marimurta commited on
Commit
72677a0
1 Parent(s): 23d1365

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -0.71 +/- 0.29
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:69a9fa2f7a9e991cabd1e073627230c8a378c6bb5b6ca7e771537a4eb0b5a406
3
+ size 108028
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f79cc82d550>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7f79cc82e680>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "observation_space": {
23
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
24
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
25
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
26
+ "_shape": null,
27
+ "dtype": null,
28
+ "_np_random": null
29
+ },
30
+ "action_space": {
31
+ ":type:": "<class 'gym.spaces.box.Box'>",
32
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
33
+ "dtype": "float32",
34
+ "_shape": [
35
+ 3
36
+ ],
37
+ "low": "[-1. -1. -1.]",
38
+ "high": "[1. 1. 1.]",
39
+ "bounded_below": "[ True True True]",
40
+ "bounded_above": "[ True True True]",
41
+ "_np_random": null
42
+ },
43
+ "n_envs": 4,
44
+ "num_timesteps": 1500000,
45
+ "_total_timesteps": 1500000,
46
+ "_num_timesteps_at_start": 0,
47
+ "seed": null,
48
+ "action_noise": null,
49
+ "start_time": 1680207943539645736,
50
+ "learning_rate": 0.0007,
51
+ "tensorboard_log": null,
52
+ "lr_schedule": {
53
+ ":type:": "<class 'function'>",
54
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
55
+ },
56
+ "_last_obs": {
57
+ ":type:": "<class 'collections.OrderedDict'>",
58
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA1cXtPq/y8rwx9wY/1cXtPq/y8rwx9wY/1cXtPq/y8rwx9wY/1cXtPq/y8rwx9wY/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAILZiP4SrzL/JkIG7iUHFP8YrCT13Fhi9iuFTvv/Hx798vlg/ZFqaP8+Ygz9YpeM+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADVxe0+r/LyvDH3Bj+6d2s8dtmiu0M7vDrVxe0+r/LyvDH3Bj+6d2s8dtmiu0M7vDrVxe0+r/LyvDH3Bj+6d2s8dtmiu0M7vDrVxe0+r/LyvDH3Bj+6d2s8dtmiu0M7vDqUaA5LBEsGhpRoEnSUUpR1Lg==",
59
+ "achieved_goal": "[[ 0.46439996 -0.02965674 0.52720934]\n [ 0.46439996 -0.02965674 0.52720934]\n [ 0.46439996 -0.02965674 0.52720934]\n [ 0.46439996 -0.02965674 0.52720934]]",
60
+ "desired_goal": "[[ 0.8855915 -1.5989842 -0.00395403]\n [ 1.5410625 0.03348901 -0.0371308 ]\n [-0.20691505 -1.5607909 0.84665656]\n [ 1.2058835 1.0281008 0.44462085]]",
61
+ "observation": "[[ 0.46439996 -0.02965674 0.52720934 0.01437181 -0.00496977 0.00143609]\n [ 0.46439996 -0.02965674 0.52720934 0.01437181 -0.00496977 0.00143609]\n [ 0.46439996 -0.02965674 0.52720934 0.01437181 -0.00496977 0.00143609]\n [ 0.46439996 -0.02965674 0.52720934 0.01437181 -0.00496977 0.00143609]]"
62
+ },
63
+ "_last_episode_starts": {
64
+ ":type:": "<class 'numpy.ndarray'>",
65
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
66
+ },
67
+ "_last_original_obs": {
68
+ ":type:": "<class 'collections.OrderedDict'>",
69
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA5eggPWOGCz2U6xE+CPuWvXLlLz1QQDQ+x+nBvZPmxL2ddV8+QNOoPeToqj1I88g7lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
+ "desired_goal": "[[ 0.03928461 0.03406371 0.14250022]\n [-0.07372099 0.04294343 0.17602658]\n [-0.09468418 -0.09614291 0.2182221 ]\n [ 0.08243418 0.08345202 0.00613252]]",
72
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
+ },
74
+ "_episode_num": 0,
75
+ "use_sde": false,
76
+ "sde_sample_freq": -1,
77
+ "_current_progress_remaining": 0.0,
78
+ "ep_info_buffer": {
79
+ ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI5pMVw9UB1L+UhpRSlIwBbJRLMowBdJRHQLLxTIu5BkZ1fZQoaAZoCWgPQwinsFJBRdXcv5SGlFKUaBVLMmgWR0Cy8S1+uvECdX2UKGgGaAloD0MI3Zp0WyKX4L+UhpRSlGgVSzJoFkdAsvEQFJQLu3V9lChoBmgJaA9DCNh+MsaH2ee/lIaUUpRoFUsyaBZHQLLw8oUSIxh1fZQoaAZoCWgPQwg/GePD7GXQv5SGlFKUaBVLMmgWR0Cy8dh0+1SgdX2UKGgGaAloD0MIZvSj4ZS50L+UhpRSlGgVSzJoFkdAsvG5YyO7x3V9lChoBmgJaA9DCOF/K9mxEcS/lIaUUpRoFUsyaBZHQLLxm/tY0VJ1fZQoaAZoCWgPQwgrhUAuceTfv5SGlFKUaBVLMmgWR0Cy8X5pBX0YdX2UKGgGaAloD0MIOzlDcccb5r+UhpRSlGgVSzJoFkdAsvJgxQBPsXV9lChoBmgJaA9DCJUPQdXo1eC/lIaUUpRoFUsyaBZHQLLyQcyFfzB1fZQoaAZoCWgPQwjou1tZorPXv5SGlFKUaBVLMmgWR0Cy8iRZQpF1dX2UKGgGaAloD0MIHw4SonxB0r+UhpRSlGgVSzJoFkdAsvIGqABkqnV9lChoBmgJaA9DCDi8ICI1bey/lIaUUpRoFUsyaBZHQLLy6A5Jbt91fZQoaAZoCWgPQwi1NLdCWA3xv5SGlFKUaBVLMmgWR0Cy8sj67/XHdX2UKGgGaAloD0MILlbUYBqG27+UhpRSlGgVSzJoFkdAsvKrivPkaXV9lChoBmgJaA9DCPtA8s6hjOW/lIaUUpRoFUsyaBZHQLLyjehf0Ep1fZQoaAZoCWgPQwghWFUvv1Pov5SGlFKUaBVLMmgWR0Cy829JSR8udX2UKGgGaAloD0MIONxHbk064b+UhpRSlGgVSzJoFkdAsvNQNUfgaXV9lChoBmgJaA9DCLMj1Xd+UeG/lIaUUpRoFUsyaBZHQLLzMrqMWGh1fZQoaAZoCWgPQwiZg6CjVS3Sv5SGlFKUaBVLMmgWR0Cy8xUmICU5dX2UKGgGaAloD0MID+1jBb8N47+UhpRSlGgVSzJoFkdAsvP98MNMG3V9lChoBmgJaA9DCFYsflNYqde/lIaUUpRoFUsyaBZHQLLz3tvXK8t1fZQoaAZoCWgPQwjFOH8TChHgv5SGlFKUaBVLMmgWR0Cy88FhoduHdX2UKGgGaAloD0MIGArYDkbs5b+UhpRSlGgVSzJoFkdAsvOjv7WNFXV9lChoBmgJaA9DCB9N9WT+UfC/lIaUUpRoFUsyaBZHQLL0kN7Bwdd1fZQoaAZoCWgPQwhjR+NQvwvRv5SGlFKUaBVLMmgWR0Cy9HHRkVesdX2UKGgGaAloD0MI+5Rjsrj/3r+UhpRSlGgVSzJoFkdAsvRUdPtUoHV9lChoBmgJaA9DCA5nfjUHCNK/lIaUUpRoFUsyaBZHQLL0NuDBdld1fZQoaAZoCWgPQwjKayV0l8TZv5SGlFKUaBVLMmgWR0Cy9SAbMotudX2UKGgGaAloD0MIr3rAPGRK5r+UhpRSlGgVSzJoFkdAsvUBEofCAXV9lChoBmgJaA9DCGhaYmU08tO/lIaUUpRoFUsyaBZHQLL047TlT3t1fZQoaAZoCWgPQwjlKha/Kazov5SGlFKUaBVLMmgWR0Cy9MYfKZDzdX2UKGgGaAloD0MIy0qTUtDt0b+UhpRSlGgVSzJoFkdAsvWwNBnjAHV9lChoBmgJaA9DCKm+84sS9Mm/lIaUUpRoFUsyaBZHQLL1kSyt3fR1fZQoaAZoCWgPQwiT4A1pVODlv5SGlFKUaBVLMmgWR0Cy9XO2JBPbdX2UKGgGaAloD0MIaB8r+G2I5L+UhpRSlGgVSzJoFkdAsvVWIk7fYXV9lChoBmgJaA9DCEgWMIFb9+y/lIaUUpRoFUsyaBZHQLL2qN21Ul11fZQoaAZoCWgPQwhckgN2NXnbv5SGlFKUaBVLMmgWR0Cy9opHNHH4dX2UKGgGaAloD0MI9BYP7zmw47+UhpRSlGgVSzJoFkdAsvZtXU6PsHV9lChoBmgJaA9DCCld+pekMtq/lIaUUpRoFUsyaBZHQLL2UDv3JxN1fZQoaAZoCWgPQwhxyAbSxSblv5SGlFKUaBVLMmgWR0Cy979Q40djdX2UKGgGaAloD0MI/DbEeM0r4r+UhpRSlGgVSzJoFkdAsvegsMAmzHV9lChoBmgJaA9DCFjhlo+kpOK/lIaUUpRoFUsyaBZHQLL3g7lq8Dl1fZQoaAZoCWgPQwjS5GIMrOPSv5SGlFKUaBVLMmgWR0Cy92aCtihGdX2UKGgGaAloD0MIdNGQ8SgV4r+UhpRSlGgVSzJoFkdAsvjZ6dDpknV9lChoBmgJaA9DCEok0csoltm/lIaUUpRoFUsyaBZHQLL4u0/nnuB1fZQoaAZoCWgPQwi9NhsrMc/kv5SGlFKUaBVLMmgWR0Cy+J5hKDkEdX2UKGgGaAloD0MI3soSnWUW3r+UhpRSlGgVSzJoFkdAsviBO1v2oXV9lChoBmgJaA9DCO+s3XahOee/lIaUUpRoFUsyaBZHQLL51UkOZst1fZQoaAZoCWgPQwgr+64I/rfev5SGlFKUaBVLMmgWR0Cy+bbIDHOsdX2UKGgGaAloD0MITfT5KCMu27+UhpRSlGgVSzJoFkdAsvmZ58jRlnV9lChoBmgJaA9DCHRfzmxX6NK/lIaUUpRoFUsyaBZHQLL5fN6gM+h1fZQoaAZoCWgPQwihn6nXLQLfv5SGlFKUaBVLMmgWR0Cy+uW3z+WGdX2UKGgGaAloD0MIaObJNQUy27+UhpRSlGgVSzJoFkdAsvrHM3ZPEnV9lChoBmgJaA9DCBfVIqKYPOO/lIaUUpRoFUsyaBZHQLL6qtTUAkt1fZQoaAZoCWgPQwi14bA08KPdv5SGlFKUaBVLMmgWR0Cy+o3WJ79idX2UKGgGaAloD0MIQ8ajVMIT27+UhpRSlGgVSzJoFkdAsvvolC1JDnV9lChoBmgJaA9DCIBHVKhuLt2/lIaUUpRoFUsyaBZHQLL7ygIhQnB1fZQoaAZoCWgPQwhm2ZPA5hzSv5SGlFKUaBVLMmgWR0Cy+60W/JvHdX2UKGgGaAloD0MIwCDp0yr63r+UhpRSlGgVSzJoFkdAsvuQA/9pAXV9lChoBmgJaA9DCDrJVpdTAtu/lIaUUpRoFUsyaBZHQLL86sNDtw91fZQoaAZoCWgPQwirsBnggmzqv5SGlFKUaBVLMmgWR0Cy/MwyEcsEdX2UKGgGaAloD0MI/n4xW7Kq4r+UhpRSlGgVSzJoFkdAsvyvUSZjQXV9lChoBmgJaA9DCDz4iQPo9+q/lIaUUpRoFUsyaBZHQLL8klEJBxB1fZQoaAZoCWgPQwhqos9HGfHkv5SGlFKUaBVLMmgWR0Cy/dfCIk7fdX2UKGgGaAloD0MIHThnRGlv57+UhpRSlGgVSzJoFkdAsv24vrWy1XV9lChoBmgJaA9DCIbijjf5Ldm/lIaUUpRoFUsyaBZHQLL9m2Dxsl91fZQoaAZoCWgPQwgbLJyk+ePlv5SGlFKUaBVLMmgWR0Cy/X3NX5nEdX2UKGgGaAloD0MIouvCD86n2r+UhpRSlGgVSzJoFkdAsv5i0iQkonV9lChoBmgJaA9DCIvh6gCIu9u/lIaUUpRoFUsyaBZHQLL+Q8PWhAZ1fZQoaAZoCWgPQwjik04kmGrSv5SGlFKUaBVLMmgWR0Cy/iZVjqfOdX2UKGgGaAloD0MI2/y/6siR3L+UhpRSlGgVSzJoFkdAsv4Is3AEdXV9lChoBmgJaA9DCNPaNLbXguK/lIaUUpRoFUsyaBZHQLL+6yo4uK51fZQoaAZoCWgPQwjHZdzUQPPXv5SGlFKUaBVLMmgWR0Cy/swWi1zAdX2UKGgGaAloD0MIfpBlwcQfy7+UhpRSlGgVSzJoFkdAsv6umfoRqXV9lChoBmgJaA9DCIOmJVZGI9K/lIaUUpRoFUsyaBZHQLL+kPBi1At1fZQoaAZoCWgPQwhdiNUfYRjkv5SGlFKUaBVLMmgWR0Cy/3LqyGBXdX2UKGgGaAloD0MIa5xNRwA36L+UhpRSlGgVSzJoFkdAsv9T5O8CgnV9lChoBmgJaA9DCHh/vFetTOG/lIaUUpRoFUsyaBZHQLL/NoSteUp1fZQoaAZoCWgPQwja4a/JGvXQv5SGlFKUaBVLMmgWR0Cy/xje0ojOdX2UKGgGaAloD0MIXK0Tl+MV0b+UhpRSlGgVSzJoFkdAsv//asZHeHV9lChoBmgJaA9DCNmxEYjX9em/lIaUUpRoFUsyaBZHQLL/4FHrhR91fZQoaAZoCWgPQwhxrfawFwrjv5SGlFKUaBVLMmgWR0Cy/8Lmhdt3dX2UKGgGaAloD0MI7gkS290D0L+UhpRSlGgVSzJoFkdAsv+lP0qYq3V9lChoBmgJaA9DCJPDJ51IMOG/lIaUUpRoFUsyaBZHQLMAhw6ySmt1fZQoaAZoCWgPQwhKs3kcBvPqv5SGlFKUaBVLMmgWR0CzAGf9Hc1wdX2UKGgGaAloD0MI963Wicvx2r+UhpRSlGgVSzJoFkdAswBKiZfD13V9lChoBmgJaA9DCMnmqnmOyNq/lIaUUpRoFUsyaBZHQLMALOfukUN1fZQoaAZoCWgPQwgDmDJwQMvpv5SGlFKUaBVLMmgWR0CzARDSsr/bdX2UKGgGaAloD0MIQ/6ZQXxg57+UhpRSlGgVSzJoFkdAswDxylvZRXV9lChoBmgJaA9DCJoK8Ui8PNW/lIaUUpRoFUsyaBZHQLMA1Gus90R1fZQoaAZoCWgPQwj7k/jcCXbzv5SGlFKUaBVLMmgWR0CzALbPD50sdX2UKGgGaAloD0MISkBMwoU88b+UhpRSlGgVSzJoFkdAswGXojfNzXV9lChoBmgJaA9DCHbEIRtIF9y/lIaUUpRoFUsyaBZHQLMBeIyj59F1fZQoaAZoCWgPQwhkyoegavTgv5SGlFKUaBVLMmgWR0CzAVr8R+SbdX2UKGgGaAloD0MIpBgg0QQK4L+UhpRSlGgVSzJoFkdAswE9XFLnLnV9lChoBmgJaA9DCBpTsMbZ9OG/lIaUUpRoFUsyaBZHQLMCGuA7Ppp1fZQoaAZoCWgPQwiHa7WHvVDjv5SGlFKUaBVLMmgWR0CzAfvGQ0XQdX2UKGgGaAloD0MIXwoPml334b+UhpRSlGgVSzJoFkdAswHeR4hUznV9lChoBmgJaA9DCJyKVBhbCN+/lIaUUpRoFUsyaBZHQLMBwKnvUjN1ZS4="
81
+ },
82
+ "ep_success_buffer": {
83
+ ":type:": "<class 'collections.deque'>",
84
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
+ },
86
+ "_n_updates": 75000,
87
+ "n_steps": 5,
88
+ "gamma": 0.99,
89
+ "gae_lambda": 1.0,
90
+ "ent_coef": 0.0,
91
+ "vf_coef": 0.5,
92
+ "max_grad_norm": 0.5,
93
+ "normalize_advantage": false
94
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:60c5f92a146d87decd50b18e61a520a82fe6f53314c4b99ceab611fc7ef64a1a
3
+ size 44734
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1e7dd753c8690504993f9d6074c4c12586625723ec9d5ef11735b2c879e9a7ca
3
+ size 46014
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f79cc82d550>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f79cc82e680>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1500000, "_total_timesteps": 1500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1680207943539645736, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA1cXtPq/y8rwx9wY/1cXtPq/y8rwx9wY/1cXtPq/y8rwx9wY/1cXtPq/y8rwx9wY/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAILZiP4SrzL/JkIG7iUHFP8YrCT13Fhi9iuFTvv/Hx798vlg/ZFqaP8+Ygz9YpeM+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADVxe0+r/LyvDH3Bj+6d2s8dtmiu0M7vDrVxe0+r/LyvDH3Bj+6d2s8dtmiu0M7vDrVxe0+r/LyvDH3Bj+6d2s8dtmiu0M7vDrVxe0+r/LyvDH3Bj+6d2s8dtmiu0M7vDqUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.46439996 -0.02965674 0.52720934]\n [ 0.46439996 -0.02965674 0.52720934]\n [ 0.46439996 -0.02965674 0.52720934]\n [ 0.46439996 -0.02965674 0.52720934]]", "desired_goal": "[[ 0.8855915 -1.5989842 -0.00395403]\n [ 1.5410625 0.03348901 -0.0371308 ]\n [-0.20691505 -1.5607909 0.84665656]\n [ 1.2058835 1.0281008 0.44462085]]", "observation": "[[ 0.46439996 -0.02965674 0.52720934 0.01437181 -0.00496977 0.00143609]\n [ 0.46439996 -0.02965674 0.52720934 0.01437181 -0.00496977 0.00143609]\n [ 0.46439996 -0.02965674 0.52720934 0.01437181 -0.00496977 0.00143609]\n [ 0.46439996 -0.02965674 0.52720934 0.01437181 -0.00496977 0.00143609]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA5eggPWOGCz2U6xE+CPuWvXLlLz1QQDQ+x+nBvZPmxL2ddV8+QNOoPeToqj1I88g7lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.03928461 0.03406371 0.14250022]\n [-0.07372099 0.04294343 0.17602658]\n [-0.09468418 -0.09614291 0.2182221 ]\n [ 0.08243418 0.08345202 0.00613252]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI5pMVw9UB1L+UhpRSlIwBbJRLMowBdJRHQLLxTIu5BkZ1fZQoaAZoCWgPQwinsFJBRdXcv5SGlFKUaBVLMmgWR0Cy8S1+uvECdX2UKGgGaAloD0MI3Zp0WyKX4L+UhpRSlGgVSzJoFkdAsvEQFJQLu3V9lChoBmgJaA9DCNh+MsaH2ee/lIaUUpRoFUsyaBZHQLLw8oUSIxh1fZQoaAZoCWgPQwg/GePD7GXQv5SGlFKUaBVLMmgWR0Cy8dh0+1SgdX2UKGgGaAloD0MIZvSj4ZS50L+UhpRSlGgVSzJoFkdAsvG5YyO7x3V9lChoBmgJaA9DCOF/K9mxEcS/lIaUUpRoFUsyaBZHQLLxm/tY0VJ1fZQoaAZoCWgPQwgrhUAuceTfv5SGlFKUaBVLMmgWR0Cy8X5pBX0YdX2UKGgGaAloD0MIOzlDcccb5r+UhpRSlGgVSzJoFkdAsvJgxQBPsXV9lChoBmgJaA9DCJUPQdXo1eC/lIaUUpRoFUsyaBZHQLLyQcyFfzB1fZQoaAZoCWgPQwjou1tZorPXv5SGlFKUaBVLMmgWR0Cy8iRZQpF1dX2UKGgGaAloD0MIHw4SonxB0r+UhpRSlGgVSzJoFkdAsvIGqABkqnV9lChoBmgJaA9DCDi8ICI1bey/lIaUUpRoFUsyaBZHQLLy6A5Jbt91fZQoaAZoCWgPQwi1NLdCWA3xv5SGlFKUaBVLMmgWR0Cy8sj67/XHdX2UKGgGaAloD0MILlbUYBqG27+UhpRSlGgVSzJoFkdAsvKrivPkaXV9lChoBmgJaA9DCPtA8s6hjOW/lIaUUpRoFUsyaBZHQLLyjehf0Ep1fZQoaAZoCWgPQwghWFUvv1Pov5SGlFKUaBVLMmgWR0Cy829JSR8udX2UKGgGaAloD0MIONxHbk064b+UhpRSlGgVSzJoFkdAsvNQNUfgaXV9lChoBmgJaA9DCLMj1Xd+UeG/lIaUUpRoFUsyaBZHQLLzMrqMWGh1fZQoaAZoCWgPQwiZg6CjVS3Sv5SGlFKUaBVLMmgWR0Cy8xUmICU5dX2UKGgGaAloD0MID+1jBb8N47+UhpRSlGgVSzJoFkdAsvP98MNMG3V9lChoBmgJaA9DCFYsflNYqde/lIaUUpRoFUsyaBZHQLLz3tvXK8t1fZQoaAZoCWgPQwjFOH8TChHgv5SGlFKUaBVLMmgWR0Cy88FhoduHdX2UKGgGaAloD0MIGArYDkbs5b+UhpRSlGgVSzJoFkdAsvOjv7WNFXV9lChoBmgJaA9DCB9N9WT+UfC/lIaUUpRoFUsyaBZHQLL0kN7Bwdd1fZQoaAZoCWgPQwhjR+NQvwvRv5SGlFKUaBVLMmgWR0Cy9HHRkVesdX2UKGgGaAloD0MI+5Rjsrj/3r+UhpRSlGgVSzJoFkdAsvRUdPtUoHV9lChoBmgJaA9DCA5nfjUHCNK/lIaUUpRoFUsyaBZHQLL0NuDBdld1fZQoaAZoCWgPQwjKayV0l8TZv5SGlFKUaBVLMmgWR0Cy9SAbMotudX2UKGgGaAloD0MIr3rAPGRK5r+UhpRSlGgVSzJoFkdAsvUBEofCAXV9lChoBmgJaA9DCGhaYmU08tO/lIaUUpRoFUsyaBZHQLL047TlT3t1fZQoaAZoCWgPQwjlKha/Kazov5SGlFKUaBVLMmgWR0Cy9MYfKZDzdX2UKGgGaAloD0MIy0qTUtDt0b+UhpRSlGgVSzJoFkdAsvWwNBnjAHV9lChoBmgJaA9DCKm+84sS9Mm/lIaUUpRoFUsyaBZHQLL1kSyt3fR1fZQoaAZoCWgPQwiT4A1pVODlv5SGlFKUaBVLMmgWR0Cy9XO2JBPbdX2UKGgGaAloD0MIaB8r+G2I5L+UhpRSlGgVSzJoFkdAsvVWIk7fYXV9lChoBmgJaA9DCEgWMIFb9+y/lIaUUpRoFUsyaBZHQLL2qN21Ul11fZQoaAZoCWgPQwhckgN2NXnbv5SGlFKUaBVLMmgWR0Cy9opHNHH4dX2UKGgGaAloD0MI9BYP7zmw47+UhpRSlGgVSzJoFkdAsvZtXU6PsHV9lChoBmgJaA9DCCld+pekMtq/lIaUUpRoFUsyaBZHQLL2UDv3JxN1fZQoaAZoCWgPQwhxyAbSxSblv5SGlFKUaBVLMmgWR0Cy979Q40djdX2UKGgGaAloD0MI/DbEeM0r4r+UhpRSlGgVSzJoFkdAsvegsMAmzHV9lChoBmgJaA9DCFjhlo+kpOK/lIaUUpRoFUsyaBZHQLL3g7lq8Dl1fZQoaAZoCWgPQwjS5GIMrOPSv5SGlFKUaBVLMmgWR0Cy92aCtihGdX2UKGgGaAloD0MIdNGQ8SgV4r+UhpRSlGgVSzJoFkdAsvjZ6dDpknV9lChoBmgJaA9DCEok0csoltm/lIaUUpRoFUsyaBZHQLL4u0/nnuB1fZQoaAZoCWgPQwi9NhsrMc/kv5SGlFKUaBVLMmgWR0Cy+J5hKDkEdX2UKGgGaAloD0MI3soSnWUW3r+UhpRSlGgVSzJoFkdAsviBO1v2oXV9lChoBmgJaA9DCO+s3XahOee/lIaUUpRoFUsyaBZHQLL51UkOZst1fZQoaAZoCWgPQwgr+64I/rfev5SGlFKUaBVLMmgWR0Cy+bbIDHOsdX2UKGgGaAloD0MITfT5KCMu27+UhpRSlGgVSzJoFkdAsvmZ58jRlnV9lChoBmgJaA9DCHRfzmxX6NK/lIaUUpRoFUsyaBZHQLL5fN6gM+h1fZQoaAZoCWgPQwihn6nXLQLfv5SGlFKUaBVLMmgWR0Cy+uW3z+WGdX2UKGgGaAloD0MIaObJNQUy27+UhpRSlGgVSzJoFkdAsvrHM3ZPEnV9lChoBmgJaA9DCBfVIqKYPOO/lIaUUpRoFUsyaBZHQLL6qtTUAkt1fZQoaAZoCWgPQwi14bA08KPdv5SGlFKUaBVLMmgWR0Cy+o3WJ79idX2UKGgGaAloD0MIQ8ajVMIT27+UhpRSlGgVSzJoFkdAsvvolC1JDnV9lChoBmgJaA9DCIBHVKhuLt2/lIaUUpRoFUsyaBZHQLL7ygIhQnB1fZQoaAZoCWgPQwhm2ZPA5hzSv5SGlFKUaBVLMmgWR0Cy+60W/JvHdX2UKGgGaAloD0MIwCDp0yr63r+UhpRSlGgVSzJoFkdAsvuQA/9pAXV9lChoBmgJaA9DCDrJVpdTAtu/lIaUUpRoFUsyaBZHQLL86sNDtw91fZQoaAZoCWgPQwirsBnggmzqv5SGlFKUaBVLMmgWR0Cy/MwyEcsEdX2UKGgGaAloD0MI/n4xW7Kq4r+UhpRSlGgVSzJoFkdAsvyvUSZjQXV9lChoBmgJaA9DCDz4iQPo9+q/lIaUUpRoFUsyaBZHQLL8klEJBxB1fZQoaAZoCWgPQwhqos9HGfHkv5SGlFKUaBVLMmgWR0Cy/dfCIk7fdX2UKGgGaAloD0MIHThnRGlv57+UhpRSlGgVSzJoFkdAsv24vrWy1XV9lChoBmgJaA9DCIbijjf5Ldm/lIaUUpRoFUsyaBZHQLL9m2Dxsl91fZQoaAZoCWgPQwgbLJyk+ePlv5SGlFKUaBVLMmgWR0Cy/X3NX5nEdX2UKGgGaAloD0MIouvCD86n2r+UhpRSlGgVSzJoFkdAsv5i0iQkonV9lChoBmgJaA9DCIvh6gCIu9u/lIaUUpRoFUsyaBZHQLL+Q8PWhAZ1fZQoaAZoCWgPQwjik04kmGrSv5SGlFKUaBVLMmgWR0Cy/iZVjqfOdX2UKGgGaAloD0MI2/y/6siR3L+UhpRSlGgVSzJoFkdAsv4Is3AEdXV9lChoBmgJaA9DCNPaNLbXguK/lIaUUpRoFUsyaBZHQLL+6yo4uK51fZQoaAZoCWgPQwjHZdzUQPPXv5SGlFKUaBVLMmgWR0Cy/swWi1zAdX2UKGgGaAloD0MIfpBlwcQfy7+UhpRSlGgVSzJoFkdAsv6umfoRqXV9lChoBmgJaA9DCIOmJVZGI9K/lIaUUpRoFUsyaBZHQLL+kPBi1At1fZQoaAZoCWgPQwhdiNUfYRjkv5SGlFKUaBVLMmgWR0Cy/3LqyGBXdX2UKGgGaAloD0MIa5xNRwA36L+UhpRSlGgVSzJoFkdAsv9T5O8CgnV9lChoBmgJaA9DCHh/vFetTOG/lIaUUpRoFUsyaBZHQLL/NoSteUp1fZQoaAZoCWgPQwja4a/JGvXQv5SGlFKUaBVLMmgWR0Cy/xje0ojOdX2UKGgGaAloD0MIXK0Tl+MV0b+UhpRSlGgVSzJoFkdAsv//asZHeHV9lChoBmgJaA9DCNmxEYjX9em/lIaUUpRoFUsyaBZHQLL/4FHrhR91fZQoaAZoCWgPQwhxrfawFwrjv5SGlFKUaBVLMmgWR0Cy/8Lmhdt3dX2UKGgGaAloD0MI7gkS290D0L+UhpRSlGgVSzJoFkdAsv+lP0qYq3V9lChoBmgJaA9DCJPDJ51IMOG/lIaUUpRoFUsyaBZHQLMAhw6ySmt1fZQoaAZoCWgPQwhKs3kcBvPqv5SGlFKUaBVLMmgWR0CzAGf9Hc1wdX2UKGgGaAloD0MI963Wicvx2r+UhpRSlGgVSzJoFkdAswBKiZfD13V9lChoBmgJaA9DCMnmqnmOyNq/lIaUUpRoFUsyaBZHQLMALOfukUN1fZQoaAZoCWgPQwgDmDJwQMvpv5SGlFKUaBVLMmgWR0CzARDSsr/bdX2UKGgGaAloD0MIQ/6ZQXxg57+UhpRSlGgVSzJoFkdAswDxylvZRXV9lChoBmgJaA9DCJoK8Ui8PNW/lIaUUpRoFUsyaBZHQLMA1Gus90R1fZQoaAZoCWgPQwj7k/jcCXbzv5SGlFKUaBVLMmgWR0CzALbPD50sdX2UKGgGaAloD0MISkBMwoU88b+UhpRSlGgVSzJoFkdAswGXojfNzXV9lChoBmgJaA9DCHbEIRtIF9y/lIaUUpRoFUsyaBZHQLMBeIyj59F1fZQoaAZoCWgPQwhkyoegavTgv5SGlFKUaBVLMmgWR0CzAVr8R+SbdX2UKGgGaAloD0MIpBgg0QQK4L+UhpRSlGgVSzJoFkdAswE9XFLnLnV9lChoBmgJaA9DCBpTsMbZ9OG/lIaUUpRoFUsyaBZHQLMCGuA7Ppp1fZQoaAZoCWgPQwiHa7WHvVDjv5SGlFKUaBVLMmgWR0CzAfvGQ0XQdX2UKGgGaAloD0MIXwoPml334b+UhpRSlGgVSzJoFkdAswHeR4hUznV9lChoBmgJaA9DCJyKVBhbCN+/lIaUUpRoFUsyaBZHQLMBwKnvUjN1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 75000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (287 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -0.7053832359146327, "std_reward": 0.28727937767940404, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-30T21:49:15.236791"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:70250cc83bede42eec57c47ded3c5b7a357defbab9c247bfff5a9a9b3a2287ef
3
+ size 3056