f19f26314c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f19f2631550>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f19f26315e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f19f262fdc0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1680108875977425934, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAJZnPkDT4DI9TzEOPx8Cmb8iIgg/zMYpPUsUqT54ZgU/hbRQvs+EO7/kTyPAsZ2dvHsb3T4dWSy/a5AQQF53aL8tmlu+SLyBvuw2IUCCyY+/mIkmP3PRd7+N2hXA7TwUP73hrL+t8yjAOoQIwEN5hL+ZMdG8ISvBPxpxmMD3/ZG/2xmUPjL+SD0NpIS/VKmzPz17wL8lEN659JaFv9dGkLwDfvQ/EUUqO8rflr/c+uM8UNi+P/8h8ro8uRbA+g3aPHQRnL+IwLE6KL9MP6IKzrw3ij0/4PLBPpEH8D7TWnc/lHVZP+bna7/wm0w++Jksv2Exrb9lh/i/Nj60vgxEX79mN+o+qNxRwLE65T9QFaW/yo15vy7ThT8VTsQ+QyZNwJskz7+Hovg+FROGP6oQ5j43H9o/4x0MwD/XEb+L3Lg/N4o9P63zKMA6hAjAQ3mEv9HBLb7VcT0+dx0NP64EMj7e4gy/fcAbP9viAL8zC4a+kvGav9scrD6Y4+E+GIm8PpW7Gz6qjIk+dWNNP6yr9TwKMCE+V7avvlkYrb09BJo+7bwovYq7uz+8Iwu/F2W7vzeKPT/g8sE+kQfwPkN5hL+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACDXiG2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACApZ2QPQAAAAC+5uW/AAAAAD8N770AAAAAdDPkPwAAAACEJcC3AAAAAKa82j8AAAAAjuKcvQAAAACxfd6/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0NV7NQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgHIkND0AAAAAQaPcvwAAAABO2IU9AAAAANhQ2z8AAAAA4GEBPQAAAADaeP8/AAAAAICFSDwAAAAAgEUAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACF5nTYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAaXQm9AAAAAJ8g5r8AAAAAR3YKPgAAAABMDe8/AAAAACYRlLkAAAAAziPZPwAAAABR/R29AAAAAEfv6L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABtOis2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAHEO9vQAAAAAeeeG/AAAAADkc1z0AAAAArTftPwAAAAAlH/k8AAAAAB/Y2D8AAAAAOonoPQAAAADnY+2/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJMD9AbADaKMAWyUTegDjAF0lEdAq3HhqASWaHV9lChoBkdAlDQ29Htnf2gHTegDaAhHQKtyqO2AoXt1fZQoaAZHQHLl517pmmNoB03oA2gIR0CrfrpuVHFxdX2UKGgGR0COYQ9IPK+0aAdN6ANoCEdAq4GeI/JNkHV9lChoBkdAkusuC5EtumgHTegDaAhHQKuBololD4R1fZQoaAZHQJR1rWtlqahoB03oA2gIR0CrgmvLPldUdX2UKGgGR0CSr4TZxrBTaAdN6ANoCEdAq4v8wnH/+HV9lChoBkdAkS16fOD8L2gHTegDaAhHQKuONaPjn3d1fZQoaAZHQJLn1ocrAgxoB03oA2gIR0CrjjlV1fVqdX2UKGgGR0CK3b/S6UaAaAdN6ANoCEdAq479JlJ6IHV9lChoBkdAdjNBzmwJPmgHTegDaAhHQKuabn13+uN1fZQoaAZHQJO5tLIxQBRoB03oA2gIR0Crnb2sq8UVdX2UKGgGR0CTaTzjFQ2uaAdN6ANoCEdAq53EK9f1H3V9lChoBkdAg7/0FB6a9mgHTegDaAhHQKue0kSElE91fZQoaAZHQI2/41rIo3JoB03oA2gIR0CrqBQ5vLowdX2UKGgGR0CUynzF+/g0aAdN6ANoCEdAq6o5wfhddHV9lChoBkdAlnQ2YBvJimgHTegDaAhHQKuqPXvH93t1fZQoaAZHQJX4FaJQ+EBoB03oA2gIR0CrqwajnFHbdX2UKGgGR0CUieXiR4hVaAdN6ANoCEdAq7UR02cawXV9lChoBkdAlqd/EGZ/kWgHTegDaAhHQKu4NQ8fV7R1fZQoaAZHQJXx9Zs9B8hoB03oA2gIR0CruDtyHVPOdX2UKGgGR0CRoLA3kxREaAdN6ANoCEdAq7ldhJAdGXV9lChoBkdAk52OnAIppmgHTegDaAhHQKvD1kT6BRR1fZQoaAZHQJWnJJyyUs5oB03oA2gIR0Crxf1f3N9qdX2UKGgGR0CWL5xyXD3uaAdN6ANoCEdAq8YBVZLZjHV9lChoBkdAlRT7NSqEOGgHTegDaAhHQKvGxk+X7ch1fZQoaAZHQJaDmXLNfPZoB03oA2gIR0Crz/mhufmLdX2UKGgGR0CWnhWUbDMvaAdN6ANoCEdAq9LQ/mknC3V9lChoBkdAleJW8Zk08GgHTegDaAhHQKvS1qlgtvp1fZQoaAZHQJYfp8uzyBloB03oA2gIR0Cr090t7KJVdX2UKGgGR0CUJgfvF3pwaAdN6ANoCEdAq99wE6kqMHV9lChoBkdAlEmFrylN12gHTegDaAhHQKvhhx82Ji11fZQoaAZHQJSWMddVvMtoB03oA2gIR0Cr4Yrs8gZCdX2UKGgGR0CU4O6Vt4zKaAdN6ANoCEdAq+JMRg7YCnV9lChoBkdAkfAyYPXkHWgHTegDaAhHQKvrlmU4aP11fZQoaAZHQJHKXTw2ETRoB03oA2gIR0Cr7b1nVXmvdX2UKGgGR0CTvs+8oQWfaAdN6ANoCEdAq+3BQvYe1nV9lChoBkdAlVS7WRRuTGgHTegDaAhHQKvugIHC4z91fZQoaAZHQJRR1h/iHZdoB03oA2gIR0Cr+0NdAxBWdX2UKGgGR0CCr+rz5GjLaAdN6ANoCEdAq/1rOcDr7nV9lChoBkdAk33rWEsasWgHTegDaAhHQKv9bxuKoAJ1fZQoaAZHQJIqR+RYA81oB03oA2gIR0Cr/jfLDAJtdX2UKGgGR0CQWvu3MINWaAdN6ANoCEdArAd9me18cHV9lChoBkdAlIeOOXE61mgHTegDaAhHQKwJpnjhky11fZQoaAZHQJJNeXsw+MZoB03oA2gIR0CsCao+W4VidX2UKGgGR0CRyNVPepGXaAdN6ANoCEdArApuyX2M9HV9lChoBkdAjdAZfMOf/WgHTegDaAhHQKwXJGG21D11fZQoaAZHQJMLHQ8fV7RoB03oA2gIR0CsGUtZ3cHodX2UKGgGR0CBHlLhaTwEaAdN6ANoCEdArBlO/1xsEnV9lChoBkdAkT/m0zCUHWgHTegDaAhHQKwaDYDDCP91fZQoaAZHQG9oGT9sJppoB00BAmgIR0CsHWcMNMGpdX2UKGgGR0CRYNXcQAdXaAdN6ANoCEdArCWnGZNO/XV9lChoBkdAkhmp5/smfGgHTegDaAhHQKwlqxtYSxt1fZQoaAZHQIO6W+bmU4doB03oA2gIR0CsJnZhScbzdX2UKGgGR0CAEj7HhjvvaAdN6ANoCEdArCnWuxKQJXV9lChoBkdAkZPLhNucc2gHTegDaAhHQKw1ei22G7B1fZQoaAZHQJFWjFFUhmpoB03oA2gIR0CsNX3vH93sdX2UKGgGR0CGO03Ns3yaaAdN6ANoCEdArDY/o9s7+3V9lChoBkdAhLASckMTe2gHTegDaAhHQKw5vBFd9lV1fZQoaAZHQIjUT3AVO9FoB03oA2gIR0CsQiB3zMA4dX2UKGgGR0CDA7O1v2oOaAdN6ANoCEdArEIkJdB0IXV9lChoBkdAeMvRNRFZxWgHTegDaAhHQKxC41Z1V5t1fZQoaAZHQIPN/VbzK9xoB03oA2gIR0CsRkvCdjG2dX2UKGgGR0B+7NM9KVY7aAdN6ANoCEdArFHe0E5hjXV9lChoBkdAdffUFSsKcGgHTegDaAhHQKxR5fR/mT11fZQoaAZHQIInWHi3ocJoB03oA2gIR0CsUuxbr1M/dX2UKGgGR0BbzqnvUjLTaAdLpWgIR0CsVP8mShaldX2UKGgGR0BXgH4oJAt4aAdLZGgIR0CsVkLLIPsidX2UKGgGR0CAoGyY5T60aAdN6ANoCEdArFZjT8YQ8XV9lChoBkdAfBJitaIN3GgHTegDaAhHQKxek2tuDSR1fZQoaAZHQINlhKg7HQ1oB03oA2gIR0CsXpcg6ltTdX2UKGgGR0CLZUYUnG83aAdN6ANoCEdArGKB//echHV9lChoBkdAjJYjC53C9GgHTegDaAhHQKxiomWMS9N1fZQoaAZHQInvo+nqFAVoB03oA2gIR0CsbM9Htnf3dX2UKGgGR0CDwsEcsDnvaAdN6ANoCEdArGzWFUQ043V9lChoBkdAXPHiADq4Y2gHS8JoCEdArHCF8iOea3V9lChoBkdAeSEPvKEFn2gHTegDaAhHQKxyNxYq5LB1fZQoaAZHQIjkPyCnP3VoB03oA2gIR0CsclUEHMUzdX2UKGgGR0B6Gh26kIomaAdN6ANoCEdArHqGhf0Eo3V9lChoBkdAjJJipvP1MGgHTegDaAhHQKx9uHnlnyx1fZQoaAZHQIjNJ1DBuXNoB03oA2gIR0CsgCWmxdIHdX2UKGgGR0CHXtYhdMTOaAdN6ANoCEdArIBYRmK64HV9lChoBkdAaPrVPN3W4GgHTegDaAhHQKyNLL39JjF1fZQoaAZHQHk2ceGO+7FoB03oA2gIR0CskCCGvfTDdX2UKGgGR0CH+1L/S6UaaAdN6ANoCEdArJHASrYGuHV9lChoBkdAgDZM5XEIgWgHTegDaAhHQKyR3jZL7Gh1fZQoaAZHQJFRzzVc2R9oB03oA2gIR0CsmhJYT0xudX2UKGgGR0CRN54nF5v+aAdN6ANoCEdArJyJWxQizXV9lChoBkdAfEirGipNsWgHTegDaAhHQKyeLj+aScN1fZQoaAZHQIPQTf51vEVoB03oA2gIR0CsnkxFI/Z/dX2UKGgGR0CFa7gpjMFEaAdN6ANoCEdArKiMlme18nV9lChoBkdAkLSMt03fh2gHTegDaAhHQKysOE2YOUd1fZQoaAZHQH2ROK4x1xNoB03oA2gIR0Csrf5a/yoXdX2UKGgGR0CPXk814xDcaAdN6ANoCEdArK4ciOearnV9lChoBkdAf8MWcjJMg2gHTegDaAhHQKy2dU9ZA6d1fZQoaAZHQJAaYn9ehPFoB03oA2gIR0CsuOpJ5E+gdX2UKGgGR0CTDAkIX0oSaAdN6ANoCEdArLqPD7655XV9lChoBkdAey+ksz2vjmgHTegDaAhHQKy6rMGorFx1fZQoaAZHQFj60th/iHZoB0uOaAhHQKy8WDDCP6t1fZQoaAZHQILVBbILgGdoB03oA2gIR0Csw/ZgPVd5dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 65656, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "False", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:efac203acd17d370175a74fa8d9c8ccc91c2d7c3f38bc2a4d826ce7fa6a48f2a
3
+ size 1067769
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 976.8199530379846, "std_reward": 210.06209324958425, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-29T19:46:31.913769"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:89020b4b8bbffa79e98c02bfa4cd4e5703e76529b89b9eaf8b1782facfb4ec95
3
+ size 2136