--- library_name: transformers license: mit base_model: mateiaassAI/teacher_sst2 tags: - generated_from_trainer datasets: - laroseda metrics: - f1 - accuracy - precision - recall model-index: - name: teacher_sst2_laroseda results: - task: name: Text Classification type: text-classification dataset: name: laroseda type: laroseda config: laroseda split: train args: laroseda metrics: - name: F1 type: f1 value: 0.9489953582155384 - name: Accuracy type: accuracy value: 0.949 - name: Precision type: precision value: 0.9490837535014006 - name: Recall type: recall value: 0.949 --- # teacher_sst2_laroseda This model is a fine-tuned version of [mateiaassAI/teacher_sst2](https://huggingface.co/mateiaassAI/teacher_sst2) on the laroseda dataset. It achieves the following results on the evaluation set: - Loss: 0.1906 - F1: 0.9490 - Roc Auc: 0.9490 - Accuracy: 0.949 - Precision: 0.9491 - Recall: 0.949 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.7e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:|:---------:|:------:| | 0.1799 | 1.0 | 688 | 0.1426 | 0.9435 | 0.9434 | 0.943 | 0.9441 | 0.943 | | 0.1071 | 2.0 | 1376 | 0.1906 | 0.9490 | 0.9490 | 0.949 | 0.9491 | 0.949 | ### Framework versions - Transformers 4.45.1 - Pytorch 2.4.0 - Datasets 3.0.1 - Tokenizers 0.20.0