ppo-LunarLander-v2 / config.json
markeidsaune's picture
Upload PPO LunarLander-v2 trained agent
a0f5e68
raw
history blame
14.2 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f7bbb4899d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7bbb489a60>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7bbb489af0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7bbb489b80>", "_build": "<function ActorCriticPolicy._build at 0x7f7bbb489c10>", "forward": "<function ActorCriticPolicy.forward at 0x7f7bbb489ca0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f7bbb489d30>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7bbb489dc0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f7bbb489e50>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7bbb489ee0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7bbb489f70>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7bbb48e040>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f7bbb47ab70>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000.0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679949643873217265, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWViQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVy9ob21lL21hcmsvcmxfY291cnNlL3ZlbnYvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5RoDHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB59lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAD3/hj7niS8/PzeAu7rloL6z51s+DnIbvgAAAAAAAAAATTMyPVzrI7q6MZe28TfgsYbQjrrrlbU1AACAPwAAgD8TZDe+4fQmP2MLGT1AruO+876AvZVVhD0AAAAAAAAAAOCReb6hPug+IrapPdVnk75K2AC+cAsMPgAAAAAAAAAA5g0bvunPDrztt9a7nN8zurvLeD0fpRU7AACAPwAAgD9AeRw+0NeVPiif971yZYy+slMuvYh79LwAAAAAAAAAAM1C6bwxzW8+mTCVve5Orr7BGKq9Dko0PQAAAAAAAAAAzWBQvYVj27uRgJo8HjqPPLztKr3GcXE9AACAPwAAgD/GFxu+7FPHOgEFHbdKEAg0D/+gvFevODYAAIA/AACAP6YBjL2UrVc+v88xPqHLlb4PGcC8VvsSPgAAAAAAAAAAZrEnPeG0qLqnykgze+EiL6YviDn9atCzAACAPwAAgD+acwM9rpmPuiJ9obVN87OwqvCVuANUrzQAAIA/AACAP41ZAT5cKzW6yKcFvW9Yibk9nKa60DVwugAAgD8AAIA/Zh3rvJ+T+Luo2Ac+RVZnvvwnGDyD9SG/AACAPwAAgD/zB7E9VXWpPizdnzwDFo2+L7g3PO4WP7wAAAAAAAAAAMBj5L3ngFQ/yAo7vcvl4b53tpS9EFV3PQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVchAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIfH+D9qpscUCUhpRSlIwBbJRNRgGMAXSUR0CVn5W3Sa3JdX2UKGgGaAloD0MIE36pnzfhckCUhpRSlGgVTTkBaBZHQJWgRtUGVzJ1fZQoaAZoCWgPQwjj/E0ohExwQJSGlFKUaBVNZAFoFkdAlaCoNZvDQHV9lChoBmgJaA9DCO5dg750L29AlIaUUpRoFU0ZAWgWR0CVoWLn9vS/dX2UKGgGaAloD0MIeVvptRkMckCUhpRSlGgVTRQBaBZHQJWhfCfpUxV1fZQoaAZoCWgPQwgJpppZS5dyQJSGlFKUaBVNJQFoFkdAlaIzuBtk4HV9lChoBmgJaA9DCNQrZRkiVHNAlIaUUpRoFUvoaBZHQJWiWLFXJYF1fZQoaAZoCWgPQwhd4PJYM89wQJSGlFKUaBVNFAFoFkdAlaJ4rjHXE3V9lChoBmgJaA9DCNz0Zz/SQHJAlIaUUpRoFU17AWgWR0CVovw2ETQFdX2UKGgGaAloD0MI2uOFdHg8cUCUhpRSlGgVTQIBaBZHQJWjD82rGR51fZQoaAZoCWgPQwjWGd8XF5dyQJSGlFKUaBVNLgFoFkdAlaTh7qptJnV9lChoBmgJaA9DCMri/iOTw3FAlIaUUpRoFU0EAWgWR0CVpVKhtcfOdX2UKGgGaAloD0MI0qkrn6UkcECUhpRSlGgVTRcBaBZHQJWmW0G/vfF1fZQoaAZoCWgPQwhkP4ulyP1vQJSGlFKUaBVNHwFoFkdAlaa8BU70WnV9lChoBmgJaA9DCE1lUdhFLW1AlIaUUpRoFU1DAWgWR0CVp2kGzKLbdX2UKGgGaAloD0MIzo5U33kickCUhpRSlGgVTREBaBZHQJWn/e+Eh7p1fZQoaAZoCWgPQwjoS29/LvBtQJSGlFKUaBVNBgFoFkdAlagJDeCTU3V9lChoBmgJaA9DCOy/zk3bK3JAlIaUUpRoFU0rAWgWR0CVqBNZeRgadX2UKGgGaAloD0MIKJtyhbd3cUCUhpRSlGgVTQIBaBZHQJWojdrO7g91fZQoaAZoCWgPQwhsk4rGWr9xQJSGlFKUaBVNAQFoFkdAlaieRgZ0jnV9lChoBmgJaA9DCNI0KJoHU3NAlIaUUpRoFUv2aBZHQJWpPKp1ifB1fZQoaAZoCWgPQwh8Zd6qq4ZwQJSGlFKUaBVNBwFoFkdAlalprpJPInV9lChoBmgJaA9DCJoK8Uh883JAlIaUUpRoFU2BAWgWR0CVqjnpjc2zdX2UKGgGaAloD0MIajF4mHb2cUCUhpRSlGgVTQ0BaBZHQJWqVkGzKLd1fZQoaAZoCWgPQwgl7NtJxA9xQJSGlFKUaBVNLAFoFkdAlap/lZHNHHV9lChoBmgJaA9DCHWTGASWv3JAlIaUUpRoFU1CAWgWR0CVq7PqLS/kdX2UKGgGaAloD0MIyVpDqf3gcUCUhpRSlGgVTSgBaBZHQJWtB+TeO4p1fZQoaAZoCWgPQwjWcmcmmNJxQJSGlFKUaBVNJAFoFkdAla1egxrSE3V9lChoBmgJaA9DCAkWhzM/6W9AlIaUUpRoFU0DAWgWR0CVrcEaVD8cdX2UKGgGaAloD0MImDJwQMstb0CUhpRSlGgVTSABaBZHQJWuRShrWRR1fZQoaAZoCWgPQwgJwap6+VBwQJSGlFKUaBVNIgFoFkdAla9ryMDOknV9lChoBmgJaA9DCMDPuHDgM3BAlIaUUpRoFU0JAWgWR0CVsB+5e7cxdX2UKGgGaAloD0MI8PlhhDDicECUhpRSlGgVTSEBaBZHQJWwKDkELYx1fZQoaAZoCWgPQwhaZ3xfHNxwQJSGlFKUaBVNJwFoFkdAlbBLxmTTv3V9lChoBmgJaA9DCORmuAEf/XBAlIaUUpRoFU0lAWgWR0CVsOVQQ+UydX2UKGgGaAloD0MIjh8qjViCcECUhpRSlGgVTQ0BaBZHQJWw/wCr92p1fZQoaAZoCWgPQwi+MJkqmMtyQJSGlFKUaBVL/WgWR0CVscWRigCfdX2UKGgGaAloD0MIMIDwoQSrcECUhpRSlGgVTX0BaBZHQJWy7hP0qYt1fZQoaAZoCWgPQwhIUWfu4ShxQJSGlFKUaBVNMAFoFkdAlbMueBg/knV9lChoBmgJaA9DCDHuBtEa6nBAlIaUUpRoFU1TAWgWR0CVs0btZ3cIdX2UKGgGaAloD0MImgmGc82BcUCUhpRSlGgVTQ4BaBZHQJWz3Vsk6cR1fZQoaAZoCWgPQwhOCYhJuLZvQJSGlFKUaBVNTQFoFkdAlbQ3NTtLMHV9lChoBmgJaA9DCCRFZFgFgXFAlIaUUpRoFUv6aBZHQJW0xh8Yyft1fZQoaAZoCWgPQwhaoUj3s41yQJSGlFKUaBVNFgFoFkdAlbU2/SH/LnV9lChoBmgJaA9DCBCxwcKJ4nBAlIaUUpRoFU1EAWgWR0CVt+0l7dBTdX2UKGgGaAloD0MIeo1donoWcUCUhpRSlGgVTS4BaBZHQJW4colUp/h1fZQoaAZoCWgPQwj4wfnUMfhxQJSGlFKUaBVNAwFoFkdAlbiNjCpFTnV9lChoBmgJaA9DCP2iBP3F7nBAlIaUUpRoFU1oAWgWR0CVuKCBPKuCdX2UKGgGaAloD0MI95Dwvf/qcECUhpRSlGgVTTEBaBZHQJW5Nn27FsJ1fZQoaAZoCWgPQwibVZ+rLQVvQJSGlFKUaBVNGgFoFkdAldASn+AEuHV9lChoBmgJaA9DCLHh6ZUy9m1AlIaUUpRoFU0EAWgWR0CV0DTh5xBFdX2UKGgGaAloD0MIjbgANIpScECUhpRSlGgVS+loFkdAldGLMPjGUHV9lChoBmgJaA9DCBUA4xk0qm9AlIaUUpRoFU1mAWgWR0CV0Zg/TspodX2UKGgGaAloD0MIDmYTYNjMcUCUhpRSlGgVTR8BaBZHQJXSdMTN+sp1fZQoaAZoCWgPQwjm6PF72w9xQJSGlFKUaBVNEwFoFkdAldMsSbpeNXV9lChoBmgJaA9DCPlnBvHBEXBAlIaUUpRoFU1VAWgWR0CV07nBciW3dX2UKGgGaAloD0MIe4LEdvcIcECUhpRSlGgVTRgBaBZHQJXUgHE/B311fZQoaAZoCWgPQwjkLOxpx15xQJSGlFKUaBVNBgFoFkdAldfNfw7T2HV9lChoBmgJaA9DCCbirfPvJ3BAlIaUUpRoFU2CAWgWR0CV1+vEjxCqdX2UKGgGaAloD0MI/KiG/Z4/cUCUhpRSlGgVTQgBaBZHQJXX9fE4vOB1fZQoaAZoCWgPQwghyaze4SFyQJSGlFKUaBVNHAFoFkdAldh5prULD3V9lChoBmgJaA9DCC43GOqwJ25AlIaUUpRoFU0PAWgWR0CV2NjX4CZGdX2UKGgGaAloD0MI1O5XAX7ZcUCUhpRSlGgVTUwBaBZHQJXZoVEd/8V1fZQoaAZoCWgPQwiAZaVJKaZtQJSGlFKUaBVNCwFoFkdAldqe5nUUf3V9lChoBmgJaA9DCPNy2H1HEm9AlIaUUpRoFU1NAWgWR0CV2yRw6ySndX2UKGgGaAloD0MIv7fpz77IckCUhpRSlGgVS/5oFkdAldwQX2ugYnV9lChoBmgJaA9DCNWUZB2OYG9AlIaUUpRoFU1UAmgWR0CV3PmjCYTkdX2UKGgGaAloD0MIqOUHrjKDckCUhpRSlGgVTX4BaBZHQJXc9p/PPcB1fZQoaAZoCWgPQwiWr8vwn4dxQJSGlFKUaBVNGwFoFkdAld2hwuM+/3V9lChoBmgJaA9DCIhH4uXpwGxAlIaUUpRoFU0MAWgWR0CV3fcmShaldX2UKGgGaAloD0MICtgORqy4cECUhpRSlGgVTdMBaBZHQJXhRcSoOx11fZQoaAZoCWgPQwgKE0azcktxQJSGlFKUaBVNJAFoFkdAleG0KJEYwnV9lChoBmgJaA9DCNEjRs/tsXFAlIaUUpRoFU0MAWgWR0CV4dB68g6mdX2UKGgGaAloD0MI4SnkSn1QckCUhpRSlGgVTScBaBZHQJXiXVlPJq91fZQoaAZoCWgPQwjzzMthdytwQJSGlFKUaBVNFAFoFkdAleLl3yI553V9lChoBmgJaA9DCMNGWb/ZUnJAlIaUUpRoFU1PAWgWR0CV4xfbKzRhdX2UKGgGaAloD0MIlpNQ+sJGckCUhpRSlGgVS/toFkdAleOBAOavzXV9lChoBmgJaA9DCF+YTBWM8m9AlIaUUpRoFU0jAWgWR0CV5EQFcIJJdX2UKGgGaAloD0MIlDMUd7zkckCUhpRSlGgVS+RoFkdAleR56QeV9nV9lChoBmgJaA9DCIrpQqy+2HFAlIaUUpRoFU0HAWgWR0CV5LOjqOcUdX2UKGgGaAloD0MIrVCk+7kgbkCUhpRSlGgVTYEBaBZHQJXkwlpoK2N1fZQoaAZoCWgPQwgviEhNO1dxQJSGlFKUaBVL8WgWR0CV5NR2r4nGdX2UKGgGaAloD0MIxyk6kkuWcUCUhpRSlGgVS+1oFkdAleU5E+gUUXV9lChoBmgJaA9DCG+6ZYf4QWBAlIaUUpRoFU3oA2gWR0CV5liAlOXWdX2UKGgGaAloD0MIJ02DorlgcECUhpRSlGgVTR4BaBZHQJXmuTjebd91fZQoaAZoCWgPQwgbLnJPV89RQJSGlFKUaBVLtWgWR0CV5uULDye7dX2UKGgGaAloD0MIgVoMHuaFckCUhpRSlGgVTagCaBZHQJXoKqm0mdB1fZQoaAZoCWgPQwiV056Ss51wQJSGlFKUaBVNAAFoFkdAleiK3NLUTnV9lChoBmgJaA9DCC+JsyJqTk9AlIaUUpRoFUvWaBZHQJXootf5ULl1fZQoaAZoCWgPQwgOL4hIDVZyQJSGlFKUaBVL92gWR0CV6Rlsxfv4dX2UKGgGaAloD0MIu7iNBvAhcUCUhpRSlGgVS+5oFkdAlenJVGTcI3V9lChoBmgJaA9DCACuZMdGn29AlIaUUpRoFU0DAWgWR0CV6gLaEi+tdX2UKGgGaAloD0MI5ZttbkzqcECUhpRSlGgVTT0BaBZHQJXqlxDLKV91fZQoaAZoCWgPQwizsn3IG2FwQJSGlFKUaBVNAAFoFkdAler4ZdfLLnV9lChoBmgJaA9DCB+GVifnKHBAlIaUUpRoFU0FAWgWR0CV64v0AcT8dX2UKGgGaAloD0MIrKqX32l6cECUhpRSlGgVTQgBaBZHQJXrlFgDzRR1fZQoaAZoCWgPQwhZpfRMr3lsQJSGlFKUaBVNIAFoFkdAlezMvEjxC3V9lChoBmgJaA9DCLGjcagfBHFAlIaUUpRoFUvnaBZHQJXs4vHtF8Z1fZQoaAZoCWgPQwgBUMWN29pvQJSGlFKUaBVNTAFoFkdAle02QwK0D3V9lChoBmgJaA9DCEInhA66VG5AlIaUUpRoFU1DAWgWR0CV7UnE2pAEdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWViQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVy9ob21lL21hcmsvcmxfY291cnNlL3ZlbnYvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5RoDHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB59lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.15.0-56-generic-x86_64-with-glibc2.29 # 62~20.04.1-Ubuntu SMP Tue Nov 22 21:24:20 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "2.0.0+cu117", "GPU Enabled": "True", "Numpy": "1.24.2", "Gym": "0.21.0"}}