from typing import Dict, List, Any | |
# from sentence_transformers import SentenceTransformer | |
class EndpointHandler(): | |
def __init__(self, path="NV-Embed-v2"): | |
# Preload all the elements you are going to need at inference. | |
# pseudo: | |
# self.model= load_model(path) | |
self.embedding_model = SentenceTransformer(path) | |
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]: | |
""" | |
data args: | |
inputs (:obj: `str` | `PIL.Image` | `np.array`) | |
kwargs | |
Return: | |
A :obj:`list` | `dict`: will be serialized and returned | |
""" | |
# embeddings = self.embedding_model.encode(data) | |
# return embeddings | |
# pseudo | |
# self.model(input) |