{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f83e3df3910>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f83e3df39a0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f83e3df3a30>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f83e3df3ac0>", "_build": "<function ActorCriticPolicy._build at 0x7f83e3df3b50>", "forward": "<function ActorCriticPolicy.forward at 0x7f83e3df3be0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f83e3df3c70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f83e3df3d00>", "_predict": "<function ActorCriticPolicy._predict at 0x7f83e3df3d90>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f83e3df3e20>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f83e3df3eb0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f83e3df3f40>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f83e3dfc600>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1688832284924074134, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAE3mGj4gZbQ/t6XEPrud3L7IjSQ+MEnAPgAAAAAAAAAAZn7cu0gXr7rWlSq0QHHdL27K1TlQD6kzAACAPwAAgD9AWes9n42hu5XVnDydSYc8HN8kPVZKZ70AAIA/AACAP2YmdbsKGBe7airIPXL5971GZea86VQ0vwAAgD8AAIA/5omzPUlqfz0VCmG+wH9JvoTg5L2b0J+9AAAAAAAAAAAmx9Y9tH2uPi03Q75PsqK+9nIpPXbjwjwAAAAAAAAAAGbD5bz2vF66U5HYtsSwwrHJyLi6WGL8NQAAgD8AAIA/i5SYvsLrOD93bRU+8AuhvtDWGL6WWQc+AAAAAAAAAAAz+b69e4KKutB2LrMf2nquIeejus3m0jMAAIA/AACAPwbXF76sO/I+H/SCPjnHiL5EWl89P50HvAAAAAAAAAAAZjbUu2t9mT/bhfI8BCHHvjZYZT16WaM9AAAAAAAAAACa3l69j/4puuFLnzraqXe2IfGEuqS/urkAAIA/AACAP+YrV73fKPo8zXP2vRQuZb4027C9KpeZvQAAAAAAAAAAzd1AvShsjD7vWTE8+JuCvl4TqL1Osa88AAAAAAAAAACaGTa7hSvCuSppQTMlYO4uUqycOzJAv7MAAIA/AACAP5oTr7yL7Sc/vvCzPQS3nr7ZlJc8S82ZvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVLgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG3qxnOB19yMAWyUTRgBjAF0lEdAkJOMg+yJK3V9lChoBkdAcvTeOn2qUGgHTWsBaAhHQJCT0XMyJsR1fZQoaAZHQHAt8t5D7ZZoB0v9aAhHQJCT8keIVM51fZQoaAZHQEiE1a4c3l1oB0ukaAhHQJCULmJWNm11fZQoaAZHQHGGPVurIYFoB0v+aAhHQJCUpuvUz9F1fZQoaAZHQG5bdjXnQppoB00TAWgIR0CQlVu76Hj7dX2UKGgGR0Bxym4tpVS5aAdNEgFoCEdAkJVXVoYek3V9lChoBkdAcyXw71ZkkWgHTQABaAhHQJCVc+iaiK11fZQoaAZHQHDGkCRwIdFoB01oAWgIR0CQlvpM6BAfdX2UKGgGR0BCRxKxs2vTaAdLwWgIR0CQl47FsHjZdX2UKGgGR0BxKo6GQCCBaAdL9GgIR0CQmH9QoCuEdX2UKGgGR0Bwr6YsunMuaAdNdgNoCEdAkJja3iJfpnV9lChoBkdAclRMG5c1O2gHTScBaAhHQJCZ+619fC11fZQoaAZHQG9n1tXPqs5oB0vcaAhHQJCaDwMH8j11fZQoaAZHQHFR0h7mdRRoB00/AWgIR0CQmnMQVbiZdX2UKGgGR0Bw+KMZP2wnaAdNNAFoCEdAkJrJ/Tb35HV9lChoBkdAccrzN2TxG2gHS/9oCEdAkJtbEUCaJHV9lChoBkdAcJeIZqEeyWgHTQUBaAhHQJCbtybQTmJ1fZQoaAZHQHEEKt5le4VoB00AAWgIR0CQm82/BWPtdX2UKGgGR0ByXkLVnVXnaAdNYwFoCEdAkJyD8Lron3V9lChoBkdAcYJMtsenymgHTQkBaAhHQJCckao/A0t1fZQoaAZHQEuXY+Sr5qNoB0umaAhHQJCcu2oegct1fZQoaAZHQHEuTru6VdJoB00RAWgIR0CQnY6xPfsNdX2UKGgGR0BGPPR7Z39raAdLu2gIR0CQnoFl05lwdX2UKGgGR0Bts2kDZDiPaAdNPwFoCEdAkJ69THbRGHV9lChoBkdAc1TXa8Hv+mgHTVIBaAhHQJCfSvZAY511fZQoaAZHQHC/LJnxri5oB00+AWgIR0CQoJqFRHf/dX2UKGgGR0BxFZBIFvAHaAdNAwFoCEdAkKLM3uNPxnV9lChoBkdAcEtx5s0pE2gHTQ4BaAhHQJCizYPGyX51fZQoaAZHQHGxqciGFi9oB00bAWgIR0CQotTHbRF7dX2UKGgGR0Bwn6AYpDu0aAdNSwFoCEdAkKLTKDCgsnV9lChoBkdAcQfT8HfMwGgHTRYBaAhHQJCkdkEs8Pp1fZQoaAZHQHEndoexOcloB00oAWgIR0CQpLoMrmQsdX2UKGgGR0BxP4K5TZQIaAdNMgFoCEdAkKWC619fC3V9lChoBkdAcyJBw++ueWgHTR4BaAhHQJClnQ/oq1B1fZQoaAZHQHDAtVinYQJoB00UAWgIR0CQpY2ZiNKidX2UKGgGR0BxH7FGXokiaAdNAgFoCEdAkKXou5BkZ3V9lChoBkdAczBsenyd4GgHTRwBaAhHQJCnyTINmUZ1fZQoaAZHQG+obDVH4GloB03lAWgIR0CQqYxpL26DdX2UKGgGR0Bx4mU0Nz8xaAdNTwFoCEdAkKn1AVwgknV9lChoBkdAbs0TlkpZwGgHTVEBaAhHQJCqukoF3ZB1fZQoaAZHQHHI88xKxs5oB0vpaAhHQJCqvoPkJa91fZQoaAZHQHBxFv2oNutoB00CAWgIR0CQq5Yzi0fHdX2UKGgGR0BzI72xptaZaAdNRwFoCEdAkKvAT7EYO3V9lChoBkdAcO3K8+Roy2gHS9xoCEdAkKz7C79Q43V9lChoBkdAcLTLIgeRxWgHTTcBaAhHQJDBDIikftB1fZQoaAZHQHCeF1fVqetoB0v8aAhHQJDCDgOz6ad1fZQoaAZHQHJtG606YE5oB01iAWgIR0CQwyr56+nJdX2UKGgGR0Bxbrg75mAcaAdNGQFoCEdAkMP8K5TZQHV9lChoBkdAc4i3Jgb6xmgHTUQBaAhHQJDEBIjGDL91fZQoaAZHQHKDpIg/1QJoB01EAWgIR0CQxFYdhiLEdX2UKGgGR0ByTGVY6nzhaAdNVgFoCEdAkMZKeCkGinV9lChoBkdAcsEgvUSZjWgHTRYBaAhHQJDGiRjjJdV1fZQoaAZHQHHOJb6guh9oB0v7aAhHQJDIg3DNyHV1fZQoaAZHQHMRe45Lh75oB00QAWgIR0CQyH6xPfsNdX2UKGgGR0ByyPg0j1PFaAdNHwFoCEdAkMifGlyimHV9lChoBkdAcrm+0PYnOWgHS+ZoCEdAkMin7gsK9nV9lChoBkdAcEfhrnDBM2gHS/9oCEdAkMmFklNUO3V9lChoBkdAbq2inpB5X2gHTTgBaAhHQJDKXA/LTx51fZQoaAZHQHGB/CEYfnxoB0vfaAhHQJDMBd0JWvN1fZQoaAZHQHKMaj3225RoB0vbaAhHQJDMKKiwjdJ1fZQoaAZHQHEuHOW0JF9oB001AWgIR0CQzNundfsvdX2UKGgGR0Bx3QKMNtqIaAdNGgFoCEdAkM1pNTLntHV9lChoBkdAcNgriEQGwGgHTSMBaAhHQJDOWyVv/BF1fZQoaAZHQHB6KjrRjSZoB01YAWgIR0CQzsR28qWkdX2UKGgGR0BzSfcnE2pAaAdNDgFoCEdAkM+ajWTX8XV9lChoBkdAcPHpda+vhmgHTZEBaAhHQJDPrRkVerx1fZQoaAZHQG9k8fV7QcBoB0v2aAhHQJDQn9zfaYh1fZQoaAZHQHG7e40/GERoB00/AWgIR0CQ0QZlWfbsdX2UKGgGR0BxfcJeE7GOaAdNDgFoCEdAkNF6mXPZ7HV9lChoBkdAbu7NbkfcOGgHTQUBaAhHQJDSKqR2bG51fZQoaAZHQHIUhxHXmNloB000AWgIR0CQ0o9jgAIZdX2UKGgGR0BiTFERaouPaAdN6ANoCEdAkNLB+8XenHV9lChoBkdAc98Tuv2XcGgHTToBaAhHQJDS3jJdSl51fZQoaAZHQHABlRtP559oB00iAWgIR0CQ07fw7T2GdX2UKGgGR0BwIKmhufmLaAdNBgFoCEdAkNWbWy1NQHV9lChoBkdAcTVnCwbEP2gHTS8BaAhHQJDVu1OTJQt1fZQoaAZHQHBvvvnbItFoB01HAWgIR0CQ1lRMvh60dX2UKGgGR0Bw7hOBUaQ4aAdNQAFoCEdAkNbX4j8k2XV9lChoBkdATe1g+hXbNGgHS69oCEdAkNdAI+nqFHV9lChoBkdAcVNyPMjeK2gHTUIBaAhHQJDYQEmplz51fZQoaAZHQHC1vaDf3vhoB00eAWgIR0CQ2EtKIznBdX2UKGgGR0Bw5fz7MxGlaAdNOQFoCEdAkNkUuctoSXV9lChoBkdAcF2DOkcjq2gHTRIBaAhHQJDZNzmwJPZ1fZQoaAZHQHD9fFBIFvBoB00zAWgIR0CQ2dZjQRf4dX2UKGgGR0BwVeu1WsBAaAdNGQFoCEdAkNneqBEroXV9lChoBkdAcaeVJL/S6WgHTX4BaAhHQJDaXT7VJ+V1fZQoaAZHQHMpKS9ugpVoB00VAWgIR0CQ2qkS26TXdX2UKGgGR0BxWzL0SRKZaAdNGQFoCEdAkNsMyWRigHV9lChoBkdAcAVlqagElmgHTSwBaAhHQJDbbmhdt2t1fZQoaAZHQG6AnTqjaf1oB001AWgIR0CQ3KgIhQnAdX2UKGgGR0Bw/4J0GNaRaAdL4mgIR0CQ3MEK3NLUdX2UKGgGR0Bwq3ZyuIRAaAdNEAFoCEdAkN15tWMjvHV9lChoBkdAcMhuzQeFL2gHTRwBaAhHQJDdrfixVyZ1fZQoaAZHQFIv1vVEuxtoB0u0aAhHQJDeGQGOdXl1fZQoaAZHQHCTP5ULlV9oB00CAWgIR0CQ3n5hScbzdX2UKGgGR0BxC1kupS75aAdNMAFoCEdAkN9hCx/us3V9lChoBkdAcJBnl4keIWgHTQMBaAhHQJDfbechC+l1fZQoaAZHQHDS7zoUzsRoB0v5aAhHQJDgsRywOe91fZQoaAZHQHHlzTBqKxdoB008AWgIR0CQ4SOJcgQpdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |