marroyo777 commited on
Commit
b33e833
1 Parent(s): 43116b3

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +84 -0
README.md ADDED
@@ -0,0 +1,84 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ language:
4
+ - en
5
+ metrics:
6
+ - accuracy
7
+ pipeline_tag: text-generation
8
+ widget:
9
+ - text: <schema>CREATE TABLE radio(age VARCHAR, radio_id VARCHAR, frequency VARCHAR,
10
+ wavelength VARCHAR); CREATE TABLE radio_faults(radio_id VARCHAR, fault_description
11
+ VARCHAR)</schema><question>Get the radio id and defect descriptions of radios
12
+ that have wavelength greater than 30 ?</question><sql>
13
+ example_title: example1
14
+ - text: '<schema>CREATE TABLE system(JobID: String,GID: String, UID: String, Start:Time(yyyy/mm/dd),
15
+ End: Time,ElapsedRaw: Time, CPUTimeRAW: Time,NCPUS: Number,NNodes: Number, NodeList:
16
+ List, State:String, Timelimit: Time);</schema><question>Get UID and job id for
17
+ Jobs that started on Jan 20 , 2023</question><sql>'
18
+ example_title: example2
19
+ - text: <schema>CREATE TABLE department (Department_ID number, Name text, Creation
20
+ text, Ranking number, Budget_in_Billions number, Num_Employees number) which has
21
+ Department_ID as primary key abd CREATE TABLE head (head_ID number, name text,
22
+ born_state text, age number) which has head_ID as primary key and CREATE TABLE
23
+ management (department_ID number, head_ID number, temporary_acting text) which
24
+ has department_ID as primary key</schema><question>
25
+ example_title: example3
26
+ tags:
27
+ - code
28
+ - sql
29
+ - text2sql
30
+ - instruction_tuned
31
+ - jax
32
+ - pytorch
33
+ - 1b
34
+ - expert
35
+ - llama-cpp
36
+ - gguf-my-repo
37
+ datasets:
38
+ - PipableAI/spider-bird
39
+ base_model: PipableAI/pip-SQL-1B
40
+ ---
41
+
42
+ # marroyo777/pip-SQL-1B-Q4_K_M-GGUF
43
+ This model was converted to GGUF format from [`PipableAI/pip-SQL-1B`](https://huggingface.co/PipableAI/pip-SQL-1B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
44
+ Refer to the [original model card](https://huggingface.co/PipableAI/pip-SQL-1B) for more details on the model.
45
+
46
+ ## Use with llama.cpp
47
+ Install llama.cpp through brew (works on Mac and Linux)
48
+
49
+ ```bash
50
+ brew install llama.cpp
51
+
52
+ ```
53
+ Invoke the llama.cpp server or the CLI.
54
+
55
+ ### CLI:
56
+ ```bash
57
+ llama-cli --hf-repo marroyo777/pip-SQL-1B-Q4_K_M-GGUF --hf-file pip-sql-1b-q4_k_m-imat.gguf -p "The meaning to life and the universe is"
58
+ ```
59
+
60
+ ### Server:
61
+ ```bash
62
+ llama-server --hf-repo marroyo777/pip-SQL-1B-Q4_K_M-GGUF --hf-file pip-sql-1b-q4_k_m-imat.gguf -c 2048
63
+ ```
64
+
65
+ Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
66
+
67
+ Step 1: Clone llama.cpp from GitHub.
68
+ ```
69
+ git clone https://github.com/ggerganov/llama.cpp
70
+ ```
71
+
72
+ Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
73
+ ```
74
+ cd llama.cpp && LLAMA_CURL=1 make
75
+ ```
76
+
77
+ Step 3: Run inference through the main binary.
78
+ ```
79
+ ./llama-cli --hf-repo marroyo777/pip-SQL-1B-Q4_K_M-GGUF --hf-file pip-sql-1b-q4_k_m-imat.gguf -p "The meaning to life and the universe is"
80
+ ```
81
+ or
82
+ ```
83
+ ./llama-server --hf-repo marroyo777/pip-SQL-1B-Q4_K_M-GGUF --hf-file pip-sql-1b-q4_k_m-imat.gguf -c 2048
84
+ ```