{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f219e617880>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f219e617910>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f219e6179a0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f219e617a30>", "_build": "<function ActorCriticPolicy._build at 0x7f219e617ac0>", "forward": "<function ActorCriticPolicy.forward at 0x7f219e617b50>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f219e617be0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f219e617c70>", "_predict": "<function ActorCriticPolicy._predict at 0x7f219e617d00>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f219e617d90>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f219e617e20>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f219e617eb0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f219e7c5b40>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1722791205655492271, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAE3gOD0DrwG8OHxwvRBvF7zM9kq9akb+vAAAgD8AAIA/ZgDCPN75/z1FZy69Fq7vvR8n+TwDm3m9AAAAAAAAAADTthO+5hiRPyPjSL57MsS+YWY1viuqYT0AAAAAAAAAAKYc0D2cuZE+ds4Avl0per75Gci8tv8rPQAAAAAAAAAA0yonPmPJPT/UjgI9Sgervv49yzy9MoC7AAAAAAAAAAAzv9k70AW4P4sSLD5B3oM+ouj3u+AuGr0AAAAAAAAAAE2r/L2dFow/yVqUO6Sho77+NQi+fteSvAAAAAAAAAAAWsuRPVzTLLq+L9G1J8xbsfAFVTvjs/g0AACAPwAAgD+ajfA72RMYPpJRIz2VSTq+YezivFbFB74AAAAAAAAAAM0ro7092hC5bTD4PBa7MbVLBTm7xrwjtAAAAAAAAIA/zVqDPfacD7rQXCezRTGWLyupqzqqYsgzAACAPwAAgD+mKIo9P+48PniKFL51Z1e+XpjGvKxrszwAAAAAAAAAAA0j4j04XYQ+4OYSPVZgd75Jrys9Ds6uvAAAAAAAAAAAI3aDvtcXTL22tsy5DuK5uAVpsj53jxQ5AACAPwAAAACa7cY8FOSPutwkNLs6HKQ8S7KUO1Xljb0AAIA/AACAPw17YD7OLZc/MFG1PkYBxr4qhhg+Sj8+vQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHAXE2YOUdKMAWyUTVQBjAF0lEdAkQJ9dAxBV3V9lChoBkdAckY3GXHBDWgHTUYBaAhHQJECndepn6F1fZQoaAZHQHC5mcvugHxoB01cAWgIR0CRAvQlKK51dX2UKGgGR0BxIjyFwkxAaAdNVwFoCEdAkQOXnyNGVnV9lChoBkdAbtua4tpVTGgHTV8BaAhHQJEEGACnxax1fZQoaAZHQHCzQ/TspodoB02aAWgIR0CRB70wrUb2dX2UKGgGR0BsC4ACGN70aAdNUAFoCEdAkR66dc0Lt3V9lChoBkdAbqvVghKUV2gHTawBaAhHQJEe6mEXcg11fZQoaAZHQG04qmj0tiBoB00/AWgIR0CRH7MrmQr+dX2UKGgGR0BvnFD6WPcSaAdNWAFoCEdAkR/SFXaJynV9lChoBkdAcZXm2b5M12gHTUMBaAhHQJEgfzH0btJ1fZQoaAZHQHFC/5ULlV9oB03UAWgIR0CRIL5OafBfdX2UKGgGR0BxML/JeVs2aAdNSgFoCEdAkSIFo11nunV9lChoBkdAcnCLVFx4p2gHTTgBaAhHQJEjG2+fywx1fZQoaAZHQG/YsI/qxC9oB01xAWgIR0CRI1+MqBmPdX2UKGgGR0Bu1rlNlAeJaAdNeAFoCEdAkSURfrrxAnV9lChoBkdAcgHM7EHdGmgHTY0BaAhHQJElqKsMiKR1fZQoaAZHQHLy95Qgs9VoB01fAWgIR0CRJdbOu7pWdX2UKGgGR0BuulKh+OOsaAdNfQFoCEdAkSZGOp84P3V9lChoBkdAbU38iOearmgHTUMBaAhHQJEobYNAkcF1fZQoaAZHQG3lxMWXTmZoB00pAWgIR0CRKfFF2FFldX2UKGgGR0BcnbVFx4puaAdN6ANoCEdAkSnwrDqGDnV9lChoBkdAca2LYf4h2WgHTSMBaAhHQJEqnTSb6P91fZQoaAZHQHFolGXokiVoB00yAWgIR0CRKxCHymQ9dX2UKGgGR0BsS+iQDFIeaAdNIgFoCEdAkStU4BFNL3V9lChoBkdAbga0JF9a2WgHTXMBaAhHQJEsv0RODap1fZQoaAZHQHC7nd9Dx9ZoB00gAWgIR0CRLVMGorFwdX2UKGgGR0BxVxAprk8zaAdNTgFoCEdAkS35uuRs/XV9lChoBkdAcIEXC0ngHmgHTXkBaAhHQJEuIbIcR151fZQoaAZHQG9mFjEvTPVoB00HAWgIR0CRLkPsAvL6dX2UKGgGR0ByY6Eh7mdRaAdNRgFoCEdAkS6yg9Net3V9lChoBkdAbzh2oNutOmgHTRABaAhHQJEu9rqMWGh1fZQoaAZHQG6gd4mkWRBoB00WAWgIR0CRL0NATqSpdX2UKGgGR0Bwvi0rsjVyaAdNQgFoCEdAkTDOgxrSE3V9lChoBkdAbhCJtSAH3WgHTTEBaAhHQJEzvJYDDCR1fZQoaAZHQHD6ObiIcipoB01HAWgIR0CRNKVQhwERdX2UKGgGR0BwMqGHpKSQaAdNgwFoCEdAkTV8lC1JDnV9lChoBkdAcWlRQJokA2gHTTkBaAhHQJE1pGZuyeJ1fZQoaAZHQHHZW+XZ5A1oB01aAWgIR0CRNq7sfJV9dX2UKGgGR0ByodhRZU1iaAdL8mgIR0CRNuGDL8rJdX2UKGgGR0Brem49X9zfaAdNngFoCEdAkTkKI7/4qXV9lChoBkdAcCSIjGDL82gHTWQBaAhHQJE5ISamXPZ1fZQoaAZHQGHlb0voNd9oB03oA2gIR0CROXPzWf9QdX2UKGgGR0By29poK2KEaAdNPQFoCEdAkTpJylvZRXV9lChoBkdAcTMES/TLGWgHTZ8BaAhHQJE8wEMb3oN1fZQoaAZHQGvM4JNTLntoB01CAWgIR0CRPTmZmZmadX2UKGgGR0BulwYBNmDlaAdNFgFoCEdAkT7gZsKsuHV9lChoBkdAb2mdMj/uLWgHTdQBaAhHQJE/QjSofjl1fZQoaAZHQHEXf4EfT1FoB030AWgIR0CRP3gJTl1bdX2UKGgGR0BFIgBT4tYkaAdL2GgIR0CRP5I2wV0tdX2UKGgGR0ByoxWU8mrsaAdNLwFoCEdAkUEP0dzXBnV9lChoBkdAb7wkHD766GgHTQsBaAhHQJFBmxB3Roh1fZQoaAZHQHCI0lqrR0FoB00lAWgIR0CRQaUeuFHsdX2UKGgGR0BwNIsDnvDxaAdNHwJoCEdAkUJV10T103V9lChoBkdAQp1rTH80lGgHTQsBaAhHQJFD9fOUt7N1fZQoaAZHQHF5AUlAu7JoB00gAWgIR0CRWIshxHXmdX2UKGgGR0ByKp2JSBK+aAdNMAFoCEdAkViycf/3nXV9lChoBkdAbtBKh+OOsGgHTS8BaAhHQJFcE9r433p1fZQoaAZHQHFjU3CKrJdoB01+AWgIR0CRXK/9YOlPdX2UKGgGR0BwVomJFb3XaAdNEwFoCEdAkV2wOJ+DvnV9lChoBkdAcwheuV5a/2gHTSIBaAhHQJFeAtlI3BJ1fZQoaAZHQHKYxIvrWy1oB006AWgIR0CRXpcfNiYtdX2UKGgGR0Byc9CngpBpaAdNKQFoCEdAkWBF0Lc9GXV9lChoBkdAcFqxG2Cul2gHTTIBaAhHQJFgmD/VAiV1fZQoaAZHQHMm/F72L51oB01tAWgIR0CRYQ5CngpCdX2UKGgGR0BxGohMajveaAdNNQFoCEdAkWF4mw7kn3V9lChoBkdAcayWJaaCtmgHTWEBaAhHQJFh6G/N7jV1fZQoaAZHQHIQNqHoHLRoB03IAWgIR0CRYl3RXwLFdX2UKGgGR0Bwf2RvFWGRaAdNGwFoCEdAkWMQ4XGfgHV9lChoBkdAcA9UAT7EYWgHTVoBaAhHQJFkB7x/d691fZQoaAZHQHGH/L9uP3loB00cAWgIR0CRZmnyup0fdX2UKGgGR0Bb5whfShJzaAdN6ANoCEdAkWg0ORT0hHV9lChoBkdAcZX0rsjVx2gHTUgBaAhHQJFozLxI8Qt1fZQoaAZHQHC0sDW9US9oB029AWgIR0CRaMyiVSn+dX2UKGgGR0Bv0zIDHOryaAdNIAFoCEdAkWkbWd3B6HV9lChoBkdAcwRphWo3rGgHTQcBaAhHQJFqAf3evZB1fZQoaAZHQG4/fkvK2a5oB01YAWgIR0CRaiicoYvWdX2UKGgGR0BuaJ53Tuv2aAdNawFoCEdAkWsebiIcinV9lChoBkdAa+tkZrHlwWgHTSkBaAhHQJFrgl5WzWx1fZQoaAZHQHNY4kRjBmBoB01IAWgIR0CRa+ByCFsYdX2UKGgGR0BuroBaLXMAaAdNJAFoCEdAkWxyr1dxAHV9lChoBkdAW8H3cpLEk2gHTegDaAhHQJFuMEkjX4F1fZQoaAZHQHAsox+KCQNoB01RAWgIR0CRbnWDpTuOdX2UKGgGR0ByXC05U96kaAdNQAFoCEdAkW7MPSUkfXV9lChoBkdAcNKmQKa5PWgHTbYBaAhHQJFwkJv5xip1fZQoaAZHQHKQmPYFqztoB00UAWgIR0CRcdkiliz+dX2UKGgGR0BwY9hTfixWaAdNJQFoCEdAkXHuc2BJ7XV9lChoBkdARv6tPpIMB2gHTRIBaAhHQJFyHWcz68B1fZQoaAZHQHGz5U96kZdoB01aAWgIR0CRcjqj8DSxdX2UKGgGR0BwmxJEpiI+aAdNJgFoCEdAkXKCZF5OanV9lChoBkdAcgdBDG96C2gHTUABaAhHQJF06GYa5wx1fZQoaAZHQEvUmoBJZntoB0v5aAhHQJF1Kxjawll1fZQoaAZHQHIS90NjLB9oB00eAWgIR0CRdV6zmfXgdX2UKGgGR0BytnGrCFbnaAdNLQFoCEdAkXV0wJw84nV9lChoBkdAbi/qPfbblGgHTR0BaAhHQJF1zHYHxBp1fZQoaAZHQHK8ocaOxSpoB00sAWgIR0CReZ8E3bVSdX2UKGgGR0BvznEqDsdDaAdNLgFoCEdAkXrFeSjgynV9lChoBkdAbZSUAT7EYWgHTUcBaAhHQJF7g1zhgmZ1fZQoaAZHQHGMC+HrQgNoB03WAWgIR0CRe6nPVurIdX2UKGgGR0BvxLHAAQxvaAdNNQFoCEdAkX29YfW+XnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |