matnord commited on
Commit
e732125
1 Parent(s): 67cbcd1

Upload lunarlander agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 261.51 +/- 17.11
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f370b64ab00>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f370b64ab90>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f370b64ac20>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f370b64acb0>", "_build": "<function ActorCriticPolicy._build at 0x7f370b64ad40>", "forward": "<function ActorCriticPolicy.forward at 0x7f370b64add0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f370b64ae60>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f370b64aef0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f370b64af80>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f370b64b010>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f370b64b0a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f370b64b130>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f370b64d9c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000.0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690729956970521511, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJOnHT5I1607covBti87VLQYNEs9/er3NQAAgD8AAIA/wN7HPUhHiLplVeE6AnEMNoQoYDsNPAO6AACAPwAAgD+NyIE9j454unZ0BLzX8Yo8Um5au/6acT0AAIA/AACAPyYt7T3IbRQ/I/uzvWFla763Pp88NIcDvQAAAAAAAAAAM9jPPJKsqz8o5AM+B+C7vtYLYT2huaM9AAAAAAAAAAAazUQ9jzpduliNfjZ63oExMJcrO7sil7UAAIA/AACAPw0I6z0pH1Y+O1UrvhxnQb617I297oCpPAAAAAAAAAAAJlHRvcieLT/eiLY9lIyJvlKpBj3g+069AAAAAAAAAADNj4k9oZMlP9hNW7xPpH++TRhpPLUQU7wAAAAAAAAAAOabPr0p4FS6v7Omuv6QlrbXuKa4DpbEOQAAgD8AAIA/Si9qvkyJiD+s5JO9YpVgvoLPUr7WYl49AAAAAAAAAAAzq2A84Q6Rus6h4bmGe920ZR4UO8rVAjkAAIA/AACAP7qTET5lOrU/uNyqPvv+x74m7wU+GKBPPgAAAAAAAAAAiCSWvgfWUz/erTM+epGQvi6DEL1+6zc9AAAAAAAAAADTVQi+P2g2Px7lAD1Hs0u+9+YpPMrZcz0AAAAAAAAAAJp5GT1Sl9C7FUBUPKTQezwRJEa9dcNUPQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHAbHM+u/1yMAWyUTTgBjAF0lEdAlhpO5OJtSHV9lChoBkdAbCuFzuF6A2gHTUsBaAhHQJYb7rdFfAt1fZQoaAZHQG787FS88LdoB01JAWgIR0CWG+d9lVcVdX2UKGgGR0Bt61wxWT5gaAdNSAFoCEdAlh/349HMEHV9lChoBkdAcV+d30PH1mgHTWUBaAhHQJYg0rvsqrl1fZQoaAZHQHHr9RzijtZoB00CAWgIR0CWIj9bor4GdX2UKGgGR0BwZwdHUc4paAdNMgFoCEdAliLRyGSIQHV9lChoBkdAa6MC/47A+WgHTX0BaAhHQJYi8Nd7fHh1fZQoaAZHQGu6OzyBkI5oB01FAWgIR0CWIvHxz7uVdX2UKGgGR0BvIXCEYfnwaAdNJAFoCEdAliNJB5X2d3V9lChoBkdAcNB02LpA2WgHTccBaAhHQJYjyqMm4RV1fZQoaAZHQEvcYKIBRyhoB0vgaAhHQJYj7lQuVX51fZQoaAZHQG8EbDdgv11oB01MAWgIR0CWJTdE9dNWdX2UKGgGR0BxJxBHCoCNaAdNHgFoCEdAliZqNZNfxHV9lChoBkdAcIJjdpItlWgHTUUBaAhHQJYpixqwhW51fZQoaAZHQHF3vgNwzchoB01PAWgIR0CWKjLvCuU2dX2UKGgGR0BxYmirT6SDaAdNJwFoCEdAlio6DbrTpnV9lChoBkdAb2PTwUg0TGgHTTkBaAhHQJYq6H31zyV1fZQoaAZHQHLN6Ii1RchoB012AWgIR0CWKxpI+W4WdX2UKGgGR0BwYqslsxfwaAdNGwFoCEdAlizn++/QB3V9lChoBkdAbn+QhfShJ2gHTTcBaAhHQJYtfTUiILx1fZQoaAZHQEHFIJZ4fOloB0v8aAhHQJYt7ZGrjo91fZQoaAZHQHAVKpgkTpRoB00lAWgIR0CWLjJkoWpIdX2UKGgGR0BwdVyXD3ueaAdNMAFoCEdAli83Tuv2XnV9lChoBkdAayyLP2PDHmgHTUIBaAhHQJYvkpMHryF1fZQoaAZHQHBcv9xZMcpoB01NAWgIR0CWL+JzDGcXdX2UKGgGR0BwfN5MURFraAdNSwFoCEdAli/fhESdv3V9lChoBkdAbbKKfnOjZmgHTUgBaAhHQJYwVrBTGYN1fZQoaAZHQHLthdUsFt9oB011AWgIR0CWMuehPCVKdX2UKGgGR0BxwAWtU4rCaAdNJAFoCEdAljRmUGFBY3V9lChoBkdAcb8Ei+tbLWgHTUkBaAhHQJY1RNEgGKR1fZQoaAZHQHGeBqj8DSxoB02dAWgIR0CWNa1mJ3xGdX2UKGgGR0BuSPlCCz1LaAdNKwFoCEdAljXRVIZqEnV9lChoBkdAcA85iExqPGgHTVkBaAhHQJY2mMBIWgx1fZQoaAZHQGyj/SQYDT1oB00iAWgIR0CWN4sVtXPrdX2UKGgGR0Bxc4C3gDRuaAdNEwFoCEdAljf3B+F10XV9lChoBkdAb7IWfseGPGgHTW8BaAhHQJY4RGlQ/HJ1fZQoaAZHQHAdjyWiUPhoB00uAWgIR0CWOImhdt2tdX2UKGgGR0Bxe7/2kBS2aAdNNAFoCEdAljqEeyRjjXV9lChoBkdAbiN3ai9Iw2gHTVcBaAhHQJY6uWX1J191fZQoaAZHQHA9WVmjCYVoB00lAWgIR0CWOq4z7/GVdX2UKGgGR0BtAeIyj59FaAdNMgFoCEdAljufjS5RTHV9lChoBkdAb1DMMZxaPmgHTU4BaAhHQJY7vKV6eGx1fZQoaAZHQHDWLwWnCO5oB01jAWgIR0CWPKRMN+b3dX2UKGgGR0ByLe65Gz8haAdNEQFoCEdAlj8YHcDbJ3V9lChoBkdAa7Cy44Ia+GgHTVEBaAhHQJY/Wt/4Irx1fZQoaAZHQGyO4+bExZdoB007AWgIR0CWP+4sVclgdX2UKGgGR0BswfLxI8QqaAdNLgFoCEdAlkCoukDZDnV9lChoBkdAcdfORT0g82gHTUEBaAhHQJZBPxAjY7J1fZQoaAZHQHI20CJXQt1oB00RAWgIR0CWQjSElE7XdX2UKGgGR0BxI0NVinYQaAdNNAFoCEdAllSEAggX/HV9lChoBkdAbLaKKHfuTmgHTVsBaAhHQJZUwxREWqN1fZQoaAZHQHDSAGW2PT5oB00EAWgIR0CWVeI3irDJdX2UKGgGR0Bxncyj59E1aAdNSAFoCEdAllXjGT9sJ3V9lChoBkdAbpt+KjzqbGgHTWIBaAhHQJZWPxiG34N1fZQoaAZHQGsW23z+WGBoB003AWgIR0CWV+RgqmTDdX2UKGgGR0BxgOP3i704aAdNUgFoCEdAlllf1L8JlnV9lChoBkdAcTfdEsrd32gHTVUBaAhHQJZauLsKLKp1fZQoaAZHQHJixPj4pMJoB01kAWgIR0CWW1mw7kn1dX2UKGgGR0BvrPWlMyrQaAdNVQFoCEdAllvk0zj3mHV9lChoBkdAbiRnDBMzuWgHTRIBaAhHQJZcPzK9wm51fZQoaAZHQGyLN7SiM5xoB01GAWgIR0CWYLq3mV7hdX2UKGgGR0Bw0ggwGnn/aAdNWwFoCEdAlmD+k1uR93V9lChoBkdAcMHupS75EmgHTSIBaAhHQJZhWZH/cWV1fZQoaAZHQHGD+R9w3o9oB016AWgIR0CWYYDv3JxOdX2UKGgGR0BxF508vEjxaAdNRAFoCEdAlmG7XUYsNHV9lChoBkdAcpCoQ4CIUWgHTR4BaAhHQJZiWlWOp851fZQoaAZHQHBKWlhw2l5oB01BAWgIR0CWY2FnZkCndX2UKGgGR0Bq/rdFfAsTaAdNWgFoCEdAlmRKWC2+f3V9lChoBkdAbsT6GgzxgGgHTe4BaAhHQJZk/6ZYxL11fZQoaAZHQG7tjs2NvO1oB01SAWgIR0CWZai1iONpdX2UKGgGR0ByqOZa3ZwoaAdNoAFoCEdAlmXSwbEP2HV9lChoBkdAb11VGTcIq2gHTTsBaAhHQJZl6ArhBJJ1fZQoaAZHQG4ablijL0VoB00pAWgIR0CWZtz90ihWdX2UKGgGR0Bxut98Z1mraAdNJgFoCEdAlmeCn1nM+3V9lChoBkdAckzsGgSOBGgHTXIBaAhHQJZohULlV951fZQoaAZHQEdi1DSgGr1oB0v9aAhHQJZpmPKdQO51fZQoaAZHQHBOKOxSpBJoB014AWgIR0CWac7QLNOedX2UKGgGR0BPRmaQV9F4aAdL+WgIR0CWa6wfhddFdX2UKGgGR0BwGhHCoCMhaAdNOQFoCEdAlmwnTy8SPHV9lChoBkdAcYWRWtEG7mgHTV8BaAhHQJZs4uJ1q351fZQoaAZHQHEj2YfGMn9oB01UAWgIR0CWbPpudf9hdX2UKGgGR0BwtN3gUDdQaAdNPAFoCEdAlm0R5TqB3HV9lChoBkdAcfj2aUiY9mgHTWwBaAhHQJZuGbqhUR51fZQoaAZHQGramwRoRI1oB00tAWgIR0CWbwRywOe8dX2UKGgGR0Br44YLsruqaAdNUQFoCEdAlm+ix7iQ1nV9lChoBkdAbAeNNrTH82gHTSkBaAhHQJZvv7ZWaMJ1fZQoaAZHQHDHtAcDKYBoB00WAWgIR0CWcEW+XZ5BdX2UKGgGR0BtVqjzqbBoaAdNPQFoCEdAlnB8ghbGFXV9lChoBkdAcnXjdpItlWgHTQ0BaAhHQJZwpg3Lmp51fZQoaAZHQHFGsQAdXDFoB01TAWgIR0CWcOUhFEy+dX2UKGgGR0Bvzs5CF9KFaAdNHAFoCEdAlnNk8q4H5nV9lChoBkdAb/UKm8/Uv2gHTV0BaAhHQJZ1vAEdNnJ1fZQoaAZHQGthpIMBp6BoB00nAWgIR0CWdeZKnNxEdX2UKGgGR0BxWMS6DoQnaAdNgQFoCEdAlnXdayKNynV9lChoBkdAbm5MyJsO5WgHTSgBaAhHQJZ2aA8Swnp1fZQoaAZHQHBJojbBXS1oB00hAWgIR0CWduD0lJHzdX2UKGgGR0Bw0v13+uNhaAdNOwFoCEdAlnf9xAB1cXV9lChoBkdAbDnBInSfDmgHTTsBaAhHQJZ5It29tdl1fZQoaAZHQHBkERWcSXdoB01yAWgIR0CWeewiaAnVdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
replay.mp4 ADDED
Binary file (161 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 261.51367029999994, "std_reward": 17.1117986515687, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-07-30T15:43:48.863428"}
training on 1,000,000 steps.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:61ede33d9762a0ec00fb2ffa778c79a9fdecd592f66a6784184bacdaf763765b
3
+ size 146751
training on 1,000,000 steps/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
training on 1,000,000 steps/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f370b64ab00>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f370b64ab90>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f370b64ac20>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f370b64acb0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f370b64ad40>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f370b64add0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f370b64ae60>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f370b64aef0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f370b64af80>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f370b64b010>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f370b64b0a0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f370b64b130>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f370b64d9c0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000.0,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1690729956970521511,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJOnHT5I1607covBti87VLQYNEs9/er3NQAAgD8AAIA/wN7HPUhHiLplVeE6AnEMNoQoYDsNPAO6AACAPwAAgD+NyIE9j454unZ0BLzX8Yo8Um5au/6acT0AAIA/AACAPyYt7T3IbRQ/I/uzvWFla763Pp88NIcDvQAAAAAAAAAAM9jPPJKsqz8o5AM+B+C7vtYLYT2huaM9AAAAAAAAAAAazUQ9jzpduliNfjZ63oExMJcrO7sil7UAAIA/AACAPw0I6z0pH1Y+O1UrvhxnQb617I297oCpPAAAAAAAAAAAJlHRvcieLT/eiLY9lIyJvlKpBj3g+069AAAAAAAAAADNj4k9oZMlP9hNW7xPpH++TRhpPLUQU7wAAAAAAAAAAOabPr0p4FS6v7Omuv6QlrbXuKa4DpbEOQAAgD8AAIA/Si9qvkyJiD+s5JO9YpVgvoLPUr7WYl49AAAAAAAAAAAzq2A84Q6Rus6h4bmGe920ZR4UO8rVAjkAAIA/AACAP7qTET5lOrU/uNyqPvv+x74m7wU+GKBPPgAAAAAAAAAAiCSWvgfWUz/erTM+epGQvi6DEL1+6zc9AAAAAAAAAADTVQi+P2g2Px7lAD1Hs0u+9+YpPMrZcz0AAAAAAAAAAJp5GT1Sl9C7FUBUPKTQezwRJEa9dcNUPQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVQAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHAbHM+u/1yMAWyUTTgBjAF0lEdAlhpO5OJtSHV9lChoBkdAbCuFzuF6A2gHTUsBaAhHQJYb7rdFfAt1fZQoaAZHQG787FS88LdoB01JAWgIR0CWG+d9lVcVdX2UKGgGR0Bt61wxWT5gaAdNSAFoCEdAlh/349HMEHV9lChoBkdAcV+d30PH1mgHTWUBaAhHQJYg0rvsqrl1fZQoaAZHQHHr9RzijtZoB00CAWgIR0CWIj9bor4GdX2UKGgGR0BwZwdHUc4paAdNMgFoCEdAliLRyGSIQHV9lChoBkdAa6MC/47A+WgHTX0BaAhHQJYi8Nd7fHh1fZQoaAZHQGu6OzyBkI5oB01FAWgIR0CWIvHxz7uVdX2UKGgGR0BvIXCEYfnwaAdNJAFoCEdAliNJB5X2d3V9lChoBkdAcNB02LpA2WgHTccBaAhHQJYjyqMm4RV1fZQoaAZHQEvcYKIBRyhoB0vgaAhHQJYj7lQuVX51fZQoaAZHQG8EbDdgv11oB01MAWgIR0CWJTdE9dNWdX2UKGgGR0BxJxBHCoCNaAdNHgFoCEdAliZqNZNfxHV9lChoBkdAcIJjdpItlWgHTUUBaAhHQJYpixqwhW51fZQoaAZHQHF3vgNwzchoB01PAWgIR0CWKjLvCuU2dX2UKGgGR0BxYmirT6SDaAdNJwFoCEdAlio6DbrTpnV9lChoBkdAb2PTwUg0TGgHTTkBaAhHQJYq6H31zyV1fZQoaAZHQHLN6Ii1RchoB012AWgIR0CWKxpI+W4WdX2UKGgGR0BwYqslsxfwaAdNGwFoCEdAlizn++/QB3V9lChoBkdAbn+QhfShJ2gHTTcBaAhHQJYtfTUiILx1fZQoaAZHQEHFIJZ4fOloB0v8aAhHQJYt7ZGrjo91fZQoaAZHQHAVKpgkTpRoB00lAWgIR0CWLjJkoWpIdX2UKGgGR0BwdVyXD3ueaAdNMAFoCEdAli83Tuv2XnV9lChoBkdAayyLP2PDHmgHTUIBaAhHQJYvkpMHryF1fZQoaAZHQHBcv9xZMcpoB01NAWgIR0CWL+JzDGcXdX2UKGgGR0BwfN5MURFraAdNSwFoCEdAli/fhESdv3V9lChoBkdAbbKKfnOjZmgHTUgBaAhHQJYwVrBTGYN1fZQoaAZHQHLthdUsFt9oB011AWgIR0CWMuehPCVKdX2UKGgGR0BxwAWtU4rCaAdNJAFoCEdAljRmUGFBY3V9lChoBkdAcb8Ei+tbLWgHTUkBaAhHQJY1RNEgGKR1fZQoaAZHQHGeBqj8DSxoB02dAWgIR0CWNa1mJ3xGdX2UKGgGR0BuSPlCCz1LaAdNKwFoCEdAljXRVIZqEnV9lChoBkdAcA85iExqPGgHTVkBaAhHQJY2mMBIWgx1fZQoaAZHQGyj/SQYDT1oB00iAWgIR0CWN4sVtXPrdX2UKGgGR0Bxc4C3gDRuaAdNEwFoCEdAljf3B+F10XV9lChoBkdAb7IWfseGPGgHTW8BaAhHQJY4RGlQ/HJ1fZQoaAZHQHAdjyWiUPhoB00uAWgIR0CWOImhdt2tdX2UKGgGR0Bxe7/2kBS2aAdNNAFoCEdAljqEeyRjjXV9lChoBkdAbiN3ai9Iw2gHTVcBaAhHQJY6uWX1J191fZQoaAZHQHA9WVmjCYVoB00lAWgIR0CWOq4z7/GVdX2UKGgGR0BtAeIyj59FaAdNMgFoCEdAljufjS5RTHV9lChoBkdAb1DMMZxaPmgHTU4BaAhHQJY7vKV6eGx1fZQoaAZHQHDWLwWnCO5oB01jAWgIR0CWPKRMN+b3dX2UKGgGR0ByLe65Gz8haAdNEQFoCEdAlj8YHcDbJ3V9lChoBkdAa7Cy44Ia+GgHTVEBaAhHQJY/Wt/4Irx1fZQoaAZHQGyO4+bExZdoB007AWgIR0CWP+4sVclgdX2UKGgGR0BswfLxI8QqaAdNLgFoCEdAlkCoukDZDnV9lChoBkdAcdfORT0g82gHTUEBaAhHQJZBPxAjY7J1fZQoaAZHQHI20CJXQt1oB00RAWgIR0CWQjSElE7XdX2UKGgGR0BxI0NVinYQaAdNNAFoCEdAllSEAggX/HV9lChoBkdAbLaKKHfuTmgHTVsBaAhHQJZUwxREWqN1fZQoaAZHQHDSAGW2PT5oB00EAWgIR0CWVeI3irDJdX2UKGgGR0Bxncyj59E1aAdNSAFoCEdAllXjGT9sJ3V9lChoBkdAbpt+KjzqbGgHTWIBaAhHQJZWPxiG34N1fZQoaAZHQGsW23z+WGBoB003AWgIR0CWV+RgqmTDdX2UKGgGR0BxgOP3i704aAdNUgFoCEdAlllf1L8JlnV9lChoBkdAcTfdEsrd32gHTVUBaAhHQJZauLsKLKp1fZQoaAZHQHJixPj4pMJoB01kAWgIR0CWW1mw7kn1dX2UKGgGR0BvrPWlMyrQaAdNVQFoCEdAllvk0zj3mHV9lChoBkdAbiRnDBMzuWgHTRIBaAhHQJZcPzK9wm51fZQoaAZHQGyLN7SiM5xoB01GAWgIR0CWYLq3mV7hdX2UKGgGR0Bw0ggwGnn/aAdNWwFoCEdAlmD+k1uR93V9lChoBkdAcMHupS75EmgHTSIBaAhHQJZhWZH/cWV1fZQoaAZHQHGD+R9w3o9oB016AWgIR0CWYYDv3JxOdX2UKGgGR0BxF508vEjxaAdNRAFoCEdAlmG7XUYsNHV9lChoBkdAcpCoQ4CIUWgHTR4BaAhHQJZiWlWOp851fZQoaAZHQHBKWlhw2l5oB01BAWgIR0CWY2FnZkCndX2UKGgGR0Bq/rdFfAsTaAdNWgFoCEdAlmRKWC2+f3V9lChoBkdAbsT6GgzxgGgHTe4BaAhHQJZk/6ZYxL11fZQoaAZHQG7tjs2NvO1oB01SAWgIR0CWZai1iONpdX2UKGgGR0ByqOZa3ZwoaAdNoAFoCEdAlmXSwbEP2HV9lChoBkdAb11VGTcIq2gHTTsBaAhHQJZl6ArhBJJ1fZQoaAZHQG4ablijL0VoB00pAWgIR0CWZtz90ihWdX2UKGgGR0Bxut98Z1mraAdNJgFoCEdAlmeCn1nM+3V9lChoBkdAckzsGgSOBGgHTXIBaAhHQJZohULlV951fZQoaAZHQEdi1DSgGr1oB0v9aAhHQJZpmPKdQO51fZQoaAZHQHBOKOxSpBJoB014AWgIR0CWac7QLNOedX2UKGgGR0BPRmaQV9F4aAdL+WgIR0CWa6wfhddFdX2UKGgGR0BwGhHCoCMhaAdNOQFoCEdAlmwnTy8SPHV9lChoBkdAcYWRWtEG7mgHTV8BaAhHQJZs4uJ1q351fZQoaAZHQHEj2YfGMn9oB01UAWgIR0CWbPpudf9hdX2UKGgGR0BwtN3gUDdQaAdNPAFoCEdAlm0R5TqB3HV9lChoBkdAcfj2aUiY9mgHTWwBaAhHQJZuGbqhUR51fZQoaAZHQGramwRoRI1oB00tAWgIR0CWbwRywOe8dX2UKGgGR0Br44YLsruqaAdNUQFoCEdAlm+ix7iQ1nV9lChoBkdAbAeNNrTH82gHTSkBaAhHQJZvv7ZWaMJ1fZQoaAZHQHDHtAcDKYBoB00WAWgIR0CWcEW+XZ5BdX2UKGgGR0BtVqjzqbBoaAdNPQFoCEdAlnB8ghbGFXV9lChoBkdAcnXjdpItlWgHTQ0BaAhHQJZwpg3Lmp51fZQoaAZHQHFGsQAdXDFoB01TAWgIR0CWcOUhFEy+dX2UKGgGR0Bvzs5CF9KFaAdNHAFoCEdAlnNk8q4H5nV9lChoBkdAb/UKm8/Uv2gHTV0BaAhHQJZ1vAEdNnJ1fZQoaAZHQGthpIMBp6BoB00nAWgIR0CWdeZKnNxEdX2UKGgGR0BxWMS6DoQnaAdNgQFoCEdAlnXdayKNynV9lChoBkdAbm5MyJsO5WgHTSgBaAhHQJZ2aA8Swnp1fZQoaAZHQHBJojbBXS1oB00hAWgIR0CWduD0lJHzdX2UKGgGR0Bw0v13+uNhaAdNOwFoCEdAlnf9xAB1cXV9lChoBkdAbDnBInSfDmgHTTsBaAhHQJZ5It29tdl1fZQoaAZHQHBkERWcSXdoB01yAWgIR0CWeewiaAnVdWUu"
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 248,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
training on 1,000,000 steps/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4cc5ce3e0603dd2ab39167543e826ccd7e8f907314d1423297162a4a20072c4a
3
+ size 87929
training on 1,000,000 steps/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:80f8574bd26b83d008d7838b0840a7236edfb89ca0809b0d9b0801ed7118e0b6
3
+ size 43329
training on 1,000,000 steps/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
training on 1,000,000 steps/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
2
+ - Python: 3.10.6
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2