--- license: cc-by-nc-4.0 --- # weblab-10b # Overview This repository provides a Japanese-centric multilingual GPT-NeoX model of 10 billion parameters. * **Library** The model was trained using code based on [EleutherAI/gpt-neox](https://github.com/EleutherAI/gpt-neox). * **Model architecture** A 36-layer, 4864-hidden-size transformer-based language model. * **Pre-training** The model was trained on around **600B** tokens from a mixture of the following corpora - [Japanese C4](https://huggingface.co/datasets/mc4) - [The Pile](https://huggingface.co/datasets/EleutherAI/pile) * **Model Series** | Variant | Link | | :-- | :--| | weblab-10b-instruction-sft | https://huggingface.co/matsuo-lab/weblab-10b-instruction-sft | | weblab-10b | https://huggingface.co/matsuo-lab/weblab-10b | * **Authors** Takeshi Kojima --- # Benchmarking * **Japanese benchmark** - *We used [Stability-AI/lm-evaluation-harness](https://github.com/Stability-AI/lm-evaluation-harness/tree/2f1583c0735eacdfdfa5b7d656074b69577b6774) library for evaluation.* - *The 4-task average accuracy is based on results of JCommonsenseQA-1.1, JNLI-1.1, MARC-ja-1.1, and JSQuAD-1.1.* - *model loading is performed with float16, and evaluation is performed with template version 0.3 using the few-shot in-context learning.* - *The number of few-shots is 3,3,3,2.* | Model | Average | JCommonsenseQA | JNLI | MARC-ja | JSQuAD | | :-- | :-- | :-- | :-- | :-- | :-- | | weblab-10b-instruction-sft | 78.78 | 74.35 | 65.65 | 96.06 | 79.04 | | weblab-10b | 66.38 | 65.86 | 54.19 | 84.49 | 60.98 | --- # How to use the model ~~~~python import torch from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("matsuo-lab/weblab-10b") model = AutoModelForCausalLM.from_pretrained("matsuo-lab/weblab-10b") if torch.cuda.is_available(): model = model.to("cuda") text = "吾輩は猫である。" token_ids = tokenizer.encode(text, add_special_tokens=False, return_tensors="pt") with torch.no_grad(): output_ids = model.generate( token_ids.to(model.device), max_new_tokens=100, do_sample=True, temperature=0.6, top_p=0.95, pad_token_id=tokenizer.pad_token_id, bos_token_id=tokenizer.bos_token_id, eos_token_id=tokenizer.eos_token_id ) output = tokenizer.decode(output_ids.tolist()[0]) print(output) ~~~~ --- # Licenese [cc-by-nc-4.0](https://creativecommons.org/licenses/by-nc/4.0/)