--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_trainer datasets: - PolyAI/minds14 metrics: - wer model-index: - name: whisper-tiny-minds14-en-us results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: PolyAI/minds14 type: PolyAI/minds14 config: en-US split: train args: en-US metrics: - name: Wer type: wer value: 0.3382526564344746 --- # whisper-tiny-minds14-en-us This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the PolyAI/minds14 dataset. It achieves the following results on the evaluation set: - Loss: 0.7795 - Wer Ortho: 0.3368 - Wer: 0.3383 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |:-------------:|:--------:|:----:|:---------------:|:---------:|:------:| | 0.0007 | 17.8571 | 500 | 0.6344 | 0.3226 | 0.3253 | | 0.0002 | 35.7143 | 1000 | 0.6878 | 0.3313 | 0.3335 | | 0.0001 | 53.5714 | 1500 | 0.7186 | 0.3344 | 0.3359 | | 0.0001 | 71.4286 | 2000 | 0.7409 | 0.3344 | 0.3359 | | 0.0001 | 89.2857 | 2500 | 0.7565 | 0.3331 | 0.3347 | | 0.0001 | 107.1429 | 3000 | 0.7684 | 0.3368 | 0.3383 | | 0.0 | 125.0 | 3500 | 0.7763 | 0.3374 | 0.3388 | | 0.0 | 142.8571 | 4000 | 0.7795 | 0.3368 | 0.3383 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1