[2023-05-24 20:15:24,322][2722668] Saving configuration to /home/mark/rl_course/unit8/train_dir/default_experiment/config.json... [2023-05-24 20:15:24,325][2722668] Rollout worker 0 uses device cpu [2023-05-24 20:15:24,326][2722668] Rollout worker 1 uses device cpu [2023-05-24 20:15:24,327][2722668] Rollout worker 2 uses device cpu [2023-05-24 20:15:24,328][2722668] Rollout worker 3 uses device cpu [2023-05-24 20:15:24,329][2722668] Rollout worker 4 uses device cpu [2023-05-24 20:15:24,331][2722668] Rollout worker 5 uses device cpu [2023-05-24 20:15:24,332][2722668] Rollout worker 6 uses device cpu [2023-05-24 20:15:24,333][2722668] Rollout worker 7 uses device cpu [2023-05-24 20:15:24,397][2722668] Using GPUs [0] for process 0 (actually maps to GPUs [0]) [2023-05-24 20:15:24,398][2722668] InferenceWorker_p0-w0: min num requests: 2 [2023-05-24 20:15:24,427][2722668] Starting all processes... [2023-05-24 20:15:24,428][2722668] Starting process learner_proc0 [2023-05-24 20:15:24,476][2722668] Starting all processes... [2023-05-24 20:15:24,485][2722668] Starting process inference_proc0-0 [2023-05-24 20:15:24,485][2722668] Starting process rollout_proc0 [2023-05-24 20:15:24,485][2722668] Starting process rollout_proc1 [2023-05-24 20:15:24,486][2722668] Starting process rollout_proc2 [2023-05-24 20:15:24,486][2722668] Starting process rollout_proc3 [2023-05-24 20:15:24,487][2722668] Starting process rollout_proc4 [2023-05-24 20:15:24,487][2722668] Starting process rollout_proc5 [2023-05-24 20:15:24,488][2722668] Starting process rollout_proc6 [2023-05-24 20:15:24,488][2722668] Starting process rollout_proc7 [2023-05-24 20:15:26,022][2737021] Using GPUs [0] for process 0 (actually maps to GPUs [0]) [2023-05-24 20:15:26,022][2737021] Set environment var CUDA_VISIBLE_DEVICES to '0' (GPU indices [0]) for learning process 0 [2023-05-24 20:15:26,039][2737021] Num visible devices: 1 [2023-05-24 20:15:26,061][2737021] Starting seed is not provided [2023-05-24 20:15:26,062][2737021] Using GPUs [0] for process 0 (actually maps to GPUs [0]) [2023-05-24 20:15:26,062][2737021] Initializing actor-critic model on device cuda:0 [2023-05-24 20:15:26,062][2737021] RunningMeanStd input shape: (3, 72, 128) [2023-05-24 20:15:26,063][2737021] RunningMeanStd input shape: (1,) [2023-05-24 20:15:26,077][2737021] ConvEncoder: input_channels=3 [2023-05-24 20:15:26,147][2737054] Worker 7 uses CPU cores [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19] [2023-05-24 20:15:26,181][2737046] Using GPUs [0] for process 0 (actually maps to GPUs [0]) [2023-05-24 20:15:26,181][2737046] Set environment var CUDA_VISIBLE_DEVICES to '0' (GPU indices [0]) for inference process 0 [2023-05-24 20:15:26,189][2737053] Worker 6 uses CPU cores [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19] [2023-05-24 20:15:26,191][2737049] Worker 0 uses CPU cores [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19] [2023-05-24 20:15:26,193][2737047] Worker 2 uses CPU cores [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19] [2023-05-24 20:15:26,200][2737046] Num visible devices: 1 [2023-05-24 20:15:26,200][2737052] Worker 4 uses CPU cores [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19] [2023-05-24 20:15:26,201][2737048] Worker 1 uses CPU cores [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19] [2023-05-24 20:15:26,203][2737051] Worker 5 uses CPU cores [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19] [2023-05-24 20:15:26,203][2737021] Conv encoder output size: 512 [2023-05-24 20:15:26,204][2737021] Policy head output size: 512 [2023-05-24 20:15:26,217][2737021] Created Actor Critic model with architecture: [2023-05-24 20:15:26,217][2737050] Worker 3 uses CPU cores [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19] [2023-05-24 20:15:26,217][2737021] ActorCriticSharedWeights( (obs_normalizer): ObservationNormalizer( (running_mean_std): RunningMeanStdDictInPlace( (running_mean_std): ModuleDict( (obs): RunningMeanStdInPlace() ) ) ) (returns_normalizer): RecursiveScriptModule(original_name=RunningMeanStdInPlace) (encoder): VizdoomEncoder( (basic_encoder): ConvEncoder( (enc): RecursiveScriptModule( original_name=ConvEncoderImpl (conv_head): RecursiveScriptModule( original_name=Sequential (0): RecursiveScriptModule(original_name=Conv2d) (1): RecursiveScriptModule(original_name=ELU) (2): RecursiveScriptModule(original_name=Conv2d) (3): RecursiveScriptModule(original_name=ELU) (4): RecursiveScriptModule(original_name=Conv2d) (5): RecursiveScriptModule(original_name=ELU) ) (mlp_layers): RecursiveScriptModule( original_name=Sequential (0): RecursiveScriptModule(original_name=Linear) (1): RecursiveScriptModule(original_name=ELU) ) ) ) ) (core): ModelCoreRNN( (core): GRU(512, 512) ) (decoder): MlpDecoder( (mlp): Identity() ) (critic_linear): Linear(in_features=512, out_features=1, bias=True) (action_parameterization): ActionParameterizationDefault( (distribution_linear): Linear(in_features=512, out_features=5, bias=True) ) ) [2023-05-24 20:15:28,728][2737021] Using optimizer [2023-05-24 20:15:28,729][2737021] No checkpoints found [2023-05-24 20:15:28,729][2737021] Did not load from checkpoint, starting from scratch! [2023-05-24 20:15:28,729][2737021] Initialized policy 0 weights for model version 0 [2023-05-24 20:15:28,731][2737021] LearnerWorker_p0 finished initialization! [2023-05-24 20:15:28,731][2737021] Using GPUs [0] for process 0 (actually maps to GPUs [0]) [2023-05-24 20:15:28,856][2737046] RunningMeanStd input shape: (3, 72, 128) [2023-05-24 20:15:28,857][2737046] RunningMeanStd input shape: (1,) [2023-05-24 20:15:28,872][2737046] ConvEncoder: input_channels=3 [2023-05-24 20:15:29,004][2737046] Conv encoder output size: 512 [2023-05-24 20:15:29,004][2737046] Policy head output size: 512 [2023-05-24 20:15:30,976][2722668] Fps is (10 sec: nan, 60 sec: nan, 300 sec: nan). Total num frames: 0. Throughput: 0: nan. Samples: 0. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0) [2023-05-24 20:15:31,437][2722668] Inference worker 0-0 is ready! [2023-05-24 20:15:31,438][2722668] All inference workers are ready! Signal rollout workers to start! [2023-05-24 20:15:31,473][2737047] Doom resolution: 160x120, resize resolution: (128, 72) [2023-05-24 20:15:31,496][2737051] Doom resolution: 160x120, resize resolution: (128, 72) [2023-05-24 20:15:31,499][2737050] Doom resolution: 160x120, resize resolution: (128, 72) [2023-05-24 20:15:31,502][2737053] Doom resolution: 160x120, resize resolution: (128, 72) [2023-05-24 20:15:31,502][2737054] Doom resolution: 160x120, resize resolution: (128, 72) [2023-05-24 20:15:31,502][2737049] Doom resolution: 160x120, resize resolution: (128, 72) [2023-05-24 20:15:31,508][2737052] Doom resolution: 160x120, resize resolution: (128, 72) [2023-05-24 20:15:31,510][2737048] Doom resolution: 160x120, resize resolution: (128, 72) [2023-05-24 20:15:32,115][2737047] Decorrelating experience for 0 frames... [2023-05-24 20:15:32,121][2737049] Decorrelating experience for 0 frames... [2023-05-24 20:15:32,121][2737052] Decorrelating experience for 0 frames... [2023-05-24 20:15:32,122][2737048] Decorrelating experience for 0 frames... [2023-05-24 20:15:32,123][2737054] Decorrelating experience for 0 frames... [2023-05-24 20:15:32,123][2737050] Decorrelating experience for 0 frames... [2023-05-24 20:15:32,430][2737052] Decorrelating experience for 32 frames... [2023-05-24 20:15:32,433][2737050] Decorrelating experience for 32 frames... [2023-05-24 20:15:32,438][2737049] Decorrelating experience for 32 frames... [2023-05-24 20:15:32,439][2737054] Decorrelating experience for 32 frames... [2023-05-24 20:15:32,482][2737047] Decorrelating experience for 32 frames... [2023-05-24 20:15:32,772][2737051] Decorrelating experience for 0 frames... [2023-05-24 20:15:32,789][2737052] Decorrelating experience for 64 frames... [2023-05-24 20:15:32,792][2737053] Decorrelating experience for 0 frames... [2023-05-24 20:15:32,801][2737050] Decorrelating experience for 64 frames... [2023-05-24 20:15:32,808][2737048] Decorrelating experience for 32 frames... [2023-05-24 20:15:33,085][2737051] Decorrelating experience for 32 frames... [2023-05-24 20:15:33,105][2737053] Decorrelating experience for 32 frames... [2023-05-24 20:15:33,148][2737047] Decorrelating experience for 64 frames... [2023-05-24 20:15:33,151][2737049] Decorrelating experience for 64 frames... [2023-05-24 20:15:33,163][2737054] Decorrelating experience for 64 frames... [2023-05-24 20:15:33,173][2737048] Decorrelating experience for 64 frames... [2023-05-24 20:15:33,445][2737051] Decorrelating experience for 64 frames... [2023-05-24 20:15:33,456][2737053] Decorrelating experience for 64 frames... [2023-05-24 20:15:33,471][2737050] Decorrelating experience for 96 frames... [2023-05-24 20:15:33,511][2737047] Decorrelating experience for 96 frames... [2023-05-24 20:15:33,788][2737054] Decorrelating experience for 96 frames... [2023-05-24 20:15:33,826][2737053] Decorrelating experience for 96 frames... [2023-05-24 20:15:33,836][2737051] Decorrelating experience for 96 frames... [2023-05-24 20:15:34,104][2737048] Decorrelating experience for 96 frames... [2023-05-24 20:15:34,418][2737052] Decorrelating experience for 96 frames... [2023-05-24 20:15:34,783][2737049] Decorrelating experience for 96 frames... [2023-05-24 20:15:34,984][2737021] Signal inference workers to stop experience collection... [2023-05-24 20:15:34,992][2737046] InferenceWorker_p0-w0: stopping experience collection [2023-05-24 20:15:35,976][2722668] Fps is (10 sec: 0.0, 60 sec: 0.0, 300 sec: 0.0). Total num frames: 0. Throughput: 0: 62.8. Samples: 314. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0) [2023-05-24 20:15:35,978][2722668] Avg episode reward: [(0, '2.719')] [2023-05-24 20:15:36,386][2737021] Signal inference workers to resume experience collection... [2023-05-24 20:15:36,387][2737046] InferenceWorker_p0-w0: resuming experience collection [2023-05-24 20:15:38,875][2737046] Updated weights for policy 0, policy_version 10 (0.0469) [2023-05-24 20:15:40,695][2737046] Updated weights for policy 0, policy_version 20 (0.0009) [2023-05-24 20:15:40,976][2722668] Fps is (10 sec: 8601.6, 60 sec: 8601.6, 300 sec: 8601.6). Total num frames: 86016. Throughput: 0: 1969.0. Samples: 19690. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0) [2023-05-24 20:15:40,977][2722668] Avg episode reward: [(0, '4.404')] [2023-05-24 20:15:42,521][2737046] Updated weights for policy 0, policy_version 30 (0.0008) [2023-05-24 20:15:44,344][2737046] Updated weights for policy 0, policy_version 40 (0.0009) [2023-05-24 20:15:44,390][2722668] Heartbeat connected on Batcher_0 [2023-05-24 20:15:44,393][2722668] Heartbeat connected on LearnerWorker_p0 [2023-05-24 20:15:44,399][2722668] Heartbeat connected on InferenceWorker_p0-w0 [2023-05-24 20:15:44,404][2722668] Heartbeat connected on RolloutWorker_w0 [2023-05-24 20:15:44,405][2722668] Heartbeat connected on RolloutWorker_w1 [2023-05-24 20:15:44,409][2722668] Heartbeat connected on RolloutWorker_w2 [2023-05-24 20:15:44,415][2722668] Heartbeat connected on RolloutWorker_w3 [2023-05-24 20:15:44,422][2722668] Heartbeat connected on RolloutWorker_w4 [2023-05-24 20:15:44,423][2722668] Heartbeat connected on RolloutWorker_w5 [2023-05-24 20:15:44,425][2722668] Heartbeat connected on RolloutWorker_w6 [2023-05-24 20:15:44,427][2722668] Heartbeat connected on RolloutWorker_w7 [2023-05-24 20:15:45,976][2722668] Fps is (10 sec: 19661.0, 60 sec: 13107.2, 300 sec: 13107.2). Total num frames: 196608. Throughput: 0: 2436.5. Samples: 36548. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0) [2023-05-24 20:15:45,977][2722668] Avg episode reward: [(0, '4.379')] [2023-05-24 20:15:45,999][2737021] Saving new best policy, reward=4.379! [2023-05-24 20:15:46,177][2737046] Updated weights for policy 0, policy_version 50 (0.0008) [2023-05-24 20:15:48,003][2737046] Updated weights for policy 0, policy_version 60 (0.0009) [2023-05-24 20:15:49,817][2737046] Updated weights for policy 0, policy_version 70 (0.0008) [2023-05-24 20:15:50,976][2722668] Fps is (10 sec: 22528.0, 60 sec: 15564.8, 300 sec: 15564.8). Total num frames: 311296. Throughput: 0: 3517.5. Samples: 70350. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0) [2023-05-24 20:15:50,977][2722668] Avg episode reward: [(0, '4.638')] [2023-05-24 20:15:50,982][2737021] Saving new best policy, reward=4.638! [2023-05-24 20:15:51,666][2737046] Updated weights for policy 0, policy_version 80 (0.0008) [2023-05-24 20:15:53,506][2737046] Updated weights for policy 0, policy_version 90 (0.0009) [2023-05-24 20:15:55,344][2737046] Updated weights for policy 0, policy_version 100 (0.0009) [2023-05-24 20:15:55,976][2722668] Fps is (10 sec: 22528.1, 60 sec: 16875.5, 300 sec: 16875.5). Total num frames: 421888. Throughput: 0: 4150.5. Samples: 103762. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0) [2023-05-24 20:15:55,977][2722668] Avg episode reward: [(0, '4.824')] [2023-05-24 20:15:55,978][2737021] Saving new best policy, reward=4.824! [2023-05-24 20:15:57,161][2737046] Updated weights for policy 0, policy_version 110 (0.0009) [2023-05-24 20:15:58,982][2737046] Updated weights for policy 0, policy_version 120 (0.0008) [2023-05-24 20:16:00,811][2737046] Updated weights for policy 0, policy_version 130 (0.0008) [2023-05-24 20:16:00,976][2722668] Fps is (10 sec: 22118.3, 60 sec: 17749.3, 300 sec: 17749.3). Total num frames: 532480. Throughput: 0: 4018.2. Samples: 120546. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0) [2023-05-24 20:16:00,977][2722668] Avg episode reward: [(0, '4.588')] [2023-05-24 20:16:02,629][2737046] Updated weights for policy 0, policy_version 140 (0.0010) [2023-05-24 20:16:04,461][2737046] Updated weights for policy 0, policy_version 150 (0.0009) [2023-05-24 20:16:05,976][2722668] Fps is (10 sec: 22527.9, 60 sec: 18490.5, 300 sec: 18490.5). Total num frames: 647168. Throughput: 0: 4408.3. Samples: 154290. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0) [2023-05-24 20:16:05,977][2722668] Avg episode reward: [(0, '4.587')] [2023-05-24 20:16:06,238][2737046] Updated weights for policy 0, policy_version 160 (0.0008) [2023-05-24 20:16:08,048][2737046] Updated weights for policy 0, policy_version 170 (0.0008) [2023-05-24 20:16:09,867][2737046] Updated weights for policy 0, policy_version 180 (0.0009) [2023-05-24 20:16:10,976][2722668] Fps is (10 sec: 22937.7, 60 sec: 19046.4, 300 sec: 19046.4). Total num frames: 761856. Throughput: 0: 4703.9. Samples: 188156. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0) [2023-05-24 20:16:10,977][2722668] Avg episode reward: [(0, '4.869')] [2023-05-24 20:16:10,985][2737021] Saving new best policy, reward=4.869! [2023-05-24 20:16:11,691][2737046] Updated weights for policy 0, policy_version 190 (0.0009) [2023-05-24 20:16:13,543][2737046] Updated weights for policy 0, policy_version 200 (0.0008) [2023-05-24 20:16:15,376][2737046] Updated weights for policy 0, policy_version 210 (0.0009) [2023-05-24 20:16:15,976][2722668] Fps is (10 sec: 22528.1, 60 sec: 19387.7, 300 sec: 19387.7). Total num frames: 872448. Throughput: 0: 4553.1. Samples: 204890. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0) [2023-05-24 20:16:15,977][2722668] Avg episode reward: [(0, '5.324')] [2023-05-24 20:16:15,978][2737021] Saving new best policy, reward=5.324! [2023-05-24 20:16:17,217][2737046] Updated weights for policy 0, policy_version 220 (0.0008) [2023-05-24 20:16:19,046][2737046] Updated weights for policy 0, policy_version 230 (0.0010) [2023-05-24 20:16:20,891][2737046] Updated weights for policy 0, policy_version 240 (0.0008) [2023-05-24 20:16:20,976][2722668] Fps is (10 sec: 22118.4, 60 sec: 19660.8, 300 sec: 19660.8). Total num frames: 983040. Throughput: 0: 5292.6. Samples: 238478. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0) [2023-05-24 20:16:20,977][2722668] Avg episode reward: [(0, '5.011')] [2023-05-24 20:16:22,750][2737046] Updated weights for policy 0, policy_version 250 (0.0009) [2023-05-24 20:16:24,611][2737046] Updated weights for policy 0, policy_version 260 (0.0009) [2023-05-24 20:16:25,976][2722668] Fps is (10 sec: 22118.2, 60 sec: 19884.2, 300 sec: 19884.2). Total num frames: 1093632. Throughput: 0: 5603.0. Samples: 271824. Policy #0 lag: (min: 0.0, avg: 0.9, max: 2.0) [2023-05-24 20:16:25,977][2722668] Avg episode reward: [(0, '5.167')] [2023-05-24 20:16:26,448][2737046] Updated weights for policy 0, policy_version 270 (0.0009) [2023-05-24 20:16:28,301][2737046] Updated weights for policy 0, policy_version 280 (0.0009) [2023-05-24 20:16:30,111][2737046] Updated weights for policy 0, policy_version 290 (0.0009) [2023-05-24 20:16:30,976][2722668] Fps is (10 sec: 22118.4, 60 sec: 20070.4, 300 sec: 20070.4). Total num frames: 1204224. Throughput: 0: 5598.6. Samples: 288486. Policy #0 lag: (min: 0.0, avg: 0.9, max: 2.0) [2023-05-24 20:16:30,977][2722668] Avg episode reward: [(0, '5.892')] [2023-05-24 20:16:31,012][2737021] Saving new best policy, reward=5.892! [2023-05-24 20:16:31,920][2737046] Updated weights for policy 0, policy_version 300 (0.0008) [2023-05-24 20:16:33,732][2737046] Updated weights for policy 0, policy_version 310 (0.0008) [2023-05-24 20:16:35,541][2737046] Updated weights for policy 0, policy_version 320 (0.0009) [2023-05-24 20:16:35,976][2722668] Fps is (10 sec: 22528.3, 60 sec: 21981.9, 300 sec: 20291.0). Total num frames: 1318912. Throughput: 0: 5597.6. Samples: 322244. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0) [2023-05-24 20:16:35,977][2722668] Avg episode reward: [(0, '6.006')] [2023-05-24 20:16:35,978][2737021] Saving new best policy, reward=6.006! [2023-05-24 20:16:37,335][2737046] Updated weights for policy 0, policy_version 330 (0.0008) [2023-05-24 20:16:39,153][2737046] Updated weights for policy 0, policy_version 340 (0.0008) [2023-05-24 20:16:40,976][2722668] Fps is (10 sec: 22528.0, 60 sec: 22391.5, 300 sec: 20421.5). Total num frames: 1429504. Throughput: 0: 5605.9. Samples: 356028. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0) [2023-05-24 20:16:40,977][2722668] Avg episode reward: [(0, '8.106')] [2023-05-24 20:16:40,983][2737021] Saving new best policy, reward=8.106! [2023-05-24 20:16:40,984][2737046] Updated weights for policy 0, policy_version 350 (0.0009) [2023-05-24 20:16:42,811][2737046] Updated weights for policy 0, policy_version 360 (0.0008) [2023-05-24 20:16:44,631][2737046] Updated weights for policy 0, policy_version 370 (0.0008) [2023-05-24 20:16:45,976][2722668] Fps is (10 sec: 22527.8, 60 sec: 22459.7, 300 sec: 20589.2). Total num frames: 1544192. Throughput: 0: 5609.3. Samples: 372964. Policy #0 lag: (min: 0.0, avg: 0.7, max: 1.0) [2023-05-24 20:16:45,977][2722668] Avg episode reward: [(0, '7.390')] [2023-05-24 20:16:46,458][2737046] Updated weights for policy 0, policy_version 380 (0.0008) [2023-05-24 20:16:48,289][2737046] Updated weights for policy 0, policy_version 390 (0.0008) [2023-05-24 20:16:50,129][2737046] Updated weights for policy 0, policy_version 400 (0.0009) [2023-05-24 20:16:50,976][2722668] Fps is (10 sec: 22528.0, 60 sec: 22391.5, 300 sec: 20684.8). Total num frames: 1654784. Throughput: 0: 5607.5. Samples: 406626. Policy #0 lag: (min: 0.0, avg: 0.9, max: 2.0) [2023-05-24 20:16:50,977][2722668] Avg episode reward: [(0, '7.569')] [2023-05-24 20:16:51,933][2737046] Updated weights for policy 0, policy_version 410 (0.0009) [2023-05-24 20:16:53,746][2737046] Updated weights for policy 0, policy_version 420 (0.0009) [2023-05-24 20:16:55,581][2737046] Updated weights for policy 0, policy_version 430 (0.0008) [2023-05-24 20:16:55,976][2722668] Fps is (10 sec: 22528.1, 60 sec: 22459.7, 300 sec: 20817.3). Total num frames: 1769472. Throughput: 0: 5605.7. Samples: 440412. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0) [2023-05-24 20:16:55,977][2722668] Avg episode reward: [(0, '8.576')] [2023-05-24 20:16:55,978][2737021] Saving new best policy, reward=8.576! [2023-05-24 20:16:57,388][2737046] Updated weights for policy 0, policy_version 440 (0.0009) [2023-05-24 20:16:59,202][2737046] Updated weights for policy 0, policy_version 450 (0.0008) [2023-05-24 20:17:00,974][2737046] Updated weights for policy 0, policy_version 460 (0.0009) [2023-05-24 20:17:00,976][2722668] Fps is (10 sec: 22937.6, 60 sec: 22528.0, 300 sec: 20935.1). Total num frames: 1884160. Throughput: 0: 5609.6. Samples: 457320. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0) [2023-05-24 20:17:00,977][2722668] Avg episode reward: [(0, '11.579')] [2023-05-24 20:17:00,982][2737021] Saving new best policy, reward=11.579! [2023-05-24 20:17:02,777][2737046] Updated weights for policy 0, policy_version 470 (0.0010) [2023-05-24 20:17:04,583][2737046] Updated weights for policy 0, policy_version 480 (0.0008) [2023-05-24 20:17:05,976][2722668] Fps is (10 sec: 22527.9, 60 sec: 22459.7, 300 sec: 20997.4). Total num frames: 1994752. Throughput: 0: 5617.1. Samples: 491246. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0) [2023-05-24 20:17:05,977][2722668] Avg episode reward: [(0, '11.487')] [2023-05-24 20:17:06,386][2737046] Updated weights for policy 0, policy_version 490 (0.0009) [2023-05-24 20:17:08,197][2737046] Updated weights for policy 0, policy_version 500 (0.0008) [2023-05-24 20:17:10,043][2737046] Updated weights for policy 0, policy_version 510 (0.0010) [2023-05-24 20:17:10,976][2722668] Fps is (10 sec: 22528.0, 60 sec: 22459.7, 300 sec: 21094.4). Total num frames: 2109440. Throughput: 0: 5627.3. Samples: 525054. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0) [2023-05-24 20:17:10,977][2722668] Avg episode reward: [(0, '13.819')] [2023-05-24 20:17:10,982][2737021] Saving new best policy, reward=13.819! [2023-05-24 20:17:11,882][2737046] Updated weights for policy 0, policy_version 520 (0.0009) [2023-05-24 20:17:13,742][2737046] Updated weights for policy 0, policy_version 530 (0.0009) [2023-05-24 20:17:15,605][2737046] Updated weights for policy 0, policy_version 540 (0.0009) [2023-05-24 20:17:15,976][2722668] Fps is (10 sec: 22527.9, 60 sec: 22459.7, 300 sec: 21143.2). Total num frames: 2220032. Throughput: 0: 5625.3. Samples: 541624. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0) [2023-05-24 20:17:15,977][2722668] Avg episode reward: [(0, '14.199')] [2023-05-24 20:17:15,979][2737021] Saving new best policy, reward=14.199! [2023-05-24 20:17:17,499][2737046] Updated weights for policy 0, policy_version 550 (0.0009) [2023-05-24 20:17:19,360][2737046] Updated weights for policy 0, policy_version 560 (0.0009) [2023-05-24 20:17:20,976][2722668] Fps is (10 sec: 21708.6, 60 sec: 22391.4, 300 sec: 21150.2). Total num frames: 2326528. Throughput: 0: 5604.8. Samples: 574462. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0) [2023-05-24 20:17:20,977][2722668] Avg episode reward: [(0, '18.293')] [2023-05-24 20:17:20,997][2737021] Saving /home/mark/rl_course/unit8/train_dir/default_experiment/checkpoint_p0/checkpoint_000000569_2330624.pth... [2023-05-24 20:17:21,040][2737021] Saving new best policy, reward=18.293! [2023-05-24 20:17:21,192][2737046] Updated weights for policy 0, policy_version 570 (0.0008) [2023-05-24 20:17:23,003][2737046] Updated weights for policy 0, policy_version 580 (0.0009) [2023-05-24 20:17:24,820][2737046] Updated weights for policy 0, policy_version 590 (0.0009) [2023-05-24 20:17:25,976][2722668] Fps is (10 sec: 22118.5, 60 sec: 22459.8, 300 sec: 21228.0). Total num frames: 2441216. Throughput: 0: 5604.1. Samples: 608214. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0) [2023-05-24 20:17:25,977][2722668] Avg episode reward: [(0, '17.900')] [2023-05-24 20:17:26,623][2737046] Updated weights for policy 0, policy_version 600 (0.0008) [2023-05-24 20:17:28,477][2737046] Updated weights for policy 0, policy_version 610 (0.0009) [2023-05-24 20:17:30,310][2737046] Updated weights for policy 0, policy_version 620 (0.0009) [2023-05-24 20:17:30,976][2722668] Fps is (10 sec: 22528.1, 60 sec: 22459.7, 300 sec: 21265.1). Total num frames: 2551808. Throughput: 0: 5600.6. Samples: 624990. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0) [2023-05-24 20:17:30,977][2722668] Avg episode reward: [(0, '19.475')] [2023-05-24 20:17:30,983][2737021] Saving new best policy, reward=19.475! [2023-05-24 20:17:32,166][2737046] Updated weights for policy 0, policy_version 630 (0.0009) [2023-05-24 20:17:34,004][2737046] Updated weights for policy 0, policy_version 640 (0.0008) [2023-05-24 20:17:35,838][2737046] Updated weights for policy 0, policy_version 650 (0.0009) [2023-05-24 20:17:35,976][2722668] Fps is (10 sec: 22118.5, 60 sec: 22391.5, 300 sec: 21299.2). Total num frames: 2662400. Throughput: 0: 5596.0. Samples: 658444. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0) [2023-05-24 20:17:35,977][2722668] Avg episode reward: [(0, '20.309')] [2023-05-24 20:17:35,978][2737021] Saving new best policy, reward=20.309! [2023-05-24 20:17:37,680][2737046] Updated weights for policy 0, policy_version 660 (0.0009) [2023-05-24 20:17:39,524][2737046] Updated weights for policy 0, policy_version 670 (0.0009) [2023-05-24 20:17:40,976][2722668] Fps is (10 sec: 22118.6, 60 sec: 22391.5, 300 sec: 21330.7). Total num frames: 2772992. Throughput: 0: 5591.3. Samples: 692022. Policy #0 lag: (min: 0.0, avg: 0.7, max: 1.0) [2023-05-24 20:17:40,977][2722668] Avg episode reward: [(0, '20.988')] [2023-05-24 20:17:40,984][2737021] Saving new best policy, reward=20.988! [2023-05-24 20:17:41,339][2737046] Updated weights for policy 0, policy_version 680 (0.0008) [2023-05-24 20:17:43,169][2737046] Updated weights for policy 0, policy_version 690 (0.0008) [2023-05-24 20:17:44,986][2737046] Updated weights for policy 0, policy_version 700 (0.0009) [2023-05-24 20:17:45,976][2722668] Fps is (10 sec: 22528.0, 60 sec: 22391.5, 300 sec: 21390.2). Total num frames: 2887680. Throughput: 0: 5590.0. Samples: 708872. Policy #0 lag: (min: 0.0, avg: 0.7, max: 1.0) [2023-05-24 20:17:45,977][2722668] Avg episode reward: [(0, '23.068')] [2023-05-24 20:17:45,978][2737021] Saving new best policy, reward=23.068! [2023-05-24 20:17:46,819][2737046] Updated weights for policy 0, policy_version 710 (0.0008) [2023-05-24 20:17:48,686][2737046] Updated weights for policy 0, policy_version 720 (0.0008) [2023-05-24 20:17:50,505][2737046] Updated weights for policy 0, policy_version 730 (0.0008) [2023-05-24 20:17:50,976][2722668] Fps is (10 sec: 22528.0, 60 sec: 22391.5, 300 sec: 21416.2). Total num frames: 2998272. Throughput: 0: 5580.3. Samples: 742360. Policy #0 lag: (min: 0.0, avg: 0.8, max: 1.0) [2023-05-24 20:17:50,977][2722668] Avg episode reward: [(0, '21.517')] [2023-05-24 20:17:52,347][2737046] Updated weights for policy 0, policy_version 740 (0.0009) [2023-05-24 20:17:54,179][2737046] Updated weights for policy 0, policy_version 750 (0.0009) [2023-05-24 20:17:55,976][2722668] Fps is (10 sec: 22118.3, 60 sec: 22323.2, 300 sec: 21440.4). Total num frames: 3108864. Throughput: 0: 5577.1. Samples: 776024. Policy #0 lag: (min: 0.0, avg: 0.9, max: 2.0) [2023-05-24 20:17:55,977][2722668] Avg episode reward: [(0, '23.550')] [2023-05-24 20:17:55,992][2737021] Saving new best policy, reward=23.550! [2023-05-24 20:17:55,992][2737046] Updated weights for policy 0, policy_version 760 (0.0009) [2023-05-24 20:17:57,814][2737046] Updated weights for policy 0, policy_version 770 (0.0009) [2023-05-24 20:17:59,632][2737046] Updated weights for policy 0, policy_version 780 (0.0009) [2023-05-24 20:18:00,976][2722668] Fps is (10 sec: 22527.9, 60 sec: 22323.2, 300 sec: 21490.4). Total num frames: 3223552. Throughput: 0: 5583.7. Samples: 792890. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0) [2023-05-24 20:18:00,977][2722668] Avg episode reward: [(0, '26.290')] [2023-05-24 20:18:00,982][2737021] Saving new best policy, reward=26.290! [2023-05-24 20:18:01,438][2737046] Updated weights for policy 0, policy_version 790 (0.0009) [2023-05-24 20:18:03,272][2737046] Updated weights for policy 0, policy_version 800 (0.0008) [2023-05-24 20:18:05,079][2737046] Updated weights for policy 0, policy_version 810 (0.0009) [2023-05-24 20:18:05,976][2722668] Fps is (10 sec: 22528.0, 60 sec: 22323.2, 300 sec: 21510.6). Total num frames: 3334144. Throughput: 0: 5604.7. Samples: 826672. Policy #0 lag: (min: 0.0, avg: 0.9, max: 2.0) [2023-05-24 20:18:05,977][2722668] Avg episode reward: [(0, '22.770')] [2023-05-24 20:18:06,915][2737046] Updated weights for policy 0, policy_version 820 (0.0009) [2023-05-24 20:18:08,737][2737046] Updated weights for policy 0, policy_version 830 (0.0009) [2023-05-24 20:18:10,541][2737046] Updated weights for policy 0, policy_version 840 (0.0009) [2023-05-24 20:18:10,976][2722668] Fps is (10 sec: 22528.0, 60 sec: 22323.2, 300 sec: 21555.2). Total num frames: 3448832. Throughput: 0: 5604.0. Samples: 860396. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0) [2023-05-24 20:18:10,977][2722668] Avg episode reward: [(0, '22.683')] [2023-05-24 20:18:12,338][2737046] Updated weights for policy 0, policy_version 850 (0.0008) [2023-05-24 20:18:14,145][2737046] Updated weights for policy 0, policy_version 860 (0.0008) [2023-05-24 20:18:15,953][2737046] Updated weights for policy 0, policy_version 870 (0.0009) [2023-05-24 20:18:15,976][2722668] Fps is (10 sec: 22937.7, 60 sec: 22391.5, 300 sec: 21597.1). Total num frames: 3563520. Throughput: 0: 5608.9. Samples: 877388. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0) [2023-05-24 20:18:15,977][2722668] Avg episode reward: [(0, '22.152')] [2023-05-24 20:18:17,733][2737046] Updated weights for policy 0, policy_version 880 (0.0008) [2023-05-24 20:18:19,538][2737046] Updated weights for policy 0, policy_version 890 (0.0008) [2023-05-24 20:18:20,976][2722668] Fps is (10 sec: 22528.0, 60 sec: 22459.8, 300 sec: 21612.4). Total num frames: 3674112. Throughput: 0: 5625.5. Samples: 911592. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0) [2023-05-24 20:18:20,977][2722668] Avg episode reward: [(0, '22.559')] [2023-05-24 20:18:21,328][2737046] Updated weights for policy 0, policy_version 900 (0.0008) [2023-05-24 20:18:23,130][2737046] Updated weights for policy 0, policy_version 910 (0.0009) [2023-05-24 20:18:24,913][2737046] Updated weights for policy 0, policy_version 920 (0.0009) [2023-05-24 20:18:25,976][2722668] Fps is (10 sec: 22527.9, 60 sec: 22459.7, 300 sec: 21650.3). Total num frames: 3788800. Throughput: 0: 5641.0. Samples: 945866. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0) [2023-05-24 20:18:25,977][2722668] Avg episode reward: [(0, '24.137')] [2023-05-24 20:18:26,715][2737046] Updated weights for policy 0, policy_version 930 (0.0008) [2023-05-24 20:18:28,514][2737046] Updated weights for policy 0, policy_version 940 (0.0009) [2023-05-24 20:18:30,317][2737046] Updated weights for policy 0, policy_version 950 (0.0008) [2023-05-24 20:18:30,976][2722668] Fps is (10 sec: 22937.5, 60 sec: 22528.0, 300 sec: 21686.0). Total num frames: 3903488. Throughput: 0: 5646.4. Samples: 962962. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0) [2023-05-24 20:18:30,977][2722668] Avg episode reward: [(0, '25.558')] [2023-05-24 20:18:32,129][2737046] Updated weights for policy 0, policy_version 960 (0.0009) [2023-05-24 20:18:33,905][2737046] Updated weights for policy 0, policy_version 970 (0.0008) [2023-05-24 20:18:35,357][2737021] Stopping Batcher_0... [2023-05-24 20:18:35,357][2737021] Saving /home/mark/rl_course/unit8/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth... [2023-05-24 20:18:35,358][2737021] Loop batcher_evt_loop terminating... [2023-05-24 20:18:35,365][2722668] Component Batcher_0 stopped! [2023-05-24 20:18:35,370][2737054] Stopping RolloutWorker_w7... [2023-05-24 20:18:35,370][2737054] Loop rollout_proc7_evt_loop terminating... [2023-05-24 20:18:35,370][2737050] Stopping RolloutWorker_w3... [2023-05-24 20:18:35,371][2737049] Stopping RolloutWorker_w0... [2023-05-24 20:18:35,371][2737050] Loop rollout_proc3_evt_loop terminating... [2023-05-24 20:18:35,371][2737049] Loop rollout_proc0_evt_loop terminating... [2023-05-24 20:18:35,370][2722668] Component RolloutWorker_w7 stopped! [2023-05-24 20:18:35,371][2737052] Stopping RolloutWorker_w4... [2023-05-24 20:18:35,371][2737047] Stopping RolloutWorker_w2... [2023-05-24 20:18:35,371][2737052] Loop rollout_proc4_evt_loop terminating... [2023-05-24 20:18:35,372][2737047] Loop rollout_proc2_evt_loop terminating... [2023-05-24 20:18:35,372][2737046] Weights refcount: 2 0 [2023-05-24 20:18:35,372][2737051] Stopping RolloutWorker_w5... [2023-05-24 20:18:35,372][2737048] Stopping RolloutWorker_w1... [2023-05-24 20:18:35,372][2722668] Component RolloutWorker_w3 stopped! [2023-05-24 20:18:35,372][2737051] Loop rollout_proc5_evt_loop terminating... [2023-05-24 20:18:35,372][2737048] Loop rollout_proc1_evt_loop terminating... [2023-05-24 20:18:35,372][2722668] Component RolloutWorker_w0 stopped! [2023-05-24 20:18:35,373][2737046] Stopping InferenceWorker_p0-w0... [2023-05-24 20:18:35,373][2737046] Loop inference_proc0-0_evt_loop terminating... [2023-05-24 20:18:35,373][2737053] Stopping RolloutWorker_w6... [2023-05-24 20:18:35,374][2737053] Loop rollout_proc6_evt_loop terminating... [2023-05-24 20:18:35,373][2722668] Component RolloutWorker_w4 stopped! [2023-05-24 20:18:35,375][2722668] Component RolloutWorker_w2 stopped! [2023-05-24 20:18:35,376][2722668] Component RolloutWorker_w5 stopped! [2023-05-24 20:18:35,377][2722668] Component RolloutWorker_w1 stopped! [2023-05-24 20:18:35,377][2722668] Component InferenceWorker_p0-w0 stopped! [2023-05-24 20:18:35,378][2722668] Component RolloutWorker_w6 stopped! [2023-05-24 20:18:35,414][2737021] Saving /home/mark/rl_course/unit8/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth... [2023-05-24 20:18:35,481][2737021] Stopping LearnerWorker_p0... [2023-05-24 20:18:35,481][2737021] Loop learner_proc0_evt_loop terminating... [2023-05-24 20:18:35,481][2722668] Component LearnerWorker_p0 stopped! [2023-05-24 20:18:35,483][2722668] Waiting for process learner_proc0 to stop... [2023-05-24 20:18:36,292][2722668] Waiting for process inference_proc0-0 to join... [2023-05-24 20:18:36,294][2722668] Waiting for process rollout_proc0 to join... [2023-05-24 20:18:36,296][2722668] Waiting for process rollout_proc1 to join... [2023-05-24 20:18:36,297][2722668] Waiting for process rollout_proc2 to join... [2023-05-24 20:18:36,298][2722668] Waiting for process rollout_proc3 to join... [2023-05-24 20:18:36,300][2722668] Waiting for process rollout_proc4 to join... [2023-05-24 20:18:36,301][2722668] Waiting for process rollout_proc5 to join... [2023-05-24 20:18:36,302][2722668] Waiting for process rollout_proc6 to join... [2023-05-24 20:18:36,303][2722668] Waiting for process rollout_proc7 to join... [2023-05-24 20:18:36,304][2722668] Batcher 0 profile tree view: batching: 12.0222, releasing_batches: 0.0254 [2023-05-24 20:18:36,305][2722668] InferenceWorker_p0-w0 profile tree view: wait_policy: 0.0000 wait_policy_total: 5.1293 update_model: 2.8909 weight_update: 0.0008 one_step: 0.0017 handle_policy_step: 163.8550 deserialize: 6.4795, stack: 0.9489, obs_to_device_normalize: 40.6929, forward: 70.6622, send_messages: 10.9683 prepare_outputs: 26.5535 to_cpu: 17.5240 [2023-05-24 20:18:36,306][2722668] Learner 0 profile tree view: misc: 0.0045, prepare_batch: 8.7858 train: 24.3247 epoch_init: 0.0055, minibatch_init: 0.0054, losses_postprocess: 0.2306, kl_divergence: 0.2157, after_optimizer: 7.1346 calculate_losses: 8.0696 losses_init: 0.0036, forward_head: 0.7724, bptt_initial: 4.9783, tail: 0.4018, advantages_returns: 0.1117, losses: 0.8255 bptt: 0.8351 bptt_forward_core: 0.8008 update: 8.3318 clip: 1.1532 [2023-05-24 20:18:36,306][2722668] RolloutWorker_w0 profile tree view: wait_for_trajectories: 0.1621, enqueue_policy_requests: 7.3629, env_step: 118.9770, overhead: 8.9700, complete_rollouts: 0.2239 save_policy_outputs: 8.9400 split_output_tensors: 4.3843 [2023-05-24 20:18:36,307][2722668] RolloutWorker_w7 profile tree view: wait_for_trajectories: 0.1557, enqueue_policy_requests: 7.3900, env_step: 118.9123, overhead: 9.0051, complete_rollouts: 0.2221 save_policy_outputs: 9.1419 split_output_tensors: 4.4803 [2023-05-24 20:18:36,308][2722668] Loop Runner_EvtLoop terminating... [2023-05-24 20:18:36,309][2722668] Runner profile tree view: main_loop: 191.8832 [2023-05-24 20:18:36,310][2722668] Collected {0: 4005888}, FPS: 20876.7 [2023-05-24 20:25:41,995][2722668] Loading existing experiment configuration from /home/mark/rl_course/unit8/train_dir/default_experiment/config.json [2023-05-24 20:25:41,996][2722668] Overriding arg 'num_workers' with value 1 passed from command line [2023-05-24 20:25:41,997][2722668] Adding new argument 'no_render'=True that is not in the saved config file! [2023-05-24 20:25:41,997][2722668] Adding new argument 'save_video'=True that is not in the saved config file! [2023-05-24 20:25:41,998][2722668] Adding new argument 'video_frames'=1000000000.0 that is not in the saved config file! [2023-05-24 20:25:41,999][2722668] Adding new argument 'video_name'=None that is not in the saved config file! [2023-05-24 20:25:41,999][2722668] Adding new argument 'max_num_frames'=1000000000.0 that is not in the saved config file! [2023-05-24 20:25:42,000][2722668] Adding new argument 'max_num_episodes'=10 that is not in the saved config file! [2023-05-24 20:25:42,001][2722668] Adding new argument 'push_to_hub'=False that is not in the saved config file! [2023-05-24 20:25:42,001][2722668] Adding new argument 'hf_repository'=None that is not in the saved config file! [2023-05-24 20:25:42,002][2722668] Adding new argument 'policy_index'=0 that is not in the saved config file! [2023-05-24 20:25:42,003][2722668] Adding new argument 'eval_deterministic'=False that is not in the saved config file! [2023-05-24 20:25:42,004][2722668] Adding new argument 'train_script'=None that is not in the saved config file! [2023-05-24 20:25:42,004][2722668] Adding new argument 'enjoy_script'=None that is not in the saved config file! [2023-05-24 20:25:42,007][2722668] Using frameskip 1 and render_action_repeat=4 for evaluation [2023-05-24 20:25:42,019][2722668] Doom resolution: 160x120, resize resolution: (128, 72) [2023-05-24 20:25:42,021][2722668] RunningMeanStd input shape: (3, 72, 128) [2023-05-24 20:25:42,023][2722668] RunningMeanStd input shape: (1,) [2023-05-24 20:25:42,047][2722668] ConvEncoder: input_channels=3 [2023-05-24 20:25:42,207][2722668] Conv encoder output size: 512 [2023-05-24 20:25:42,208][2722668] Policy head output size: 512 [2023-05-24 20:25:44,701][2722668] Loading state from checkpoint /home/mark/rl_course/unit8/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth... [2023-05-24 20:25:46,226][2722668] Num frames 100... [2023-05-24 20:25:46,388][2722668] Num frames 200... [2023-05-24 20:25:46,546][2722668] Num frames 300... [2023-05-24 20:25:46,704][2722668] Num frames 400... [2023-05-24 20:25:46,870][2722668] Num frames 500... [2023-05-24 20:25:47,030][2722668] Num frames 600... [2023-05-24 20:25:47,200][2722668] Num frames 700... [2023-05-24 20:25:47,369][2722668] Num frames 800... [2023-05-24 20:25:47,528][2722668] Num frames 900... [2023-05-24 20:25:47,694][2722668] Num frames 1000... [2023-05-24 20:25:47,853][2722668] Num frames 1100... [2023-05-24 20:25:48,018][2722668] Num frames 1200... [2023-05-24 20:25:48,181][2722668] Num frames 1300... [2023-05-24 20:25:48,342][2722668] Num frames 1400... [2023-05-24 20:25:48,512][2722668] Num frames 1500... [2023-05-24 20:25:48,684][2722668] Num frames 1600... [2023-05-24 20:25:48,870][2722668] Avg episode rewards: #0: 39.780, true rewards: #0: 16.780 [2023-05-24 20:25:48,872][2722668] Avg episode reward: 39.780, avg true_objective: 16.780 [2023-05-24 20:25:48,913][2722668] Num frames 1700... [2023-05-24 20:25:49,081][2722668] Num frames 1800... [2023-05-24 20:25:49,236][2722668] Num frames 1900... [2023-05-24 20:25:49,394][2722668] Num frames 2000... [2023-05-24 20:25:49,553][2722668] Num frames 2100... [2023-05-24 20:25:49,720][2722668] Num frames 2200... [2023-05-24 20:25:49,885][2722668] Num frames 2300... [2023-05-24 20:25:50,050][2722668] Num frames 2400... [2023-05-24 20:25:50,215][2722668] Num frames 2500... [2023-05-24 20:25:50,370][2722668] Num frames 2600... [2023-05-24 20:25:50,528][2722668] Num frames 2700... [2023-05-24 20:25:50,629][2722668] Avg episode rewards: #0: 30.640, true rewards: #0: 13.640 [2023-05-24 20:25:50,631][2722668] Avg episode reward: 30.640, avg true_objective: 13.640 [2023-05-24 20:25:50,749][2722668] Num frames 2800... [2023-05-24 20:25:50,906][2722668] Num frames 2900... [2023-05-24 20:25:51,071][2722668] Num frames 3000... [2023-05-24 20:25:51,220][2722668] Num frames 3100... [2023-05-24 20:25:51,283][2722668] Avg episode rewards: #0: 22.010, true rewards: #0: 10.343 [2023-05-24 20:25:51,284][2722668] Avg episode reward: 22.010, avg true_objective: 10.343 [2023-05-24 20:25:51,452][2722668] Num frames 3200... [2023-05-24 20:25:51,616][2722668] Num frames 3300... [2023-05-24 20:25:51,774][2722668] Num frames 3400... [2023-05-24 20:25:51,938][2722668] Num frames 3500... [2023-05-24 20:25:52,091][2722668] Num frames 3600... [2023-05-24 20:25:52,251][2722668] Num frames 3700... [2023-05-24 20:25:52,422][2722668] Num frames 3800... [2023-05-24 20:25:52,596][2722668] Num frames 3900... [2023-05-24 20:25:52,765][2722668] Num frames 4000... [2023-05-24 20:25:52,945][2722668] Num frames 4100... [2023-05-24 20:25:53,115][2722668] Num frames 4200... [2023-05-24 20:25:53,280][2722668] Num frames 4300... [2023-05-24 20:25:53,439][2722668] Num frames 4400... [2023-05-24 20:25:53,575][2722668] Avg episode rewards: #0: 23.368, true rewards: #0: 11.117 [2023-05-24 20:25:53,577][2722668] Avg episode reward: 23.368, avg true_objective: 11.117 [2023-05-24 20:25:53,670][2722668] Num frames 4500... [2023-05-24 20:25:53,833][2722668] Num frames 4600... [2023-05-24 20:25:53,990][2722668] Num frames 4700... [2023-05-24 20:25:54,159][2722668] Num frames 4800... [2023-05-24 20:25:54,317][2722668] Num frames 4900... [2023-05-24 20:25:54,483][2722668] Num frames 5000... [2023-05-24 20:25:54,656][2722668] Num frames 5100... [2023-05-24 20:25:54,819][2722668] Num frames 5200... [2023-05-24 20:25:54,978][2722668] Num frames 5300... [2023-05-24 20:25:55,055][2722668] Avg episode rewards: #0: 22.222, true rewards: #0: 10.622 [2023-05-24 20:25:55,057][2722668] Avg episode reward: 22.222, avg true_objective: 10.622 [2023-05-24 20:25:55,204][2722668] Num frames 5400... [2023-05-24 20:25:55,368][2722668] Num frames 5500... [2023-05-24 20:25:55,527][2722668] Num frames 5600... [2023-05-24 20:25:55,686][2722668] Num frames 5700... [2023-05-24 20:25:55,853][2722668] Num frames 5800... [2023-05-24 20:25:56,015][2722668] Num frames 5900... [2023-05-24 20:25:56,177][2722668] Num frames 6000... [2023-05-24 20:25:56,325][2722668] Num frames 6100... [2023-05-24 20:25:56,461][2722668] Num frames 6200... [2023-05-24 20:25:56,624][2722668] Num frames 6300... [2023-05-24 20:25:56,686][2722668] Avg episode rewards: #0: 22.172, true rewards: #0: 10.505 [2023-05-24 20:25:56,688][2722668] Avg episode reward: 22.172, avg true_objective: 10.505 [2023-05-24 20:25:56,845][2722668] Num frames 6400... [2023-05-24 20:25:57,007][2722668] Num frames 6500... [2023-05-24 20:25:57,166][2722668] Num frames 6600... [2023-05-24 20:25:57,325][2722668] Num frames 6700... [2023-05-24 20:25:57,485][2722668] Num frames 6800... [2023-05-24 20:25:57,645][2722668] Num frames 6900... [2023-05-24 20:25:57,773][2722668] Num frames 7000... [2023-05-24 20:25:57,919][2722668] Num frames 7100... [2023-05-24 20:25:58,091][2722668] Num frames 7200... [2023-05-24 20:25:58,254][2722668] Num frames 7300... [2023-05-24 20:25:58,356][2722668] Avg episode rewards: #0: 22.469, true rewards: #0: 10.469 [2023-05-24 20:25:58,358][2722668] Avg episode reward: 22.469, avg true_objective: 10.469 [2023-05-24 20:25:58,478][2722668] Num frames 7400... [2023-05-24 20:25:58,648][2722668] Num frames 7500... [2023-05-24 20:25:58,810][2722668] Num frames 7600... [2023-05-24 20:25:58,966][2722668] Num frames 7700... [2023-05-24 20:25:59,124][2722668] Num frames 7800... [2023-05-24 20:25:59,297][2722668] Num frames 7900... [2023-05-24 20:25:59,413][2722668] Avg episode rewards: #0: 21.039, true rewards: #0: 9.914 [2023-05-24 20:25:59,415][2722668] Avg episode reward: 21.039, avg true_objective: 9.914 [2023-05-24 20:25:59,534][2722668] Num frames 8000... [2023-05-24 20:25:59,679][2722668] Num frames 8100... [2023-05-24 20:25:59,814][2722668] Num frames 8200... [2023-05-24 20:25:59,951][2722668] Num frames 8300... [2023-05-24 20:26:00,065][2722668] Avg episode rewards: #0: 19.491, true rewards: #0: 9.269 [2023-05-24 20:26:00,067][2722668] Avg episode reward: 19.491, avg true_objective: 9.269 [2023-05-24 20:26:00,151][2722668] Num frames 8400... [2023-05-24 20:26:00,305][2722668] Num frames 8500... [2023-05-24 20:26:00,467][2722668] Num frames 8600... [2023-05-24 20:26:00,632][2722668] Num frames 8700... [2023-05-24 20:26:00,796][2722668] Num frames 8800... [2023-05-24 20:26:00,958][2722668] Num frames 8900... [2023-05-24 20:26:01,115][2722668] Num frames 9000... [2023-05-24 20:26:01,289][2722668] Num frames 9100... [2023-05-24 20:26:01,458][2722668] Num frames 9200... [2023-05-24 20:26:01,606][2722668] Num frames 9300... [2023-05-24 20:26:01,770][2722668] Num frames 9400... [2023-05-24 20:26:01,931][2722668] Num frames 9500... [2023-05-24 20:26:02,093][2722668] Num frames 9600... [2023-05-24 20:26:02,250][2722668] Num frames 9700... [2023-05-24 20:26:02,416][2722668] Num frames 9800... [2023-05-24 20:26:02,573][2722668] Num frames 9900... [2023-05-24 20:26:02,736][2722668] Num frames 10000... [2023-05-24 20:26:02,903][2722668] Num frames 10100... [2023-05-24 20:26:03,073][2722668] Num frames 10200... [2023-05-24 20:26:03,243][2722668] Num frames 10300... [2023-05-24 20:26:03,442][2722668] Avg episode rewards: #0: 23.177, true rewards: #0: 10.377 [2023-05-24 20:26:03,443][2722668] Avg episode reward: 23.177, avg true_objective: 10.377 [2023-05-24 20:26:28,662][2722668] Replay video saved to /home/mark/rl_course/unit8/train_dir/default_experiment/replay.mp4! [2023-05-24 20:36:55,928][2722668] Loading existing experiment configuration from /home/mark/rl_course/unit8/train_dir/default_experiment/config.json [2023-05-24 20:36:55,929][2722668] Overriding arg 'num_workers' with value 1 passed from command line [2023-05-24 20:36:55,930][2722668] Adding new argument 'no_render'=True that is not in the saved config file! [2023-05-24 20:36:55,931][2722668] Adding new argument 'save_video'=True that is not in the saved config file! [2023-05-24 20:36:55,931][2722668] Adding new argument 'video_frames'=1000000000.0 that is not in the saved config file! [2023-05-24 20:36:55,932][2722668] Adding new argument 'video_name'=None that is not in the saved config file! [2023-05-24 20:36:55,933][2722668] Adding new argument 'max_num_frames'=100000 that is not in the saved config file! [2023-05-24 20:36:55,935][2722668] Adding new argument 'max_num_episodes'=10 that is not in the saved config file! [2023-05-24 20:36:55,935][2722668] Adding new argument 'push_to_hub'=True that is not in the saved config file! [2023-05-24 20:36:55,936][2722668] Adding new argument 'hf_repository'='markeidsaune/rl_course_vizdoom_health_gathering_supreme' that is not in the saved config file! [2023-05-24 20:36:55,937][2722668] Adding new argument 'policy_index'=0 that is not in the saved config file! [2023-05-24 20:36:55,938][2722668] Adding new argument 'eval_deterministic'=False that is not in the saved config file! [2023-05-24 20:36:55,939][2722668] Adding new argument 'train_script'=None that is not in the saved config file! [2023-05-24 20:36:55,940][2722668] Adding new argument 'enjoy_script'=None that is not in the saved config file! [2023-05-24 20:36:55,942][2722668] Using frameskip 1 and render_action_repeat=4 for evaluation [2023-05-24 20:36:55,956][2722668] RunningMeanStd input shape: (3, 72, 128) [2023-05-24 20:36:55,958][2722668] RunningMeanStd input shape: (1,) [2023-05-24 20:36:55,973][2722668] ConvEncoder: input_channels=3 [2023-05-24 20:36:56,024][2722668] Conv encoder output size: 512 [2023-05-24 20:36:56,025][2722668] Policy head output size: 512 [2023-05-24 20:36:56,073][2722668] Loading state from checkpoint /home/mark/rl_course/unit8/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth... [2023-05-24 20:36:56,899][2722668] Num frames 100... [2023-05-24 20:36:57,069][2722668] Num frames 200... [2023-05-24 20:36:57,233][2722668] Num frames 300... [2023-05-24 20:36:57,385][2722668] Num frames 400... [2023-05-24 20:36:57,538][2722668] Num frames 500... [2023-05-24 20:36:57,632][2722668] Avg episode rewards: #0: 9.230, true rewards: #0: 5.230 [2023-05-24 20:36:57,634][2722668] Avg episode reward: 9.230, avg true_objective: 5.230 [2023-05-24 20:36:57,756][2722668] Num frames 600... [2023-05-24 20:36:57,913][2722668] Num frames 700... [2023-05-24 20:36:58,075][2722668] Num frames 800... [2023-05-24 20:36:58,229][2722668] Num frames 900... [2023-05-24 20:36:58,384][2722668] Num frames 1000... [2023-05-24 20:36:58,539][2722668] Num frames 1100... [2023-05-24 20:36:58,697][2722668] Num frames 1200... [2023-05-24 20:36:58,858][2722668] Num frames 1300... [2023-05-24 20:36:59,059][2722668] Avg episode rewards: #0: 14.435, true rewards: #0: 6.935 [2023-05-24 20:36:59,061][2722668] Avg episode reward: 14.435, avg true_objective: 6.935 [2023-05-24 20:36:59,088][2722668] Num frames 1400... [2023-05-24 20:36:59,254][2722668] Num frames 1500... [2023-05-24 20:36:59,418][2722668] Num frames 1600... [2023-05-24 20:36:59,577][2722668] Num frames 1700... [2023-05-24 20:36:59,736][2722668] Num frames 1800... [2023-05-24 20:36:59,799][2722668] Avg episode rewards: #0: 11.677, true rewards: #0: 6.010 [2023-05-24 20:36:59,800][2722668] Avg episode reward: 11.677, avg true_objective: 6.010 [2023-05-24 20:36:59,961][2722668] Num frames 1900... [2023-05-24 20:37:00,133][2722668] Num frames 2000... [2023-05-24 20:37:00,299][2722668] Num frames 2100... [2023-05-24 20:37:00,452][2722668] Num frames 2200... [2023-05-24 20:37:00,589][2722668] Num frames 2300... [2023-05-24 20:37:00,726][2722668] Num frames 2400... [2023-05-24 20:37:00,861][2722668] Num frames 2500... [2023-05-24 20:37:01,014][2722668] Num frames 2600... [2023-05-24 20:37:01,177][2722668] Num frames 2700... [2023-05-24 20:37:01,338][2722668] Num frames 2800... [2023-05-24 20:37:01,494][2722668] Num frames 2900... [2023-05-24 20:37:01,651][2722668] Num frames 3000... [2023-05-24 20:37:01,757][2722668] Avg episode rewards: #0: 15.830, true rewards: #0: 7.580 [2023-05-24 20:37:01,759][2722668] Avg episode reward: 15.830, avg true_objective: 7.580 [2023-05-24 20:37:01,869][2722668] Num frames 3100... [2023-05-24 20:37:02,015][2722668] Num frames 3200... [2023-05-24 20:37:02,173][2722668] Num frames 3300... [2023-05-24 20:37:02,344][2722668] Num frames 3400... [2023-05-24 20:37:02,511][2722668] Num frames 3500... [2023-05-24 20:37:02,677][2722668] Num frames 3600... [2023-05-24 20:37:02,838][2722668] Num frames 3700... [2023-05-24 20:37:03,002][2722668] Num frames 3800... [2023-05-24 20:37:03,163][2722668] Num frames 3900... [2023-05-24 20:37:03,330][2722668] Num frames 4000... [2023-05-24 20:37:03,480][2722668] Num frames 4100... [2023-05-24 20:37:03,643][2722668] Num frames 4200... [2023-05-24 20:37:03,803][2722668] Num frames 4300... [2023-05-24 20:37:03,980][2722668] Num frames 4400... [2023-05-24 20:37:04,057][2722668] Avg episode rewards: #0: 18.616, true rewards: #0: 8.816 [2023-05-24 20:37:04,058][2722668] Avg episode reward: 18.616, avg true_objective: 8.816 [2023-05-24 20:37:04,219][2722668] Num frames 4500... [2023-05-24 20:37:04,399][2722668] Num frames 4600... [2023-05-24 20:37:04,557][2722668] Num frames 4700... [2023-05-24 20:37:04,721][2722668] Num frames 4800... [2023-05-24 20:37:04,884][2722668] Num frames 4900... [2023-05-24 20:37:05,038][2722668] Num frames 5000... [2023-05-24 20:37:05,198][2722668] Num frames 5100... [2023-05-24 20:37:05,274][2722668] Avg episode rewards: #0: 18.187, true rewards: #0: 8.520 [2023-05-24 20:37:05,276][2722668] Avg episode reward: 18.187, avg true_objective: 8.520 [2023-05-24 20:37:05,417][2722668] Num frames 5200... [2023-05-24 20:37:05,574][2722668] Num frames 5300... [2023-05-24 20:37:05,746][2722668] Num frames 5400... [2023-05-24 20:37:05,910][2722668] Num frames 5500... [2023-05-24 20:37:06,071][2722668] Num frames 5600... [2023-05-24 20:37:06,250][2722668] Num frames 5700... [2023-05-24 20:37:06,405][2722668] Num frames 5800... [2023-05-24 20:37:06,564][2722668] Num frames 5900... [2023-05-24 20:37:06,728][2722668] Num frames 6000... [2023-05-24 20:37:06,887][2722668] Num frames 6100... [2023-05-24 20:37:07,042][2722668] Num frames 6200... [2023-05-24 20:37:07,201][2722668] Num frames 6300... [2023-05-24 20:37:07,363][2722668] Num frames 6400... [2023-05-24 20:37:07,520][2722668] Num frames 6500... [2023-05-24 20:37:07,686][2722668] Num frames 6600... [2023-05-24 20:37:07,852][2722668] Num frames 6700... [2023-05-24 20:37:08,013][2722668] Num frames 6800... [2023-05-24 20:37:08,180][2722668] Num frames 6900... [2023-05-24 20:37:08,296][2722668] Avg episode rewards: #0: 22.194, true rewards: #0: 9.909 [2023-05-24 20:37:08,298][2722668] Avg episode reward: 22.194, avg true_objective: 9.909 [2023-05-24 20:37:08,399][2722668] Num frames 7000... [2023-05-24 20:37:08,566][2722668] Num frames 7100... [2023-05-24 20:37:08,728][2722668] Num frames 7200... [2023-05-24 20:37:08,936][2722668] Avg episode rewards: #0: 20.373, true rewards: #0: 9.122 [2023-05-24 20:37:08,938][2722668] Avg episode reward: 20.373, avg true_objective: 9.122 [2023-05-24 20:37:08,947][2722668] Num frames 7300... [2023-05-24 20:37:09,111][2722668] Num frames 7400... [2023-05-24 20:37:09,270][2722668] Num frames 7500... [2023-05-24 20:37:09,436][2722668] Num frames 7600... [2023-05-24 20:37:09,599][2722668] Num frames 7700... [2023-05-24 20:37:09,755][2722668] Num frames 7800... [2023-05-24 20:37:09,916][2722668] Num frames 7900... [2023-05-24 20:37:10,079][2722668] Num frames 8000... [2023-05-24 20:37:10,238][2722668] Num frames 8100... [2023-05-24 20:37:10,397][2722668] Num frames 8200... [2023-05-24 20:37:10,557][2722668] Num frames 8300... [2023-05-24 20:37:10,713][2722668] Num frames 8400... [2023-05-24 20:37:10,873][2722668] Num frames 8500... [2023-05-24 20:37:11,027][2722668] Num frames 8600... [2023-05-24 20:37:11,193][2722668] Num frames 8700... [2023-05-24 20:37:11,356][2722668] Avg episode rewards: #0: 22.078, true rewards: #0: 9.744 [2023-05-24 20:37:11,358][2722668] Avg episode reward: 22.078, avg true_objective: 9.744 [2023-05-24 20:37:11,408][2722668] Num frames 8800... [2023-05-24 20:37:11,565][2722668] Num frames 8900... [2023-05-24 20:37:11,726][2722668] Num frames 9000... [2023-05-24 20:37:11,891][2722668] Num frames 9100... [2023-05-24 20:37:12,051][2722668] Num frames 9200... [2023-05-24 20:37:12,203][2722668] Num frames 9300... [2023-05-24 20:37:12,284][2722668] Avg episode rewards: #0: 20.614, true rewards: #0: 9.314 [2023-05-24 20:37:12,285][2722668] Avg episode reward: 20.614, avg true_objective: 9.314 [2023-05-24 20:37:34,803][2722668] Replay video saved to /home/mark/rl_course/unit8/train_dir/default_experiment/replay.mp4!