masapasa commited on
Commit
be07f4d
1 Parent(s): a856bdd

End of training

Browse files
Files changed (1) hide show
  1. README.md +74 -0
README.md ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - emotion
7
+ metrics:
8
+ - accuracy
9
+ model-index:
10
+ - name: sagemaker-distilbert-emotion
11
+ results:
12
+ - task:
13
+ name: Text Classification
14
+ type: text-classification
15
+ dataset:
16
+ name: emotion
17
+ type: emotion
18
+ args: default
19
+ metrics:
20
+ - name: Accuracy
21
+ type: accuracy
22
+ value: 0.915
23
+ ---
24
+
25
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
26
+ should probably proofread and complete it, then remove this comment. -->
27
+
28
+ # sagemaker-distilbert-emotion
29
+
30
+ This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset.
31
+ It achieves the following results on the evaluation set:
32
+ - Loss: 0.2590
33
+ - Accuracy: 0.915
34
+
35
+ ## Model description
36
+
37
+ More information needed
38
+
39
+ ## Intended uses & limitations
40
+
41
+ More information needed
42
+
43
+ ## Training and evaluation data
44
+
45
+ More information needed
46
+
47
+ ## Training procedure
48
+
49
+ ### Training hyperparameters
50
+
51
+ The following hyperparameters were used during training:
52
+ - learning_rate: 3e-05
53
+ - train_batch_size: 32
54
+ - eval_batch_size: 64
55
+ - seed: 42
56
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
57
+ - lr_scheduler_type: linear
58
+ - lr_scheduler_warmup_steps: 500
59
+ - num_epochs: 1
60
+ - mixed_precision_training: Native AMP
61
+
62
+ ### Training results
63
+
64
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
65
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
66
+ | 0.9292 | 1.0 | 500 | 0.2590 | 0.915 |
67
+
68
+
69
+ ### Framework versions
70
+
71
+ - Transformers 4.12.3
72
+ - Pytorch 1.9.1
73
+ - Datasets 1.15.1
74
+ - Tokenizers 0.10.3