markeidsaune
commited on
Commit
•
77ed6dc
1
Parent(s):
c9d3070
Initial commit
Browse files- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +107 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 1604.67 +/- 127.14
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:332eb322e90afa9511f99e0d76556385492dfb69b368e8a8a9ad2a97af489e65
|
3 |
+
size 129332
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.8.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fe29a2f1e10>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe29a2f1ea0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe29a2f1f30>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe29a2f1fc0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fe29a2f2050>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fe29a2f20e0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7fe29a2f2170>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe29a2f2200>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fe29a2f2290>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe29a2f2320>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe29a2f23b0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe29a2f2440>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7fe29a2f4100>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"num_timesteps": 2000000,
|
36 |
+
"_total_timesteps": 2000000,
|
37 |
+
"_num_timesteps_at_start": 0,
|
38 |
+
"seed": null,
|
39 |
+
"action_noise": null,
|
40 |
+
"start_time": 1684170341254596382,
|
41 |
+
"learning_rate": 0.00096,
|
42 |
+
"tensorboard_log": null,
|
43 |
+
"lr_schedule": {
|
44 |
+
":type:": "<class 'function'>",
|
45 |
+
":serialized:": "gAWV8QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXy9ob21lL21hcmsvcmxfY291cnNlLy51bml0Nl92ZW52L2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgkMCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxfL2hvbWUvbWFyay9ybF9jb3Vyc2UvLnVuaXQ2X3ZlbnYvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP091EE1VHWmFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
46 |
+
},
|
47 |
+
"_last_obs": {
|
48 |
+
":type:": "<class 'numpy.ndarray'>",
|
49 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAJkxnL7N5PA85XgCP54o47/N06c/q+ALP0rCNr9+vVY//k+Bv2tYqz7H1vK+H6m8PvJT079pGr0+AxScPq/pIb/DdLo/9e8EQES+Q7+IREU/aVnEP69yi7w07ZW/vfUPPtXUgD+6+xY/qkObPvYB2b/7orI/tMbKPqukaz48T5E/GTPfP1wP9T9nArY/zj9ov/Z7lb/bK5g9mk4xP6+IMb/lcLM/uIGovSav4L/LlpM/tB/7vjueQ8Do3Bg/mLyLv7nxLb6ilCLAd6RCP0Q1TT4WWX6/uvsWP6pDmz7Q/xY/887CP229Rz5vD8s+oCnEP+hMPz9W9549LTKMP55Srr9e1pS/axpFvKQoGL+AVLw/YHdwP8prFr/J6U2/CHxBP7iNkL850SG/m9vWPvi1nz47BJ6/HFlwvqH5oD6YPlo8Fll+v7r7Fj+qQ5s+0P8WPwfUPz9ximI+8fTAPkc8Ij9fthE/GYoPPsMZhD4N1eg+r0qVv6+sYT2U02U/PQwpP0G1mL6BbrS/QClGvlN6FkDA++W+UY54P+3pZr8ijJI/7H3FPpDrIUBGvAO/+jm6vRZZfr/WB9m/qkObPvYB2b+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
50 |
+
},
|
51 |
+
"_last_episode_starts": {
|
52 |
+
":type:": "<class 'numpy.ndarray'>",
|
53 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
54 |
+
},
|
55 |
+
"_last_original_obs": {
|
56 |
+
":type:": "<class 'numpy.ndarray'>",
|
57 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACmSEm2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA9X5nOwAAAACICfC/AAAAAKgKO70AAAAA7QLaPwAAAACtkMO7AAAAAAZk2T8AAAAA3KiUPQAAAABYSPC/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/a99tgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgCAi0r0AAAAALqTqvwAAAAASNMW9AAAAAOK19j8AAAAA1pnrvQAAAADok/k/AAAAAKdfXz0AAAAAvSb3vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACGsFDYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICyMAK+AAAAAJhJ6r8AAAAA1XOCvQAAAABNfOI/AAAAAGughr0AAAAA2Ff/PwAAAABjOcW9AAAAAORG578AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACW/442AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAdESUvQAAAADCTeu/AAAAAJgzND0AAAAAeKrvPwAAAAAK48c8AAAAAB7V9D8AAAAAbxEqvQAAAAB8M/m/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
58 |
+
},
|
59 |
+
"_episode_num": 0,
|
60 |
+
"use_sde": true,
|
61 |
+
"sde_sample_freq": -1,
|
62 |
+
"_current_progress_remaining": 0.0,
|
63 |
+
"_stats_window_size": 100,
|
64 |
+
"ep_info_buffer": {
|
65 |
+
":type:": "<class 'collections.deque'>",
|
66 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJyyTOjZcs2MAWyUTegDjAF0lEdAqlWULMLWqnV9lChoBkdAmuGjgdfb9WgHTegDaAhHQKpWFVn27Ft1fZQoaAZHQJxviMIeHSFoB03oA2gIR0CqV7D63y7PdX2UKGgGR0CdLV9F4LThaAdN6ANoCEdAqlqbXlKbrnV9lChoBkdAm4pP4/NZ/2gHTegDaAhHQKpi0KVpsXV1fZQoaAZHQJtj3AgxJuloB03oA2gIR0CqY1FFUhmodX2UKGgGR0Cb5gcbzbvgaAdN6ANoCEdAqmTsYuTRpnV9lChoBkdAmtkWtITXa2gHTegDaAhHQKpnzuLrHEN1fZQoaAZHQJw+ztgKF7FoB03oA2gIR0CqcCVp9JBgdX2UKGgGR0CbsWz41xbTaAdN6ANoCEdAqnClZPl+3HV9lChoBkdAm52gIt16mmgHTegDaAhHQKpyRzpX6qN1fZQoaAZHQJrGrKISDh9oB03oA2gIR0CqdUhTn7pFdX2UKGgGR0CawzN34bjtaAdN6ANoCEdAqn2cQkHD8HV9lChoBkdAm+vKuKXOW2gHTegDaAhHQKp+FJtBOYZ1fZQoaAZHQJfwxk9U0eloB03oA2gIR0Cqf50jLSuydX2UKGgGR0Ca4/mKIi1RaAdN6ANoCEdAqoJzgdfb9XV9lChoBkdAmcZWYjSofmgHTegDaAhHQKqKElY2bXp1fZQoaAZHQJlTYam4y45oB03oA2gIR0CqioZ7XxvvdX2UKGgGR0CWybltTDO1aAdN6ANoCEdAqowDgydnTXV9lChoBkdAmoK4S13MZGgHTegDaAhHQKqOsR0U4711fZQoaAZHQJlYL/T9bX9oB03oA2gIR0Cqlk2GZeAvdX2UKGgGR0CZXpm03Ov/aAdN6ANoCEdAqpbCLbYbsHV9lChoBkdAl7HgCW/rSmgHTegDaAhHQKqYWCVbA1x1fZQoaAZHQJZBTbcoH9poB03oA2gIR0Cqm0VHnU2DdX2UKGgGR0CVY/15jYqYaAdN6ANoCEdAqqOMAR02cnV9lChoBkdAl4isRtgrpmgHTegDaAhHQKqkCvzvqkd1fZQoaAZHQJbxPPv8ZUFoB03oA2gIR0CqpaRfOUt7dX2UKGgGR0CXByLQHAymaAdN6ANoCEdAqqiH2dupCXV9lChoBkdAklNsPBi1A2gHTegDaAhHQKqwXu0CzTp1fZQoaAZHQI0nUunMt9RoB03oA2gIR0CqsNPLHMlkdX2UKGgGR0CTZRlAeJYUaAdN6ANoCEdAqrJWoDPnjnV9lChoBkdAmgIUTxoZh2gHTegDaAhHQKq1E2AG0NV1fZQoaAZHQJRmKT7l7t1oB03oA2gIR0CqvODifg76dX2UKGgGR0CTmR2gFotdaAdN6ANoCEdAqr1e8M/hVHV9lChoBkdAkDd+Vs1sL2gHTegDaAhHQKq/A38XN1R1fZQoaAZHQJJTmLBKtgdoB03oA2gIR0CqwdwrMC9zdX2UKGgGR0COeY2YOUdJaAdN6ANoCEdAqsmLPldTpHV9lChoBkdAk8Ty1iONpGgHTegDaAhHQKrKCIa99MN1fZQoaAZHQJL/jLNfPX1oB03oA2gIR0Cqy6IrnTy8dX2UKGgGR0CQOOPXkHUuaAdN6ANoCEdAqs6IAsCkoHV9lChoBkdAjXslNUOuq2gHTegDaAhHQKrWxMdtEXt1fZQoaAZHQJEt8DB/I81oB03oA2gIR0Cq10UDEFW5dX2UKGgGR0CRU/3cYZVGaAdN6ANoCEdAqtjhXhfjTHV9lChoBkdAjxoV/2Cd0GgHTegDaAhHQKrbviONo8J1fZQoaAZHQJJ4OUHIIWxoB03oA2gIR0Cq5AeE7GNrdX2UKGgGR0CTQy/o7muDaAdN6ANoCEdAquSGHerMknV9lChoBkdAmAWfX9R77mgHTegDaAhHQKrmJhYvFm51fZQoaAZHQJIyttEXtShoB03oA2gIR0Cq6RYQJ5VwdX2UKGgGR0CXywRaX8fnaAdN6ANoCEdAqvFmu3c583V9lChoBkdAllW76k6902gHTegDaAhHQKrx60BwMph1fZQoaAZHQJU6kV32VVxoB03oA2gIR0Cq85gS39aVdX2UKGgGR0CXNQrM1TBJaAdN6ANoCEdAqvaEkMTewnV9lChoBkdAlrZtN8E3bWgHTegDaAhHQKr+wUdq+Jx1fZQoaAZHQJgEOCZnctZoB03oA2gIR0Cq/0DaXa8IdX2UKGgGR0CVtklhw2l3aAdN6ANoCEdAqwDeLHdXT3V9lChoBkdAlMfMpobn5mgHTegDaAhHQKsDxHNHH3l1fZQoaAZHQJPRsslLOA1oB03oA2gIR0CrC/hsQ/X5dX2UKGgGR0CWUnQxesxPaAdN6ANoCEdAqwx1+TeO43V9lChoBkdAk4JKaPS2IGgHTegDaAhHQKsOETot+Th1fZQoaAZHQJa79m16Vt5oB03oA2gIR0CrEP3WFvhqdX2UKGgGR0CY/ym+0w8GaAdN6ANoCEdAqxk6oKlYU3V9lChoBkdAlqzLDuSfUWgHTegDaAhHQKsZuHgP3BZ1fZQoaAZHQJPRFJnQID5oB03oA2gIR0CrG1N+CsfadX2UKGgGR0CZ6ARlpXZHaAdN6ANoCEdAqx48gyM1j3V9lChoBkdAk2gdE1EVnGgHTegDaAhHQKsmZ+c6Nl11fZQoaAZHQJXwVyimEXdoB03oA2gIR0CrJui4rjHXdX2UKGgGR0CSijuTibUgaAdN6ANoCEdAqyiDTMJQcnV9lChoBkdAkMxtVaOghGgHTegDaAhHQKsrZ6HCXQd1fZQoaAZHQJOxD4sVclhoB03oA2gIR0CrM599lVcVdX2UKGgGR0CWT5+8Gs3iaAdN6ANoCEdAqzQgdELH/HV9lChoBkdAlF27ZSNwSGgHTegDaAhHQKs1vnLaEjB1fZQoaAZHQJV3VgNPP9loB03oA2gIR0CrOKJHy3CsdX2UKGgGR0CYVRCfpUxVaAdN6ANoCEdAq0DdOCXhO3V9lChoBkdAl4KMlb/wRWgHTegDaAhHQKtBXDWsijd1fZQoaAZHQJjxsd6sySFoB03oA2gIR0CrQvQ++ueSdX2UKGgGR0CZHt1DjR2KaAdN6ANoCEdAq0XagM+eOHV9lChoBkdAmDUFlf7aZmgHTegDaAhHQKtN+Ygq3E11fZQoaAZHQJjyeTgVGkNoB03oA2gIR0CrTnVEd/8VdX2UKGgGR0CXRfnxaxHHaAdN6ANoCEdAq1AUghbGFXV9lChoBkdAmLisglnh9GgHTegDaAhHQKtTBNX5nDl1fZQoaAZHQJkPRb2USqVoB03oA2gIR0CrW0ncUM5PdX2UKGgGR0CX4cBH09QoaAdN6ANoCEdAq1vI/LTx5XV9lChoBkdAmhwgob4rSWgHTegDaAhHQKtdYZNwiq11fZQoaAZHQJlLa03Ov+xoB03oA2gIR0CrYDz9KmKqdX2UKGgGR0CaczPGQ0XQaAdN6ANoCEdAq2h/C0ngHnV9lChoBkdAms3mRNh3JWgHTegDaAhHQKto/9roGIN1fZQoaAZHQJdupPGhmGxoB03oA2gIR0CraqDYh+vydX2UKGgGR0CZpbMhouf3aAdN6ANoCEdAq22MZ75VO3V9lChoBkdAmi/94Z/CqWgHTegDaAhHQKt10kUKzAx1fZQoaAZHQJnU4pc5bQloB03oA2gIR0CrdlChvitJdX2UKGgGR0CaopoAn2IwaAdN6ANoCEdAq3ftBppN9HV9lChoBkdAmy0qMNtqH2gHTegDaAhHQKt60uEmICV1fZQoaAZHQJsGx9JBgNRoB03oA2gIR0Crgx/BFd9ldX2UKGgGR0CZK3LR8c+8aAdN6ANoCEdAq4OekBS1mnV9lChoBkdAlu37u6VdHGgHTegDaAhHQKuFPFz+3ph1fZQoaAZHQJpWjCpFTehoB03oA2gIR0CriDwTM7lrdX2UKGgGR0CYxZOO801qaAdN6ANoCEdAq5CwuuieunV9lChoBkdAme33AZbY9WgHTegDaAhHQKuRL8iwB5p1fZQoaAZHQJjIOnMt9QZoB03oA2gIR0CrktaLOzIFdX2UKGgGR0CX9Ut6ol2NaAdN6ANoCEdAq5W8p9ZzP3VlLg=="
|
67 |
+
},
|
68 |
+
"ep_success_buffer": {
|
69 |
+
":type:": "<class 'collections.deque'>",
|
70 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
71 |
+
},
|
72 |
+
"_n_updates": 62500,
|
73 |
+
"n_steps": 8,
|
74 |
+
"gamma": 0.99,
|
75 |
+
"gae_lambda": 0.9,
|
76 |
+
"ent_coef": 0.0,
|
77 |
+
"vf_coef": 0.4,
|
78 |
+
"max_grad_norm": 0.5,
|
79 |
+
"normalize_advantage": false,
|
80 |
+
"observation_space": {
|
81 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
82 |
+
":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
83 |
+
"dtype": "float32",
|
84 |
+
"_shape": [
|
85 |
+
28
|
86 |
+
],
|
87 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
88 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
89 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
90 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
91 |
+
"_np_random": null
|
92 |
+
},
|
93 |
+
"action_space": {
|
94 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
95 |
+
":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
96 |
+
"dtype": "float32",
|
97 |
+
"_shape": [
|
98 |
+
8
|
99 |
+
],
|
100 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
101 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
102 |
+
"bounded_below": "[ True True True True True True True True]",
|
103 |
+
"bounded_above": "[ True True True True True True True True]",
|
104 |
+
"_np_random": null
|
105 |
+
},
|
106 |
+
"n_envs": 4
|
107 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:61dcb737d29a386766355450af13783fa6c7ff1cf280e45e85aea993a9e45c1b
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5fa6827ac74b9c6f9752a3bf315bda4d2084e227a6a9fa8bfb8b7b9dca69eba1
|
3 |
+
size 56894
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.0-69-generic-x86_64-with-glibc2.31 # 76~20.04.1-Ubuntu SMP Mon Mar 20 15:54:19 UTC 2023
|
2 |
+
- Python: 3.10.11
|
3 |
+
- Stable-Baselines3: 1.8.0
|
4 |
+
- PyTorch: 2.0.1+cu117
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.24.3
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fe29a2f1e10>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe29a2f1ea0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe29a2f1f30>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe29a2f1fc0>", "_build": "<function ActorCriticPolicy._build at 0x7fe29a2f2050>", "forward": "<function ActorCriticPolicy.forward at 0x7fe29a2f20e0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fe29a2f2170>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe29a2f2200>", "_predict": "<function ActorCriticPolicy._predict at 0x7fe29a2f2290>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe29a2f2320>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe29a2f23b0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe29a2f2440>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fe29a2f4100>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1684170341254596382, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV8QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXy9ob21lL21hcmsvcmxfY291cnNlLy51bml0Nl92ZW52L2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgkMCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxfL2hvbWUvbWFyay9ybF9jb3Vyc2UvLnVuaXQ2X3ZlbnYvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP091EE1VHWmFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAJkxnL7N5PA85XgCP54o47/N06c/q+ALP0rCNr9+vVY//k+Bv2tYqz7H1vK+H6m8PvJT079pGr0+AxScPq/pIb/DdLo/9e8EQES+Q7+IREU/aVnEP69yi7w07ZW/vfUPPtXUgD+6+xY/qkObPvYB2b/7orI/tMbKPqukaz48T5E/GTPfP1wP9T9nArY/zj9ov/Z7lb/bK5g9mk4xP6+IMb/lcLM/uIGovSav4L/LlpM/tB/7vjueQ8Do3Bg/mLyLv7nxLb6ilCLAd6RCP0Q1TT4WWX6/uvsWP6pDmz7Q/xY/887CP229Rz5vD8s+oCnEP+hMPz9W9549LTKMP55Srr9e1pS/axpFvKQoGL+AVLw/YHdwP8prFr/J6U2/CHxBP7iNkL850SG/m9vWPvi1nz47BJ6/HFlwvqH5oD6YPlo8Fll+v7r7Fj+qQ5s+0P8WPwfUPz9ximI+8fTAPkc8Ij9fthE/GYoPPsMZhD4N1eg+r0qVv6+sYT2U02U/PQwpP0G1mL6BbrS/QClGvlN6FkDA++W+UY54P+3pZr8ijJI/7H3FPpDrIUBGvAO/+jm6vRZZfr/WB9m/qkObPvYB2b+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACmSEm2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA9X5nOwAAAACICfC/AAAAAKgKO70AAAAA7QLaPwAAAACtkMO7AAAAAAZk2T8AAAAA3KiUPQAAAABYSPC/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/a99tgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgCAi0r0AAAAALqTqvwAAAAASNMW9AAAAAOK19j8AAAAA1pnrvQAAAADok/k/AAAAAKdfXz0AAAAAvSb3vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACGsFDYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICyMAK+AAAAAJhJ6r8AAAAA1XOCvQAAAABNfOI/AAAAAGughr0AAAAA2Ff/PwAAAABjOcW9AAAAAORG578AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACW/442AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAdESUvQAAAADCTeu/AAAAAJgzND0AAAAAeKrvPwAAAAAK48c8AAAAAB7V9D8AAAAAbxEqvQAAAAB8M/m/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJyyTOjZcs2MAWyUTegDjAF0lEdAqlWULMLWqnV9lChoBkdAmuGjgdfb9WgHTegDaAhHQKpWFVn27Ft1fZQoaAZHQJxviMIeHSFoB03oA2gIR0CqV7D63y7PdX2UKGgGR0CdLV9F4LThaAdN6ANoCEdAqlqbXlKbrnV9lChoBkdAm4pP4/NZ/2gHTegDaAhHQKpi0KVpsXV1fZQoaAZHQJtj3AgxJuloB03oA2gIR0CqY1FFUhmodX2UKGgGR0Cb5gcbzbvgaAdN6ANoCEdAqmTsYuTRpnV9lChoBkdAmtkWtITXa2gHTegDaAhHQKpnzuLrHEN1fZQoaAZHQJw+ztgKF7FoB03oA2gIR0CqcCVp9JBgdX2UKGgGR0CbsWz41xbTaAdN6ANoCEdAqnClZPl+3HV9lChoBkdAm52gIt16mmgHTegDaAhHQKpyRzpX6qN1fZQoaAZHQJrGrKISDh9oB03oA2gIR0CqdUhTn7pFdX2UKGgGR0CawzN34bjtaAdN6ANoCEdAqn2cQkHD8HV9lChoBkdAm+vKuKXOW2gHTegDaAhHQKp+FJtBOYZ1fZQoaAZHQJfwxk9U0eloB03oA2gIR0Cqf50jLSuydX2UKGgGR0Ca4/mKIi1RaAdN6ANoCEdAqoJzgdfb9XV9lChoBkdAmcZWYjSofmgHTegDaAhHQKqKElY2bXp1fZQoaAZHQJlTYam4y45oB03oA2gIR0CqioZ7XxvvdX2UKGgGR0CWybltTDO1aAdN6ANoCEdAqowDgydnTXV9lChoBkdAmoK4S13MZGgHTegDaAhHQKqOsR0U4711fZQoaAZHQJlYL/T9bX9oB03oA2gIR0Cqlk2GZeAvdX2UKGgGR0CZXpm03Ov/aAdN6ANoCEdAqpbCLbYbsHV9lChoBkdAl7HgCW/rSmgHTegDaAhHQKqYWCVbA1x1fZQoaAZHQJZBTbcoH9poB03oA2gIR0Cqm0VHnU2DdX2UKGgGR0CVY/15jYqYaAdN6ANoCEdAqqOMAR02cnV9lChoBkdAl4isRtgrpmgHTegDaAhHQKqkCvzvqkd1fZQoaAZHQJbxPPv8ZUFoB03oA2gIR0CqpaRfOUt7dX2UKGgGR0CXByLQHAymaAdN6ANoCEdAqqiH2dupCXV9lChoBkdAklNsPBi1A2gHTegDaAhHQKqwXu0CzTp1fZQoaAZHQI0nUunMt9RoB03oA2gIR0CqsNPLHMlkdX2UKGgGR0CTZRlAeJYUaAdN6ANoCEdAqrJWoDPnjnV9lChoBkdAmgIUTxoZh2gHTegDaAhHQKq1E2AG0NV1fZQoaAZHQJRmKT7l7t1oB03oA2gIR0CqvODifg76dX2UKGgGR0CTmR2gFotdaAdN6ANoCEdAqr1e8M/hVHV9lChoBkdAkDd+Vs1sL2gHTegDaAhHQKq/A38XN1R1fZQoaAZHQJJTmLBKtgdoB03oA2gIR0CqwdwrMC9zdX2UKGgGR0COeY2YOUdJaAdN6ANoCEdAqsmLPldTpHV9lChoBkdAk8Ty1iONpGgHTegDaAhHQKrKCIa99MN1fZQoaAZHQJL/jLNfPX1oB03oA2gIR0Cqy6IrnTy8dX2UKGgGR0CQOOPXkHUuaAdN6ANoCEdAqs6IAsCkoHV9lChoBkdAjXslNUOuq2gHTegDaAhHQKrWxMdtEXt1fZQoaAZHQJEt8DB/I81oB03oA2gIR0Cq10UDEFW5dX2UKGgGR0CRU/3cYZVGaAdN6ANoCEdAqtjhXhfjTHV9lChoBkdAjxoV/2Cd0GgHTegDaAhHQKrbviONo8J1fZQoaAZHQJJ4OUHIIWxoB03oA2gIR0Cq5AeE7GNrdX2UKGgGR0CTQy/o7muDaAdN6ANoCEdAquSGHerMknV9lChoBkdAmAWfX9R77mgHTegDaAhHQKrmJhYvFm51fZQoaAZHQJIyttEXtShoB03oA2gIR0Cq6RYQJ5VwdX2UKGgGR0CXywRaX8fnaAdN6ANoCEdAqvFmu3c583V9lChoBkdAllW76k6902gHTegDaAhHQKrx60BwMph1fZQoaAZHQJU6kV32VVxoB03oA2gIR0Cq85gS39aVdX2UKGgGR0CXNQrM1TBJaAdN6ANoCEdAqvaEkMTewnV9lChoBkdAlrZtN8E3bWgHTegDaAhHQKr+wUdq+Jx1fZQoaAZHQJgEOCZnctZoB03oA2gIR0Cq/0DaXa8IdX2UKGgGR0CVtklhw2l3aAdN6ANoCEdAqwDeLHdXT3V9lChoBkdAlMfMpobn5mgHTegDaAhHQKsDxHNHH3l1fZQoaAZHQJPRsslLOA1oB03oA2gIR0CrC/hsQ/X5dX2UKGgGR0CWUnQxesxPaAdN6ANoCEdAqwx1+TeO43V9lChoBkdAk4JKaPS2IGgHTegDaAhHQKsOETot+Th1fZQoaAZHQJa79m16Vt5oB03oA2gIR0CrEP3WFvhqdX2UKGgGR0CY/ym+0w8GaAdN6ANoCEdAqxk6oKlYU3V9lChoBkdAlqzLDuSfUWgHTegDaAhHQKsZuHgP3BZ1fZQoaAZHQJPRFJnQID5oB03oA2gIR0CrG1N+CsfadX2UKGgGR0CZ6ARlpXZHaAdN6ANoCEdAqx48gyM1j3V9lChoBkdAk2gdE1EVnGgHTegDaAhHQKsmZ+c6Nl11fZQoaAZHQJXwVyimEXdoB03oA2gIR0CrJui4rjHXdX2UKGgGR0CSijuTibUgaAdN6ANoCEdAqyiDTMJQcnV9lChoBkdAkMxtVaOghGgHTegDaAhHQKsrZ6HCXQd1fZQoaAZHQJOxD4sVclhoB03oA2gIR0CrM599lVcVdX2UKGgGR0CWT5+8Gs3iaAdN6ANoCEdAqzQgdELH/HV9lChoBkdAlF27ZSNwSGgHTegDaAhHQKs1vnLaEjB1fZQoaAZHQJV3VgNPP9loB03oA2gIR0CrOKJHy3CsdX2UKGgGR0CYVRCfpUxVaAdN6ANoCEdAq0DdOCXhO3V9lChoBkdAl4KMlb/wRWgHTegDaAhHQKtBXDWsijd1fZQoaAZHQJjxsd6sySFoB03oA2gIR0CrQvQ++ueSdX2UKGgGR0CZHt1DjR2KaAdN6ANoCEdAq0XagM+eOHV9lChoBkdAmDUFlf7aZmgHTegDaAhHQKtN+Ygq3E11fZQoaAZHQJjyeTgVGkNoB03oA2gIR0CrTnVEd/8VdX2UKGgGR0CXRfnxaxHHaAdN6ANoCEdAq1AUghbGFXV9lChoBkdAmLisglnh9GgHTegDaAhHQKtTBNX5nDl1fZQoaAZHQJkPRb2USqVoB03oA2gIR0CrW0ncUM5PdX2UKGgGR0CX4cBH09QoaAdN6ANoCEdAq1vI/LTx5XV9lChoBkdAmhwgob4rSWgHTegDaAhHQKtdYZNwiq11fZQoaAZHQJlLa03Ov+xoB03oA2gIR0CrYDz9KmKqdX2UKGgGR0CaczPGQ0XQaAdN6ANoCEdAq2h/C0ngHnV9lChoBkdAms3mRNh3JWgHTegDaAhHQKto/9roGIN1fZQoaAZHQJdupPGhmGxoB03oA2gIR0CraqDYh+vydX2UKGgGR0CZpbMhouf3aAdN6ANoCEdAq22MZ75VO3V9lChoBkdAmi/94Z/CqWgHTegDaAhHQKt10kUKzAx1fZQoaAZHQJnU4pc5bQloB03oA2gIR0CrdlChvitJdX2UKGgGR0CaopoAn2IwaAdN6ANoCEdAq3ftBppN9HV9lChoBkdAmy0qMNtqH2gHTegDaAhHQKt60uEmICV1fZQoaAZHQJsGx9JBgNRoB03oA2gIR0Crgx/BFd9ldX2UKGgGR0CZK3LR8c+8aAdN6ANoCEdAq4OekBS1mnV9lChoBkdAlu37u6VdHGgHTegDaAhHQKuFPFz+3ph1fZQoaAZHQJpWjCpFTehoB03oA2gIR0CriDwTM7lrdX2UKGgGR0CYxZOO801qaAdN6ANoCEdAq5CwuuieunV9lChoBkdAme33AZbY9WgHTegDaAhHQKuRL8iwB5p1fZQoaAZHQJjIOnMt9QZoB03oA2gIR0CrktaLOzIFdX2UKGgGR0CX9Ut6ol2NaAdN6ANoCEdAq5W8p9ZzP3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.0-69-generic-x86_64-with-glibc2.31 # 76~20.04.1-Ubuntu SMP Mon Mar 20 15:54:19 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu117", "GPU Enabled": "True", "Numpy": "1.24.3", "Gym": "0.21.0"}}
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1604.673432198487, "std_reward": 127.14190400214049, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-05-15T14:33:47.344215"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4a1a9fb0841db648ca09e8ed69bc42aca5346d7a0de8acf9e62a861219ab6378
|
3 |
+
size 2176
|