markeidsaune commited on
Commit
77ed6dc
1 Parent(s): c9d3070

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1604.67 +/- 127.14
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:332eb322e90afa9511f99e0d76556385492dfb69b368e8a8a9ad2a97af489e65
3
+ size 129332
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.8.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fe29a2f1e10>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe29a2f1ea0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe29a2f1f30>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe29a2f1fc0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fe29a2f2050>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fe29a2f20e0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fe29a2f2170>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe29a2f2200>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fe29a2f2290>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe29a2f2320>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe29a2f23b0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe29a2f2440>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7fe29a2f4100>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "num_timesteps": 2000000,
36
+ "_total_timesteps": 2000000,
37
+ "_num_timesteps_at_start": 0,
38
+ "seed": null,
39
+ "action_noise": null,
40
+ "start_time": 1684170341254596382,
41
+ "learning_rate": 0.00096,
42
+ "tensorboard_log": null,
43
+ "lr_schedule": {
44
+ ":type:": "<class 'function'>",
45
+ ":serialized:": "gAWV8QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXy9ob21lL21hcmsvcmxfY291cnNlLy51bml0Nl92ZW52L2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgkMCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxfL2hvbWUvbWFyay9ybF9jb3Vyc2UvLnVuaXQ2X3ZlbnYvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP091EE1VHWmFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
46
+ },
47
+ "_last_obs": {
48
+ ":type:": "<class 'numpy.ndarray'>",
49
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAJkxnL7N5PA85XgCP54o47/N06c/q+ALP0rCNr9+vVY//k+Bv2tYqz7H1vK+H6m8PvJT079pGr0+AxScPq/pIb/DdLo/9e8EQES+Q7+IREU/aVnEP69yi7w07ZW/vfUPPtXUgD+6+xY/qkObPvYB2b/7orI/tMbKPqukaz48T5E/GTPfP1wP9T9nArY/zj9ov/Z7lb/bK5g9mk4xP6+IMb/lcLM/uIGovSav4L/LlpM/tB/7vjueQ8Do3Bg/mLyLv7nxLb6ilCLAd6RCP0Q1TT4WWX6/uvsWP6pDmz7Q/xY/887CP229Rz5vD8s+oCnEP+hMPz9W9549LTKMP55Srr9e1pS/axpFvKQoGL+AVLw/YHdwP8prFr/J6U2/CHxBP7iNkL850SG/m9vWPvi1nz47BJ6/HFlwvqH5oD6YPlo8Fll+v7r7Fj+qQ5s+0P8WPwfUPz9ximI+8fTAPkc8Ij9fthE/GYoPPsMZhD4N1eg+r0qVv6+sYT2U02U/PQwpP0G1mL6BbrS/QClGvlN6FkDA++W+UY54P+3pZr8ijJI/7H3FPpDrIUBGvAO/+jm6vRZZfr/WB9m/qkObPvYB2b+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
50
+ },
51
+ "_last_episode_starts": {
52
+ ":type:": "<class 'numpy.ndarray'>",
53
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
54
+ },
55
+ "_last_original_obs": {
56
+ ":type:": "<class 'numpy.ndarray'>",
57
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACmSEm2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA9X5nOwAAAACICfC/AAAAAKgKO70AAAAA7QLaPwAAAACtkMO7AAAAAAZk2T8AAAAA3KiUPQAAAABYSPC/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/a99tgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgCAi0r0AAAAALqTqvwAAAAASNMW9AAAAAOK19j8AAAAA1pnrvQAAAADok/k/AAAAAKdfXz0AAAAAvSb3vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACGsFDYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICyMAK+AAAAAJhJ6r8AAAAA1XOCvQAAAABNfOI/AAAAAGughr0AAAAA2Ff/PwAAAABjOcW9AAAAAORG578AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACW/442AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAdESUvQAAAADCTeu/AAAAAJgzND0AAAAAeKrvPwAAAAAK48c8AAAAAB7V9D8AAAAAbxEqvQAAAAB8M/m/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
58
+ },
59
+ "_episode_num": 0,
60
+ "use_sde": true,
61
+ "sde_sample_freq": -1,
62
+ "_current_progress_remaining": 0.0,
63
+ "_stats_window_size": 100,
64
+ "ep_info_buffer": {
65
+ ":type:": "<class 'collections.deque'>",
66
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJyyTOjZcs2MAWyUTegDjAF0lEdAqlWULMLWqnV9lChoBkdAmuGjgdfb9WgHTegDaAhHQKpWFVn27Ft1fZQoaAZHQJxviMIeHSFoB03oA2gIR0CqV7D63y7PdX2UKGgGR0CdLV9F4LThaAdN6ANoCEdAqlqbXlKbrnV9lChoBkdAm4pP4/NZ/2gHTegDaAhHQKpi0KVpsXV1fZQoaAZHQJtj3AgxJuloB03oA2gIR0CqY1FFUhmodX2UKGgGR0Cb5gcbzbvgaAdN6ANoCEdAqmTsYuTRpnV9lChoBkdAmtkWtITXa2gHTegDaAhHQKpnzuLrHEN1fZQoaAZHQJw+ztgKF7FoB03oA2gIR0CqcCVp9JBgdX2UKGgGR0CbsWz41xbTaAdN6ANoCEdAqnClZPl+3HV9lChoBkdAm52gIt16mmgHTegDaAhHQKpyRzpX6qN1fZQoaAZHQJrGrKISDh9oB03oA2gIR0CqdUhTn7pFdX2UKGgGR0CawzN34bjtaAdN6ANoCEdAqn2cQkHD8HV9lChoBkdAm+vKuKXOW2gHTegDaAhHQKp+FJtBOYZ1fZQoaAZHQJfwxk9U0eloB03oA2gIR0Cqf50jLSuydX2UKGgGR0Ca4/mKIi1RaAdN6ANoCEdAqoJzgdfb9XV9lChoBkdAmcZWYjSofmgHTegDaAhHQKqKElY2bXp1fZQoaAZHQJlTYam4y45oB03oA2gIR0CqioZ7XxvvdX2UKGgGR0CWybltTDO1aAdN6ANoCEdAqowDgydnTXV9lChoBkdAmoK4S13MZGgHTegDaAhHQKqOsR0U4711fZQoaAZHQJlYL/T9bX9oB03oA2gIR0Cqlk2GZeAvdX2UKGgGR0CZXpm03Ov/aAdN6ANoCEdAqpbCLbYbsHV9lChoBkdAl7HgCW/rSmgHTegDaAhHQKqYWCVbA1x1fZQoaAZHQJZBTbcoH9poB03oA2gIR0Cqm0VHnU2DdX2UKGgGR0CVY/15jYqYaAdN6ANoCEdAqqOMAR02cnV9lChoBkdAl4isRtgrpmgHTegDaAhHQKqkCvzvqkd1fZQoaAZHQJbxPPv8ZUFoB03oA2gIR0CqpaRfOUt7dX2UKGgGR0CXByLQHAymaAdN6ANoCEdAqqiH2dupCXV9lChoBkdAklNsPBi1A2gHTegDaAhHQKqwXu0CzTp1fZQoaAZHQI0nUunMt9RoB03oA2gIR0CqsNPLHMlkdX2UKGgGR0CTZRlAeJYUaAdN6ANoCEdAqrJWoDPnjnV9lChoBkdAmgIUTxoZh2gHTegDaAhHQKq1E2AG0NV1fZQoaAZHQJRmKT7l7t1oB03oA2gIR0CqvODifg76dX2UKGgGR0CTmR2gFotdaAdN6ANoCEdAqr1e8M/hVHV9lChoBkdAkDd+Vs1sL2gHTegDaAhHQKq/A38XN1R1fZQoaAZHQJJTmLBKtgdoB03oA2gIR0CqwdwrMC9zdX2UKGgGR0COeY2YOUdJaAdN6ANoCEdAqsmLPldTpHV9lChoBkdAk8Ty1iONpGgHTegDaAhHQKrKCIa99MN1fZQoaAZHQJL/jLNfPX1oB03oA2gIR0Cqy6IrnTy8dX2UKGgGR0CQOOPXkHUuaAdN6ANoCEdAqs6IAsCkoHV9lChoBkdAjXslNUOuq2gHTegDaAhHQKrWxMdtEXt1fZQoaAZHQJEt8DB/I81oB03oA2gIR0Cq10UDEFW5dX2UKGgGR0CRU/3cYZVGaAdN6ANoCEdAqtjhXhfjTHV9lChoBkdAjxoV/2Cd0GgHTegDaAhHQKrbviONo8J1fZQoaAZHQJJ4OUHIIWxoB03oA2gIR0Cq5AeE7GNrdX2UKGgGR0CTQy/o7muDaAdN6ANoCEdAquSGHerMknV9lChoBkdAmAWfX9R77mgHTegDaAhHQKrmJhYvFm51fZQoaAZHQJIyttEXtShoB03oA2gIR0Cq6RYQJ5VwdX2UKGgGR0CXywRaX8fnaAdN6ANoCEdAqvFmu3c583V9lChoBkdAllW76k6902gHTegDaAhHQKrx60BwMph1fZQoaAZHQJU6kV32VVxoB03oA2gIR0Cq85gS39aVdX2UKGgGR0CXNQrM1TBJaAdN6ANoCEdAqvaEkMTewnV9lChoBkdAlrZtN8E3bWgHTegDaAhHQKr+wUdq+Jx1fZQoaAZHQJgEOCZnctZoB03oA2gIR0Cq/0DaXa8IdX2UKGgGR0CVtklhw2l3aAdN6ANoCEdAqwDeLHdXT3V9lChoBkdAlMfMpobn5mgHTegDaAhHQKsDxHNHH3l1fZQoaAZHQJPRsslLOA1oB03oA2gIR0CrC/hsQ/X5dX2UKGgGR0CWUnQxesxPaAdN6ANoCEdAqwx1+TeO43V9lChoBkdAk4JKaPS2IGgHTegDaAhHQKsOETot+Th1fZQoaAZHQJa79m16Vt5oB03oA2gIR0CrEP3WFvhqdX2UKGgGR0CY/ym+0w8GaAdN6ANoCEdAqxk6oKlYU3V9lChoBkdAlqzLDuSfUWgHTegDaAhHQKsZuHgP3BZ1fZQoaAZHQJPRFJnQID5oB03oA2gIR0CrG1N+CsfadX2UKGgGR0CZ6ARlpXZHaAdN6ANoCEdAqx48gyM1j3V9lChoBkdAk2gdE1EVnGgHTegDaAhHQKsmZ+c6Nl11fZQoaAZHQJXwVyimEXdoB03oA2gIR0CrJui4rjHXdX2UKGgGR0CSijuTibUgaAdN6ANoCEdAqyiDTMJQcnV9lChoBkdAkMxtVaOghGgHTegDaAhHQKsrZ6HCXQd1fZQoaAZHQJOxD4sVclhoB03oA2gIR0CrM599lVcVdX2UKGgGR0CWT5+8Gs3iaAdN6ANoCEdAqzQgdELH/HV9lChoBkdAlF27ZSNwSGgHTegDaAhHQKs1vnLaEjB1fZQoaAZHQJV3VgNPP9loB03oA2gIR0CrOKJHy3CsdX2UKGgGR0CYVRCfpUxVaAdN6ANoCEdAq0DdOCXhO3V9lChoBkdAl4KMlb/wRWgHTegDaAhHQKtBXDWsijd1fZQoaAZHQJjxsd6sySFoB03oA2gIR0CrQvQ++ueSdX2UKGgGR0CZHt1DjR2KaAdN6ANoCEdAq0XagM+eOHV9lChoBkdAmDUFlf7aZmgHTegDaAhHQKtN+Ygq3E11fZQoaAZHQJjyeTgVGkNoB03oA2gIR0CrTnVEd/8VdX2UKGgGR0CXRfnxaxHHaAdN6ANoCEdAq1AUghbGFXV9lChoBkdAmLisglnh9GgHTegDaAhHQKtTBNX5nDl1fZQoaAZHQJkPRb2USqVoB03oA2gIR0CrW0ncUM5PdX2UKGgGR0CX4cBH09QoaAdN6ANoCEdAq1vI/LTx5XV9lChoBkdAmhwgob4rSWgHTegDaAhHQKtdYZNwiq11fZQoaAZHQJlLa03Ov+xoB03oA2gIR0CrYDz9KmKqdX2UKGgGR0CaczPGQ0XQaAdN6ANoCEdAq2h/C0ngHnV9lChoBkdAms3mRNh3JWgHTegDaAhHQKto/9roGIN1fZQoaAZHQJdupPGhmGxoB03oA2gIR0CraqDYh+vydX2UKGgGR0CZpbMhouf3aAdN6ANoCEdAq22MZ75VO3V9lChoBkdAmi/94Z/CqWgHTegDaAhHQKt10kUKzAx1fZQoaAZHQJnU4pc5bQloB03oA2gIR0CrdlChvitJdX2UKGgGR0CaopoAn2IwaAdN6ANoCEdAq3ftBppN9HV9lChoBkdAmy0qMNtqH2gHTegDaAhHQKt60uEmICV1fZQoaAZHQJsGx9JBgNRoB03oA2gIR0Crgx/BFd9ldX2UKGgGR0CZK3LR8c+8aAdN6ANoCEdAq4OekBS1mnV9lChoBkdAlu37u6VdHGgHTegDaAhHQKuFPFz+3ph1fZQoaAZHQJpWjCpFTehoB03oA2gIR0CriDwTM7lrdX2UKGgGR0CYxZOO801qaAdN6ANoCEdAq5CwuuieunV9lChoBkdAme33AZbY9WgHTegDaAhHQKuRL8iwB5p1fZQoaAZHQJjIOnMt9QZoB03oA2gIR0CrktaLOzIFdX2UKGgGR0CX9Ut6ol2NaAdN6ANoCEdAq5W8p9ZzP3VlLg=="
67
+ },
68
+ "ep_success_buffer": {
69
+ ":type:": "<class 'collections.deque'>",
70
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
71
+ },
72
+ "_n_updates": 62500,
73
+ "n_steps": 8,
74
+ "gamma": 0.99,
75
+ "gae_lambda": 0.9,
76
+ "ent_coef": 0.0,
77
+ "vf_coef": 0.4,
78
+ "max_grad_norm": 0.5,
79
+ "normalize_advantage": false,
80
+ "observation_space": {
81
+ ":type:": "<class 'gym.spaces.box.Box'>",
82
+ ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
83
+ "dtype": "float32",
84
+ "_shape": [
85
+ 28
86
+ ],
87
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
88
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
89
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
90
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
91
+ "_np_random": null
92
+ },
93
+ "action_space": {
94
+ ":type:": "<class 'gym.spaces.box.Box'>",
95
+ ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu",
96
+ "dtype": "float32",
97
+ "_shape": [
98
+ 8
99
+ ],
100
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
101
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
102
+ "bounded_below": "[ True True True True True True True True]",
103
+ "bounded_above": "[ True True True True True True True True]",
104
+ "_np_random": null
105
+ },
106
+ "n_envs": 4
107
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:61dcb737d29a386766355450af13783fa6c7ff1cf280e45e85aea993a9e45c1b
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5fa6827ac74b9c6f9752a3bf315bda4d2084e227a6a9fa8bfb8b7b9dca69eba1
3
+ size 56894
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.0-69-generic-x86_64-with-glibc2.31 # 76~20.04.1-Ubuntu SMP Mon Mar 20 15:54:19 UTC 2023
2
+ - Python: 3.10.11
3
+ - Stable-Baselines3: 1.8.0
4
+ - PyTorch: 2.0.1+cu117
5
+ - GPU Enabled: True
6
+ - Numpy: 1.24.3
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fe29a2f1e10>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe29a2f1ea0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe29a2f1f30>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe29a2f1fc0>", "_build": "<function ActorCriticPolicy._build at 0x7fe29a2f2050>", "forward": "<function ActorCriticPolicy.forward at 0x7fe29a2f20e0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fe29a2f2170>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe29a2f2200>", "_predict": "<function ActorCriticPolicy._predict at 0x7fe29a2f2290>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe29a2f2320>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe29a2f23b0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe29a2f2440>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fe29a2f4100>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1684170341254596382, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV8QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXy9ob21lL21hcmsvcmxfY291cnNlLy51bml0Nl92ZW52L2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgkMCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxfL2hvbWUvbWFyay9ybF9jb3Vyc2UvLnVuaXQ2X3ZlbnYvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP091EE1VHWmFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAJkxnL7N5PA85XgCP54o47/N06c/q+ALP0rCNr9+vVY//k+Bv2tYqz7H1vK+H6m8PvJT079pGr0+AxScPq/pIb/DdLo/9e8EQES+Q7+IREU/aVnEP69yi7w07ZW/vfUPPtXUgD+6+xY/qkObPvYB2b/7orI/tMbKPqukaz48T5E/GTPfP1wP9T9nArY/zj9ov/Z7lb/bK5g9mk4xP6+IMb/lcLM/uIGovSav4L/LlpM/tB/7vjueQ8Do3Bg/mLyLv7nxLb6ilCLAd6RCP0Q1TT4WWX6/uvsWP6pDmz7Q/xY/887CP229Rz5vD8s+oCnEP+hMPz9W9549LTKMP55Srr9e1pS/axpFvKQoGL+AVLw/YHdwP8prFr/J6U2/CHxBP7iNkL850SG/m9vWPvi1nz47BJ6/HFlwvqH5oD6YPlo8Fll+v7r7Fj+qQ5s+0P8WPwfUPz9ximI+8fTAPkc8Ij9fthE/GYoPPsMZhD4N1eg+r0qVv6+sYT2U02U/PQwpP0G1mL6BbrS/QClGvlN6FkDA++W+UY54P+3pZr8ijJI/7H3FPpDrIUBGvAO/+jm6vRZZfr/WB9m/qkObPvYB2b+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACmSEm2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA9X5nOwAAAACICfC/AAAAAKgKO70AAAAA7QLaPwAAAACtkMO7AAAAAAZk2T8AAAAA3KiUPQAAAABYSPC/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/a99tgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgCAi0r0AAAAALqTqvwAAAAASNMW9AAAAAOK19j8AAAAA1pnrvQAAAADok/k/AAAAAKdfXz0AAAAAvSb3vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACGsFDYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICyMAK+AAAAAJhJ6r8AAAAA1XOCvQAAAABNfOI/AAAAAGughr0AAAAA2Ff/PwAAAABjOcW9AAAAAORG578AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACW/442AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAdESUvQAAAADCTeu/AAAAAJgzND0AAAAAeKrvPwAAAAAK48c8AAAAAB7V9D8AAAAAbxEqvQAAAAB8M/m/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJyyTOjZcs2MAWyUTegDjAF0lEdAqlWULMLWqnV9lChoBkdAmuGjgdfb9WgHTegDaAhHQKpWFVn27Ft1fZQoaAZHQJxviMIeHSFoB03oA2gIR0CqV7D63y7PdX2UKGgGR0CdLV9F4LThaAdN6ANoCEdAqlqbXlKbrnV9lChoBkdAm4pP4/NZ/2gHTegDaAhHQKpi0KVpsXV1fZQoaAZHQJtj3AgxJuloB03oA2gIR0CqY1FFUhmodX2UKGgGR0Cb5gcbzbvgaAdN6ANoCEdAqmTsYuTRpnV9lChoBkdAmtkWtITXa2gHTegDaAhHQKpnzuLrHEN1fZQoaAZHQJw+ztgKF7FoB03oA2gIR0CqcCVp9JBgdX2UKGgGR0CbsWz41xbTaAdN6ANoCEdAqnClZPl+3HV9lChoBkdAm52gIt16mmgHTegDaAhHQKpyRzpX6qN1fZQoaAZHQJrGrKISDh9oB03oA2gIR0CqdUhTn7pFdX2UKGgGR0CawzN34bjtaAdN6ANoCEdAqn2cQkHD8HV9lChoBkdAm+vKuKXOW2gHTegDaAhHQKp+FJtBOYZ1fZQoaAZHQJfwxk9U0eloB03oA2gIR0Cqf50jLSuydX2UKGgGR0Ca4/mKIi1RaAdN6ANoCEdAqoJzgdfb9XV9lChoBkdAmcZWYjSofmgHTegDaAhHQKqKElY2bXp1fZQoaAZHQJlTYam4y45oB03oA2gIR0CqioZ7XxvvdX2UKGgGR0CWybltTDO1aAdN6ANoCEdAqowDgydnTXV9lChoBkdAmoK4S13MZGgHTegDaAhHQKqOsR0U4711fZQoaAZHQJlYL/T9bX9oB03oA2gIR0Cqlk2GZeAvdX2UKGgGR0CZXpm03Ov/aAdN6ANoCEdAqpbCLbYbsHV9lChoBkdAl7HgCW/rSmgHTegDaAhHQKqYWCVbA1x1fZQoaAZHQJZBTbcoH9poB03oA2gIR0Cqm0VHnU2DdX2UKGgGR0CVY/15jYqYaAdN6ANoCEdAqqOMAR02cnV9lChoBkdAl4isRtgrpmgHTegDaAhHQKqkCvzvqkd1fZQoaAZHQJbxPPv8ZUFoB03oA2gIR0CqpaRfOUt7dX2UKGgGR0CXByLQHAymaAdN6ANoCEdAqqiH2dupCXV9lChoBkdAklNsPBi1A2gHTegDaAhHQKqwXu0CzTp1fZQoaAZHQI0nUunMt9RoB03oA2gIR0CqsNPLHMlkdX2UKGgGR0CTZRlAeJYUaAdN6ANoCEdAqrJWoDPnjnV9lChoBkdAmgIUTxoZh2gHTegDaAhHQKq1E2AG0NV1fZQoaAZHQJRmKT7l7t1oB03oA2gIR0CqvODifg76dX2UKGgGR0CTmR2gFotdaAdN6ANoCEdAqr1e8M/hVHV9lChoBkdAkDd+Vs1sL2gHTegDaAhHQKq/A38XN1R1fZQoaAZHQJJTmLBKtgdoB03oA2gIR0CqwdwrMC9zdX2UKGgGR0COeY2YOUdJaAdN6ANoCEdAqsmLPldTpHV9lChoBkdAk8Ty1iONpGgHTegDaAhHQKrKCIa99MN1fZQoaAZHQJL/jLNfPX1oB03oA2gIR0Cqy6IrnTy8dX2UKGgGR0CQOOPXkHUuaAdN6ANoCEdAqs6IAsCkoHV9lChoBkdAjXslNUOuq2gHTegDaAhHQKrWxMdtEXt1fZQoaAZHQJEt8DB/I81oB03oA2gIR0Cq10UDEFW5dX2UKGgGR0CRU/3cYZVGaAdN6ANoCEdAqtjhXhfjTHV9lChoBkdAjxoV/2Cd0GgHTegDaAhHQKrbviONo8J1fZQoaAZHQJJ4OUHIIWxoB03oA2gIR0Cq5AeE7GNrdX2UKGgGR0CTQy/o7muDaAdN6ANoCEdAquSGHerMknV9lChoBkdAmAWfX9R77mgHTegDaAhHQKrmJhYvFm51fZQoaAZHQJIyttEXtShoB03oA2gIR0Cq6RYQJ5VwdX2UKGgGR0CXywRaX8fnaAdN6ANoCEdAqvFmu3c583V9lChoBkdAllW76k6902gHTegDaAhHQKrx60BwMph1fZQoaAZHQJU6kV32VVxoB03oA2gIR0Cq85gS39aVdX2UKGgGR0CXNQrM1TBJaAdN6ANoCEdAqvaEkMTewnV9lChoBkdAlrZtN8E3bWgHTegDaAhHQKr+wUdq+Jx1fZQoaAZHQJgEOCZnctZoB03oA2gIR0Cq/0DaXa8IdX2UKGgGR0CVtklhw2l3aAdN6ANoCEdAqwDeLHdXT3V9lChoBkdAlMfMpobn5mgHTegDaAhHQKsDxHNHH3l1fZQoaAZHQJPRsslLOA1oB03oA2gIR0CrC/hsQ/X5dX2UKGgGR0CWUnQxesxPaAdN6ANoCEdAqwx1+TeO43V9lChoBkdAk4JKaPS2IGgHTegDaAhHQKsOETot+Th1fZQoaAZHQJa79m16Vt5oB03oA2gIR0CrEP3WFvhqdX2UKGgGR0CY/ym+0w8GaAdN6ANoCEdAqxk6oKlYU3V9lChoBkdAlqzLDuSfUWgHTegDaAhHQKsZuHgP3BZ1fZQoaAZHQJPRFJnQID5oB03oA2gIR0CrG1N+CsfadX2UKGgGR0CZ6ARlpXZHaAdN6ANoCEdAqx48gyM1j3V9lChoBkdAk2gdE1EVnGgHTegDaAhHQKsmZ+c6Nl11fZQoaAZHQJXwVyimEXdoB03oA2gIR0CrJui4rjHXdX2UKGgGR0CSijuTibUgaAdN6ANoCEdAqyiDTMJQcnV9lChoBkdAkMxtVaOghGgHTegDaAhHQKsrZ6HCXQd1fZQoaAZHQJOxD4sVclhoB03oA2gIR0CrM599lVcVdX2UKGgGR0CWT5+8Gs3iaAdN6ANoCEdAqzQgdELH/HV9lChoBkdAlF27ZSNwSGgHTegDaAhHQKs1vnLaEjB1fZQoaAZHQJV3VgNPP9loB03oA2gIR0CrOKJHy3CsdX2UKGgGR0CYVRCfpUxVaAdN6ANoCEdAq0DdOCXhO3V9lChoBkdAl4KMlb/wRWgHTegDaAhHQKtBXDWsijd1fZQoaAZHQJjxsd6sySFoB03oA2gIR0CrQvQ++ueSdX2UKGgGR0CZHt1DjR2KaAdN6ANoCEdAq0XagM+eOHV9lChoBkdAmDUFlf7aZmgHTegDaAhHQKtN+Ygq3E11fZQoaAZHQJjyeTgVGkNoB03oA2gIR0CrTnVEd/8VdX2UKGgGR0CXRfnxaxHHaAdN6ANoCEdAq1AUghbGFXV9lChoBkdAmLisglnh9GgHTegDaAhHQKtTBNX5nDl1fZQoaAZHQJkPRb2USqVoB03oA2gIR0CrW0ncUM5PdX2UKGgGR0CX4cBH09QoaAdN6ANoCEdAq1vI/LTx5XV9lChoBkdAmhwgob4rSWgHTegDaAhHQKtdYZNwiq11fZQoaAZHQJlLa03Ov+xoB03oA2gIR0CrYDz9KmKqdX2UKGgGR0CaczPGQ0XQaAdN6ANoCEdAq2h/C0ngHnV9lChoBkdAms3mRNh3JWgHTegDaAhHQKto/9roGIN1fZQoaAZHQJdupPGhmGxoB03oA2gIR0CraqDYh+vydX2UKGgGR0CZpbMhouf3aAdN6ANoCEdAq22MZ75VO3V9lChoBkdAmi/94Z/CqWgHTegDaAhHQKt10kUKzAx1fZQoaAZHQJnU4pc5bQloB03oA2gIR0CrdlChvitJdX2UKGgGR0CaopoAn2IwaAdN6ANoCEdAq3ftBppN9HV9lChoBkdAmy0qMNtqH2gHTegDaAhHQKt60uEmICV1fZQoaAZHQJsGx9JBgNRoB03oA2gIR0Crgx/BFd9ldX2UKGgGR0CZK3LR8c+8aAdN6ANoCEdAq4OekBS1mnV9lChoBkdAlu37u6VdHGgHTegDaAhHQKuFPFz+3ph1fZQoaAZHQJpWjCpFTehoB03oA2gIR0CriDwTM7lrdX2UKGgGR0CYxZOO801qaAdN6ANoCEdAq5CwuuieunV9lChoBkdAme33AZbY9WgHTegDaAhHQKuRL8iwB5p1fZQoaAZHQJjIOnMt9QZoB03oA2gIR0CrktaLOzIFdX2UKGgGR0CX9Ut6ol2NaAdN6ANoCEdAq5W8p9ZzP3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.0-69-generic-x86_64-with-glibc2.31 # 76~20.04.1-Ubuntu SMP Mon Mar 20 15:54:19 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu117", "GPU Enabled": "True", "Numpy": "1.24.3", "Gym": "0.21.0"}}
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1604.673432198487, "std_reward": 127.14190400214049, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-05-15T14:33:47.344215"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4a1a9fb0841db648ca09e8ed69bc42aca5346d7a0de8acf9e62a861219ab6378
3
+ size 2176