matthewnorton commited on
Commit
dc283f6
1 Parent(s): ca4a722

copy of phi-2 repo

Browse files
CODE_OF_CONDUCT.md ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ # Microsoft Open Source Code of Conduct
2
+
3
+ This project has adopted the [Microsoft Open Source Code of Conduct](https://opensource.microsoft.com/codeofconduct/).
4
+
5
+ Resources:
6
+
7
+ - [Microsoft Open Source Code of Conduct](https://opensource.microsoft.com/codeofconduct/)
8
+ - [Microsoft Code of Conduct FAQ](https://opensource.microsoft.com/codeofconduct/faq/)
9
+ - Contact [opencode@microsoft.com](mailto:opencode@microsoft.com) with questions or concerns
LICENSE ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ PhyAGI.
2
+ Copyright (c) Microsoft Corporation.
3
+
4
+ MIT License
5
+
6
+ Permission is hereby granted, free of charge, to any person obtaining a copy
7
+ of this software and associated documentation files (the "Software"), to deal
8
+ in the Software without restriction, including without limitation the rights
9
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
+ copies of the Software, and to permit persons to whom the Software is
11
+ furnished to do so, subject to the following conditions:
12
+
13
+ The above copyright notice and this permission notice shall be included in all
14
+ copies or substantial portions of the Software.
15
+
16
+ THE SOFTWARE IS PROVIDED *AS IS*, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22
+ SOFTWARE.
NOTICE.md ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ NOTICES AND INFORMATION
2
+ Do Not Translate or Localize
3
+
4
+ This software incorporates material from third parties.
5
+
6
+ **Component.** https://github.com/Dao-AILab/flash-attention
7
+
8
+ **Open Source License/Copyright Notice.**
9
+
10
+ BSD 3-Clause License
11
+
12
+ Copyright (c) 2022, the respective contributors, as shown by the AUTHORS file.
13
+ All rights reserved.
14
+
15
+ Redistribution and use in source and binary forms, with or without
16
+ modification, are permitted provided that the following conditions are met:
17
+
18
+ * Redistributions of source code must retain the above copyright notice, this
19
+ list of conditions and the following disclaimer.
20
+
21
+ * Redistributions in binary form must reproduce the above copyright notice,
22
+ this list of conditions and the following disclaimer in the documentation
23
+ and/or other materials provided with the distribution.
24
+
25
+ * Neither the name of the copyright holder nor the names of its
26
+ contributors may be used to endorse or promote products derived from
27
+ this software without specific prior written permission.
28
+
29
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
30
+ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31
+ IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
32
+ DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
33
+ FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34
+ DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
35
+ SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
36
+ CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
37
+ OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38
+ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
README.md ADDED
@@ -0,0 +1,166 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ inference: false
3
+ license: mit
4
+ license_link: https://huggingface.co/microsoft/phi-2/resolve/main/LICENSE
5
+ language:
6
+ - en
7
+ pipeline_tag: text-generation
8
+ tags:
9
+ - nlp
10
+ - code
11
+ ---
12
+
13
+ ## Model Summary
14
+
15
+ Phi-2 is a Transformer with **2.7 billion** parameters. It was trained using the same data sources as [Phi-1.5](https://huggingface.co/microsoft/phi-1.5), augmented with a new data source that consists of various NLP synthetic texts and filtered websites (for safety and educational value). When assessed against benchmarks testing common sense, language understanding, and logical reasoning, Phi-2 showcased a nearly state-of-the-art performance among models with less than 13 billion parameters.
16
+
17
+ Our model hasn't been fine-tuned through reinforcement learning from human feedback. The intention behind crafting this open-source model is to provide the research community with a non-restricted small model to explore vital safety challenges, such as reducing toxicity, understanding societal biases, enhancing controllability, and more.
18
+
19
+ ## Intended Uses
20
+
21
+ Given the nature of the training data, the Phi-2 model is best suited for prompts using the QA format, the chat format, and the code format.
22
+
23
+ ### QA Format:
24
+
25
+ You can provide the prompt as a standalone question as follows:
26
+
27
+ ```markdown
28
+ Write a detailed analogy between mathematics and a lighthouse.
29
+ ```
30
+ where the model generates the text after "." .
31
+ To encourage the model to write more concise answers, you can also try the following QA format using "Instruct: \<prompt\>\nOutput:"
32
+ ```markdown
33
+ Instruct: Write a detailed analogy between mathematics and a lighthouse.
34
+ Output: Mathematics is like a lighthouse. Just as a lighthouse guides ships safely to shore, mathematics provides a guiding light in the world of numbers and logic. It helps us navigate through complex problems and find solutions. Just as a lighthouse emits a steady beam of light, mathematics provides a consistent framework for reasoning and problem-solving. It illuminates the path to understanding and helps us make sense of the world around us.
35
+ ```
36
+ where the model generates the text after "Output:".
37
+
38
+ ### Chat Format:
39
+
40
+ ```markdown
41
+ Alice: I don't know why, I'm struggling to maintain focus while studying. Any suggestions?
42
+ Bob: Well, have you tried creating a study schedule and sticking to it?
43
+ Alice: Yes, I have, but it doesn't seem to help much.
44
+ Bob: Hmm, maybe you should try studying in a quiet environment, like the library.
45
+ Alice: ...
46
+ ```
47
+
48
+ where the model generates the text after the first "Bob:".
49
+
50
+ ### Code Format:
51
+
52
+ ```python
53
+ def print_prime(n):
54
+ """
55
+ Print all primes between 1 and n
56
+ """
57
+ primes = []
58
+ for num in range(2, n+1):
59
+ is_prime = True
60
+ for i in range(2, int(math.sqrt(num))+1):
61
+ if num % i == 0:
62
+ is_prime = False
63
+ break
64
+ if is_prime:
65
+ primes.append(num)
66
+ print(primes)
67
+ ```
68
+ where the model generates the text after the comments.
69
+
70
+ **Notes:**
71
+ * Phi-2 is intended for QA, chat, and code purposes. The model-generated text/code should be treated as a starting point rather than a definitive solution for potential use cases. Users should be cautious when employing these models in their applications.
72
+ * Direct adoption for production tasks without evaluation is out of scope of this project. As a result, the Phi-2 model has not been tested to ensure that it performs adequately for any production-level application. Please refer to the limitation sections of this document for more details.
73
+ * If you are using `transformers>=4.36.0`, always load the model with `trust_remote_code=True` to prevent side-effects.
74
+
75
+ ## Sample Code
76
+
77
+ There are four types of execution mode:
78
+
79
+ 1. FP16 / Flash-Attention / CUDA:
80
+ ```python
81
+ model = AutoModelForCausalLM.from_pretrained("microsoft/phi-2", torch_dtype="auto", flash_attn=True, flash_rotary=True, fused_dense=True, device_map="cuda", trust_remote_code=True)
82
+ ```
83
+ 2. FP16 / CUDA:
84
+ ```python
85
+ model = AutoModelForCausalLM.from_pretrained("microsoft/phi-2", torch_dtype="auto", device_map="cuda", trust_remote_code=True)
86
+ ```
87
+ 3. FP32 / CUDA:
88
+ ```python
89
+ model = AutoModelForCausalLM.from_pretrained("microsoft/phi-2", torch_dtype=torch.float32, device_map="cuda", trust_remote_code=True)
90
+ ```
91
+ 4. FP32 / CPU:
92
+ ```python
93
+ model = AutoModelForCausalLM.from_pretrained("microsoft/phi-2", torch_dtype=torch.float32, device_map="cpu", trust_remote_code=True)
94
+ ```
95
+
96
+ To ensure the maximum compatibility, we recommend using the second execution mode (FP16 / CUDA), as follows:
97
+
98
+ ```python
99
+ import torch
100
+ from transformers import AutoModelForCausalLM, AutoTokenizer
101
+
102
+ torch.set_default_device("cuda")
103
+
104
+ model = AutoModelForCausalLM.from_pretrained("microsoft/phi-2", torch_dtype="auto", trust_remote_code=True)
105
+ tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-2", trust_remote_code=True)
106
+
107
+ inputs = tokenizer('''def print_prime(n):
108
+ """
109
+ Print all primes between 1 and n
110
+ """''', return_tensors="pt", return_attention_mask=False)
111
+
112
+ outputs = model.generate(**inputs, max_length=200)
113
+ text = tokenizer.batch_decode(outputs)[0]
114
+ print(text)
115
+ ```
116
+
117
+ **Remark:** In the generation function, our model currently does not support beam search (`num_beams > 1`).
118
+ Furthermore, in the forward pass of the model, we currently do not support outputting hidden states or attention values, or using custom input embeddings.
119
+
120
+ ## Limitations of Phi-2
121
+
122
+ * Generate Inaccurate Code and Facts: The model may produce incorrect code snippets and statements. Users should treat these outputs as suggestions or starting points, not as definitive or accurate solutions.
123
+
124
+ * Limited Scope for code: Majority of Phi-2 training data is based in Python and use common packages such as "typing, math, random, collections, datetime, itertools". If the model generates Python scripts that utilize other packages or scripts in other languages, we strongly recommend users manually verify all API uses.
125
+
126
+ * Unreliable Responses to Instruction: The model has not undergone instruction fine-tuning. As a result, it may struggle or fail to adhere to intricate or nuanced instructions provided by users.
127
+
128
+ * Language Limitations: The model is primarily designed to understand standard English. Informal English, slang, or any other languages might pose challenges to its comprehension, leading to potential misinterpretations or errors in response.
129
+
130
+ * Potential Societal Biases: Phi-2 is not entirely free from societal biases despite efforts in assuring training data safety. There's a possibility it may generate content that mirrors these societal biases, particularly if prompted or instructed to do so. We urge users to be aware of this and to exercise caution and critical thinking when interpreting model outputs.
131
+
132
+ * Toxicity: Despite being trained with carefully selected data, the model can still produce harmful content if explicitly prompted or instructed to do so. We chose to release the model to help the open-source community develop the most effective ways to reduce the toxicity of a model directly after pretraining.
133
+
134
+ * Verbosity: Phi-2 being a base model often produces irrelevant or extra text and responses following its first answer to user prompts within a single turn. This is due to its training dataset being primarily textbooks, which results in textbook-like responses.
135
+
136
+ ## Training
137
+
138
+ ### Model
139
+
140
+ * Architecture: a Transformer-based model with next-word prediction objective
141
+
142
+ * Context length: 2048 tokens
143
+
144
+ * Dataset size: 250B tokens, combination of NLP synthetic data created by AOAI GPT-3.5 and filtered web data from Falcon RefinedWeb and SlimPajama, which was assessed by AOAI GPT-4.
145
+
146
+ * Training tokens: 1.4T tokens
147
+
148
+ * GPUs: 96xA100-80G
149
+
150
+ * Training time: 14 days
151
+
152
+ ### Software
153
+
154
+ * [PyTorch](https://github.com/pytorch/pytorch)
155
+
156
+ * [DeepSpeed](https://github.com/microsoft/DeepSpeed)
157
+
158
+ * [Flash-Attention](https://github.com/HazyResearch/flash-attention)
159
+
160
+ ### License
161
+
162
+ The model is licensed under the [MIT license](https://huggingface.co/microsoft/phi-2/resolve/main/LICENSE).
163
+
164
+ ## Trademarks
165
+
166
+ This project may contain trademarks or logos for projects, products, or services. Authorized use of Microsoft trademarks or logos is subject to and must follow [Microsoft’s Trademark & Brand Guidelines](https://www.microsoft.com/en-us/legal/intellectualproperty/trademarks). Use of Microsoft trademarks or logos in modified versions of this project must not cause confusion or imply Microsoft sponsorship. Any use of third-party trademarks or logos are subject to those third-party’s policies.
SECURITY.md ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <!-- BEGIN MICROSOFT SECURITY.MD V0.0.9 BLOCK -->
2
+
3
+ ## Security
4
+
5
+ Microsoft takes the security of our software products and services seriously, which includes all source code repositories managed through our GitHub organizations, which include [Microsoft](https://github.com/Microsoft), [Azure](https://github.com/Azure), [DotNet](https://github.com/dotnet), [AspNet](https://github.com/aspnet) and [Xamarin](https://github.com/xamarin).
6
+
7
+ If you believe you have found a security vulnerability in any Microsoft-owned repository that meets [Microsoft's definition of a security vulnerability](https://aka.ms/security.md/definition), please report it to us as described below.
8
+
9
+ ## Reporting Security Issues
10
+
11
+ **Please do not report security vulnerabilities through public GitHub issues.**
12
+
13
+ Instead, please report them to the Microsoft Security Response Center (MSRC) at [https://msrc.microsoft.com/create-report](https://aka.ms/security.md/msrc/create-report).
14
+
15
+ If you prefer to submit without logging in, send email to [secure@microsoft.com](mailto:secure@microsoft.com). If possible, encrypt your message with our PGP key; please download it from the [Microsoft Security Response Center PGP Key page](https://aka.ms/security.md/msrc/pgp).
16
+
17
+ You should receive a response within 24 hours. If for some reason you do not, please follow up via email to ensure we received your original message. Additional information can be found at [microsoft.com/msrc](https://www.microsoft.com/msrc).
18
+
19
+ Please include the requested information listed below (as much as you can provide) to help us better understand the nature and scope of the possible issue:
20
+
21
+ * Type of issue (e.g. buffer overflow, SQL injection, cross-site scripting, etc.)
22
+ * Full paths of source file(s) related to the manifestation of the issue
23
+ * The location of the affected source code (tag/branch/commit or direct URL)
24
+ * Any special configuration required to reproduce the issue
25
+ * Step-by-step instructions to reproduce the issue
26
+ * Proof-of-concept or exploit code (if possible)
27
+ * Impact of the issue, including how an attacker might exploit the issue
28
+
29
+ This information will help us triage your report more quickly.
30
+
31
+ If you are reporting for a bug bounty, more complete reports can contribute to a higher bounty award. Please visit our [Microsoft Bug Bounty Program](https://aka.ms/security.md/msrc/bounty) page for more details about our active programs.
32
+
33
+ ## Preferred Languages
34
+
35
+ We prefer all communications to be in English.
36
+
37
+ ## Policy
38
+
39
+ Microsoft follows the principle of [Coordinated Vulnerability Disclosure](https://aka.ms/security.md/cvd).
40
+
41
+ <!-- END MICROSOFT SECURITY.MD BLOCK -->
added_tokens.json ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "\t\t": 50294,
3
+ "\t\t\t": 50293,
4
+ "\t\t\t\t": 50292,
5
+ "\t\t\t\t\t": 50291,
6
+ "\t\t\t\t\t\t": 50290,
7
+ "\t\t\t\t\t\t\t": 50289,
8
+ "\t\t\t\t\t\t\t\t": 50288,
9
+ "\t\t\t\t\t\t\t\t\t": 50287,
10
+ " ": 50286,
11
+ " ": 50285,
12
+ " ": 50284,
13
+ " ": 50283,
14
+ " ": 50282,
15
+ " ": 50281,
16
+ " ": 50280,
17
+ " ": 50279,
18
+ " ": 50278,
19
+ " ": 50277,
20
+ " ": 50276,
21
+ " ": 50275,
22
+ " ": 50274,
23
+ " ": 50273,
24
+ " ": 50272,
25
+ " ": 50271,
26
+ " ": 50270,
27
+ " ": 50269,
28
+ " ": 50268,
29
+ " ": 50267,
30
+ " ": 50266,
31
+ " ": 50265,
32
+ " ": 50264,
33
+ " ": 50263,
34
+ " ": 50262,
35
+ " ": 50261,
36
+ " ": 50260,
37
+ " ": 50259,
38
+ " ": 50258,
39
+ " ": 50257
40
+ }
config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "microsoft/phi-2",
3
+ "activation_function": "gelu_new",
4
+ "architectures": [
5
+ "PhiForCausalLM"
6
+ ],
7
+ "attn_pdrop": 0.0,
8
+ "auto_map": {
9
+ "AutoConfig": "configuration_phi.PhiConfig",
10
+ "AutoModelForCausalLM": "modeling_phi.PhiForCausalLM"
11
+ },
12
+ "embd_pdrop": 0.0,
13
+ "flash_attn": false,
14
+ "flash_rotary": false,
15
+ "fused_dense": false,
16
+ "img_processor": null,
17
+ "initializer_range": 0.02,
18
+ "layer_norm_epsilon": 1e-05,
19
+ "model_type": "phi-msft",
20
+ "n_embd": 2560,
21
+ "n_head": 32,
22
+ "n_head_kv": null,
23
+ "n_inner": null,
24
+ "n_layer": 32,
25
+ "n_positions": 2048,
26
+ "resid_pdrop": 0.1,
27
+ "rotary_dim": 32,
28
+ "tie_word_embeddings": false,
29
+ "torch_dtype": "float16",
30
+ "transformers_version": "4.35.2",
31
+ "vocab_size": 51200
32
+ }
configuration_phi.py ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Microsoft Corporation.
2
+ # Licensed under the MIT license.
3
+
4
+ import math
5
+ from typing import Optional
6
+
7
+ from transformers import PretrainedConfig
8
+
9
+
10
+ class PhiConfig(PretrainedConfig):
11
+ """Phi configuration."""
12
+
13
+ model_type = "phi-msft"
14
+ attribute_map = {
15
+ "max_position_embeddings": "n_positions",
16
+ "hidden_size": "n_embd",
17
+ "num_attention_heads": "n_head",
18
+ "num_hidden_layers": "n_layer",
19
+ }
20
+
21
+ def __init__(
22
+ self,
23
+ vocab_size: int = 50304,
24
+ n_positions: int = 2048,
25
+ n_embd: int = 1024,
26
+ n_layer: int = 20,
27
+ n_inner: Optional[int] = None,
28
+ n_head: int = 16,
29
+ n_head_kv: Optional[int] = None,
30
+ rotary_dim: Optional[int] = 32,
31
+ activation_function: Optional[str] = "gelu_new",
32
+ flash_attn: bool = False,
33
+ flash_rotary: bool = False,
34
+ fused_dense: bool = False,
35
+ attn_pdrop: float = 0.0,
36
+ embd_pdrop: float = 0.0,
37
+ resid_pdrop: float = 0.0,
38
+ layer_norm_epsilon: float = 1e-5,
39
+ initializer_range: float = 0.02,
40
+ tie_word_embeddings: bool = False,
41
+ pad_vocab_size_multiple: int = 64,
42
+ **kwargs
43
+ ) -> None:
44
+ self.vocab_size = int(math.ceil(vocab_size / pad_vocab_size_multiple) * pad_vocab_size_multiple)
45
+ self.n_positions = n_positions
46
+ self.n_embd = n_embd
47
+ self.n_layer = n_layer
48
+ self.n_inner = n_inner
49
+ self.n_head = n_head
50
+ self.n_head_kv = n_head_kv
51
+ self.rotary_dim = min(rotary_dim, n_embd // n_head)
52
+ self.activation_function = activation_function
53
+ self.flash_attn = flash_attn
54
+ self.flash_rotary = flash_rotary
55
+ self.fused_dense = fused_dense
56
+ self.attn_pdrop = attn_pdrop
57
+ self.embd_pdrop = embd_pdrop
58
+ self.resid_pdrop = resid_pdrop
59
+ self.layer_norm_epsilon = layer_norm_epsilon
60
+ self.initializer_range = initializer_range
61
+
62
+ super().__init__(tie_word_embeddings=tie_word_embeddings, **kwargs)
generation_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "transformers_version": "4.35.2"
4
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model.safetensors.index.json ADDED
@@ -0,0 +1,332 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 5559367680
4
+ },
5
+ "weight_map": {
6
+ "lm_head.linear.bias": "model-00002-of-00002.safetensors",
7
+ "lm_head.linear.weight": "model-00002-of-00002.safetensors",
8
+ "lm_head.ln.bias": "model-00002-of-00002.safetensors",
9
+ "lm_head.ln.weight": "model-00002-of-00002.safetensors",
10
+ "transformer.embd.wte.weight": "model-00001-of-00002.safetensors",
11
+ "transformer.h.0.ln.bias": "model-00001-of-00002.safetensors",
12
+ "transformer.h.0.ln.weight": "model-00001-of-00002.safetensors",
13
+ "transformer.h.0.mixer.Wqkv.bias": "model-00001-of-00002.safetensors",
14
+ "transformer.h.0.mixer.Wqkv.weight": "model-00001-of-00002.safetensors",
15
+ "transformer.h.0.mixer.out_proj.bias": "model-00001-of-00002.safetensors",
16
+ "transformer.h.0.mixer.out_proj.weight": "model-00001-of-00002.safetensors",
17
+ "transformer.h.0.mlp.fc1.bias": "model-00001-of-00002.safetensors",
18
+ "transformer.h.0.mlp.fc1.weight": "model-00001-of-00002.safetensors",
19
+ "transformer.h.0.mlp.fc2.bias": "model-00001-of-00002.safetensors",
20
+ "transformer.h.0.mlp.fc2.weight": "model-00001-of-00002.safetensors",
21
+ "transformer.h.1.ln.bias": "model-00001-of-00002.safetensors",
22
+ "transformer.h.1.ln.weight": "model-00001-of-00002.safetensors",
23
+ "transformer.h.1.mixer.Wqkv.bias": "model-00001-of-00002.safetensors",
24
+ "transformer.h.1.mixer.Wqkv.weight": "model-00001-of-00002.safetensors",
25
+ "transformer.h.1.mixer.out_proj.bias": "model-00001-of-00002.safetensors",
26
+ "transformer.h.1.mixer.out_proj.weight": "model-00001-of-00002.safetensors",
27
+ "transformer.h.1.mlp.fc1.bias": "model-00001-of-00002.safetensors",
28
+ "transformer.h.1.mlp.fc1.weight": "model-00001-of-00002.safetensors",
29
+ "transformer.h.1.mlp.fc2.bias": "model-00001-of-00002.safetensors",
30
+ "transformer.h.1.mlp.fc2.weight": "model-00001-of-00002.safetensors",
31
+ "transformer.h.10.ln.bias": "model-00001-of-00002.safetensors",
32
+ "transformer.h.10.ln.weight": "model-00001-of-00002.safetensors",
33
+ "transformer.h.10.mixer.Wqkv.bias": "model-00001-of-00002.safetensors",
34
+ "transformer.h.10.mixer.Wqkv.weight": "model-00001-of-00002.safetensors",
35
+ "transformer.h.10.mixer.out_proj.bias": "model-00001-of-00002.safetensors",
36
+ "transformer.h.10.mixer.out_proj.weight": "model-00001-of-00002.safetensors",
37
+ "transformer.h.10.mlp.fc1.bias": "model-00001-of-00002.safetensors",
38
+ "transformer.h.10.mlp.fc1.weight": "model-00001-of-00002.safetensors",
39
+ "transformer.h.10.mlp.fc2.bias": "model-00001-of-00002.safetensors",
40
+ "transformer.h.10.mlp.fc2.weight": "model-00001-of-00002.safetensors",
41
+ "transformer.h.11.ln.bias": "model-00001-of-00002.safetensors",
42
+ "transformer.h.11.ln.weight": "model-00001-of-00002.safetensors",
43
+ "transformer.h.11.mixer.Wqkv.bias": "model-00001-of-00002.safetensors",
44
+ "transformer.h.11.mixer.Wqkv.weight": "model-00001-of-00002.safetensors",
45
+ "transformer.h.11.mixer.out_proj.bias": "model-00001-of-00002.safetensors",
46
+ "transformer.h.11.mixer.out_proj.weight": "model-00001-of-00002.safetensors",
47
+ "transformer.h.11.mlp.fc1.bias": "model-00001-of-00002.safetensors",
48
+ "transformer.h.11.mlp.fc1.weight": "model-00001-of-00002.safetensors",
49
+ "transformer.h.11.mlp.fc2.bias": "model-00001-of-00002.safetensors",
50
+ "transformer.h.11.mlp.fc2.weight": "model-00001-of-00002.safetensors",
51
+ "transformer.h.12.ln.bias": "model-00001-of-00002.safetensors",
52
+ "transformer.h.12.ln.weight": "model-00001-of-00002.safetensors",
53
+ "transformer.h.12.mixer.Wqkv.bias": "model-00001-of-00002.safetensors",
54
+ "transformer.h.12.mixer.Wqkv.weight": "model-00001-of-00002.safetensors",
55
+ "transformer.h.12.mixer.out_proj.bias": "model-00001-of-00002.safetensors",
56
+ "transformer.h.12.mixer.out_proj.weight": "model-00001-of-00002.safetensors",
57
+ "transformer.h.12.mlp.fc1.bias": "model-00001-of-00002.safetensors",
58
+ "transformer.h.12.mlp.fc1.weight": "model-00001-of-00002.safetensors",
59
+ "transformer.h.12.mlp.fc2.bias": "model-00001-of-00002.safetensors",
60
+ "transformer.h.12.mlp.fc2.weight": "model-00001-of-00002.safetensors",
61
+ "transformer.h.13.ln.bias": "model-00001-of-00002.safetensors",
62
+ "transformer.h.13.ln.weight": "model-00001-of-00002.safetensors",
63
+ "transformer.h.13.mixer.Wqkv.bias": "model-00001-of-00002.safetensors",
64
+ "transformer.h.13.mixer.Wqkv.weight": "model-00001-of-00002.safetensors",
65
+ "transformer.h.13.mixer.out_proj.bias": "model-00001-of-00002.safetensors",
66
+ "transformer.h.13.mixer.out_proj.weight": "model-00001-of-00002.safetensors",
67
+ "transformer.h.13.mlp.fc1.bias": "model-00001-of-00002.safetensors",
68
+ "transformer.h.13.mlp.fc1.weight": "model-00001-of-00002.safetensors",
69
+ "transformer.h.13.mlp.fc2.bias": "model-00001-of-00002.safetensors",
70
+ "transformer.h.13.mlp.fc2.weight": "model-00001-of-00002.safetensors",
71
+ "transformer.h.14.ln.bias": "model-00001-of-00002.safetensors",
72
+ "transformer.h.14.ln.weight": "model-00001-of-00002.safetensors",
73
+ "transformer.h.14.mixer.Wqkv.bias": "model-00001-of-00002.safetensors",
74
+ "transformer.h.14.mixer.Wqkv.weight": "model-00001-of-00002.safetensors",
75
+ "transformer.h.14.mixer.out_proj.bias": "model-00001-of-00002.safetensors",
76
+ "transformer.h.14.mixer.out_proj.weight": "model-00001-of-00002.safetensors",
77
+ "transformer.h.14.mlp.fc1.bias": "model-00001-of-00002.safetensors",
78
+ "transformer.h.14.mlp.fc1.weight": "model-00001-of-00002.safetensors",
79
+ "transformer.h.14.mlp.fc2.bias": "model-00001-of-00002.safetensors",
80
+ "transformer.h.14.mlp.fc2.weight": "model-00001-of-00002.safetensors",
81
+ "transformer.h.15.ln.bias": "model-00001-of-00002.safetensors",
82
+ "transformer.h.15.ln.weight": "model-00001-of-00002.safetensors",
83
+ "transformer.h.15.mixer.Wqkv.bias": "model-00001-of-00002.safetensors",
84
+ "transformer.h.15.mixer.Wqkv.weight": "model-00001-of-00002.safetensors",
85
+ "transformer.h.15.mixer.out_proj.bias": "model-00001-of-00002.safetensors",
86
+ "transformer.h.15.mixer.out_proj.weight": "model-00001-of-00002.safetensors",
87
+ "transformer.h.15.mlp.fc1.bias": "model-00001-of-00002.safetensors",
88
+ "transformer.h.15.mlp.fc1.weight": "model-00001-of-00002.safetensors",
89
+ "transformer.h.15.mlp.fc2.bias": "model-00001-of-00002.safetensors",
90
+ "transformer.h.15.mlp.fc2.weight": "model-00001-of-00002.safetensors",
91
+ "transformer.h.16.ln.bias": "model-00001-of-00002.safetensors",
92
+ "transformer.h.16.ln.weight": "model-00001-of-00002.safetensors",
93
+ "transformer.h.16.mixer.Wqkv.bias": "model-00001-of-00002.safetensors",
94
+ "transformer.h.16.mixer.Wqkv.weight": "model-00001-of-00002.safetensors",
95
+ "transformer.h.16.mixer.out_proj.bias": "model-00001-of-00002.safetensors",
96
+ "transformer.h.16.mixer.out_proj.weight": "model-00001-of-00002.safetensors",
97
+ "transformer.h.16.mlp.fc1.bias": "model-00001-of-00002.safetensors",
98
+ "transformer.h.16.mlp.fc1.weight": "model-00001-of-00002.safetensors",
99
+ "transformer.h.16.mlp.fc2.bias": "model-00001-of-00002.safetensors",
100
+ "transformer.h.16.mlp.fc2.weight": "model-00001-of-00002.safetensors",
101
+ "transformer.h.17.ln.bias": "model-00001-of-00002.safetensors",
102
+ "transformer.h.17.ln.weight": "model-00001-of-00002.safetensors",
103
+ "transformer.h.17.mixer.Wqkv.bias": "model-00001-of-00002.safetensors",
104
+ "transformer.h.17.mixer.Wqkv.weight": "model-00001-of-00002.safetensors",
105
+ "transformer.h.17.mixer.out_proj.bias": "model-00001-of-00002.safetensors",
106
+ "transformer.h.17.mixer.out_proj.weight": "model-00001-of-00002.safetensors",
107
+ "transformer.h.17.mlp.fc1.bias": "model-00001-of-00002.safetensors",
108
+ "transformer.h.17.mlp.fc1.weight": "model-00001-of-00002.safetensors",
109
+ "transformer.h.17.mlp.fc2.bias": "model-00001-of-00002.safetensors",
110
+ "transformer.h.17.mlp.fc2.weight": "model-00001-of-00002.safetensors",
111
+ "transformer.h.18.ln.bias": "model-00001-of-00002.safetensors",
112
+ "transformer.h.18.ln.weight": "model-00001-of-00002.safetensors",
113
+ "transformer.h.18.mixer.Wqkv.bias": "model-00001-of-00002.safetensors",
114
+ "transformer.h.18.mixer.Wqkv.weight": "model-00001-of-00002.safetensors",
115
+ "transformer.h.18.mixer.out_proj.bias": "model-00001-of-00002.safetensors",
116
+ "transformer.h.18.mixer.out_proj.weight": "model-00001-of-00002.safetensors",
117
+ "transformer.h.18.mlp.fc1.bias": "model-00001-of-00002.safetensors",
118
+ "transformer.h.18.mlp.fc1.weight": "model-00001-of-00002.safetensors",
119
+ "transformer.h.18.mlp.fc2.bias": "model-00001-of-00002.safetensors",
120
+ "transformer.h.18.mlp.fc2.weight": "model-00001-of-00002.safetensors",
121
+ "transformer.h.19.ln.bias": "model-00001-of-00002.safetensors",
122
+ "transformer.h.19.ln.weight": "model-00001-of-00002.safetensors",
123
+ "transformer.h.19.mixer.Wqkv.bias": "model-00001-of-00002.safetensors",
124
+ "transformer.h.19.mixer.Wqkv.weight": "model-00001-of-00002.safetensors",
125
+ "transformer.h.19.mixer.out_proj.bias": "model-00001-of-00002.safetensors",
126
+ "transformer.h.19.mixer.out_proj.weight": "model-00001-of-00002.safetensors",
127
+ "transformer.h.19.mlp.fc1.bias": "model-00001-of-00002.safetensors",
128
+ "transformer.h.19.mlp.fc1.weight": "model-00001-of-00002.safetensors",
129
+ "transformer.h.19.mlp.fc2.bias": "model-00001-of-00002.safetensors",
130
+ "transformer.h.19.mlp.fc2.weight": "model-00001-of-00002.safetensors",
131
+ "transformer.h.2.ln.bias": "model-00001-of-00002.safetensors",
132
+ "transformer.h.2.ln.weight": "model-00001-of-00002.safetensors",
133
+ "transformer.h.2.mixer.Wqkv.bias": "model-00001-of-00002.safetensors",
134
+ "transformer.h.2.mixer.Wqkv.weight": "model-00001-of-00002.safetensors",
135
+ "transformer.h.2.mixer.out_proj.bias": "model-00001-of-00002.safetensors",
136
+ "transformer.h.2.mixer.out_proj.weight": "model-00001-of-00002.safetensors",
137
+ "transformer.h.2.mlp.fc1.bias": "model-00001-of-00002.safetensors",
138
+ "transformer.h.2.mlp.fc1.weight": "model-00001-of-00002.safetensors",
139
+ "transformer.h.2.mlp.fc2.bias": "model-00001-of-00002.safetensors",
140
+ "transformer.h.2.mlp.fc2.weight": "model-00001-of-00002.safetensors",
141
+ "transformer.h.20.ln.bias": "model-00001-of-00002.safetensors",
142
+ "transformer.h.20.ln.weight": "model-00001-of-00002.safetensors",
143
+ "transformer.h.20.mixer.Wqkv.bias": "model-00001-of-00002.safetensors",
144
+ "transformer.h.20.mixer.Wqkv.weight": "model-00001-of-00002.safetensors",
145
+ "transformer.h.20.mixer.out_proj.bias": "model-00001-of-00002.safetensors",
146
+ "transformer.h.20.mixer.out_proj.weight": "model-00001-of-00002.safetensors",
147
+ "transformer.h.20.mlp.fc1.bias": "model-00001-of-00002.safetensors",
148
+ "transformer.h.20.mlp.fc1.weight": "model-00001-of-00002.safetensors",
149
+ "transformer.h.20.mlp.fc2.bias": "model-00001-of-00002.safetensors",
150
+ "transformer.h.20.mlp.fc2.weight": "model-00001-of-00002.safetensors",
151
+ "transformer.h.21.ln.bias": "model-00001-of-00002.safetensors",
152
+ "transformer.h.21.ln.weight": "model-00001-of-00002.safetensors",
153
+ "transformer.h.21.mixer.Wqkv.bias": "model-00001-of-00002.safetensors",
154
+ "transformer.h.21.mixer.Wqkv.weight": "model-00001-of-00002.safetensors",
155
+ "transformer.h.21.mixer.out_proj.bias": "model-00001-of-00002.safetensors",
156
+ "transformer.h.21.mixer.out_proj.weight": "model-00001-of-00002.safetensors",
157
+ "transformer.h.21.mlp.fc1.bias": "model-00001-of-00002.safetensors",
158
+ "transformer.h.21.mlp.fc1.weight": "model-00001-of-00002.safetensors",
159
+ "transformer.h.21.mlp.fc2.bias": "model-00001-of-00002.safetensors",
160
+ "transformer.h.21.mlp.fc2.weight": "model-00001-of-00002.safetensors",
161
+ "transformer.h.22.ln.bias": "model-00001-of-00002.safetensors",
162
+ "transformer.h.22.ln.weight": "model-00001-of-00002.safetensors",
163
+ "transformer.h.22.mixer.Wqkv.bias": "model-00001-of-00002.safetensors",
164
+ "transformer.h.22.mixer.Wqkv.weight": "model-00001-of-00002.safetensors",
165
+ "transformer.h.22.mixer.out_proj.bias": "model-00001-of-00002.safetensors",
166
+ "transformer.h.22.mixer.out_proj.weight": "model-00001-of-00002.safetensors",
167
+ "transformer.h.22.mlp.fc1.bias": "model-00001-of-00002.safetensors",
168
+ "transformer.h.22.mlp.fc1.weight": "model-00001-of-00002.safetensors",
169
+ "transformer.h.22.mlp.fc2.bias": "model-00001-of-00002.safetensors",
170
+ "transformer.h.22.mlp.fc2.weight": "model-00001-of-00002.safetensors",
171
+ "transformer.h.23.ln.bias": "model-00001-of-00002.safetensors",
172
+ "transformer.h.23.ln.weight": "model-00001-of-00002.safetensors",
173
+ "transformer.h.23.mixer.Wqkv.bias": "model-00001-of-00002.safetensors",
174
+ "transformer.h.23.mixer.Wqkv.weight": "model-00001-of-00002.safetensors",
175
+ "transformer.h.23.mixer.out_proj.bias": "model-00001-of-00002.safetensors",
176
+ "transformer.h.23.mixer.out_proj.weight": "model-00001-of-00002.safetensors",
177
+ "transformer.h.23.mlp.fc1.bias": "model-00001-of-00002.safetensors",
178
+ "transformer.h.23.mlp.fc1.weight": "model-00001-of-00002.safetensors",
179
+ "transformer.h.23.mlp.fc2.bias": "model-00001-of-00002.safetensors",
180
+ "transformer.h.23.mlp.fc2.weight": "model-00001-of-00002.safetensors",
181
+ "transformer.h.24.ln.bias": "model-00001-of-00002.safetensors",
182
+ "transformer.h.24.ln.weight": "model-00001-of-00002.safetensors",
183
+ "transformer.h.24.mixer.Wqkv.bias": "model-00001-of-00002.safetensors",
184
+ "transformer.h.24.mixer.Wqkv.weight": "model-00001-of-00002.safetensors",
185
+ "transformer.h.24.mixer.out_proj.bias": "model-00001-of-00002.safetensors",
186
+ "transformer.h.24.mixer.out_proj.weight": "model-00001-of-00002.safetensors",
187
+ "transformer.h.24.mlp.fc1.bias": "model-00001-of-00002.safetensors",
188
+ "transformer.h.24.mlp.fc1.weight": "model-00001-of-00002.safetensors",
189
+ "transformer.h.24.mlp.fc2.bias": "model-00001-of-00002.safetensors",
190
+ "transformer.h.24.mlp.fc2.weight": "model-00001-of-00002.safetensors",
191
+ "transformer.h.25.ln.bias": "model-00001-of-00002.safetensors",
192
+ "transformer.h.25.ln.weight": "model-00001-of-00002.safetensors",
193
+ "transformer.h.25.mixer.Wqkv.bias": "model-00001-of-00002.safetensors",
194
+ "transformer.h.25.mixer.Wqkv.weight": "model-00001-of-00002.safetensors",
195
+ "transformer.h.25.mixer.out_proj.bias": "model-00001-of-00002.safetensors",
196
+ "transformer.h.25.mixer.out_proj.weight": "model-00001-of-00002.safetensors",
197
+ "transformer.h.25.mlp.fc1.bias": "model-00001-of-00002.safetensors",
198
+ "transformer.h.25.mlp.fc1.weight": "model-00001-of-00002.safetensors",
199
+ "transformer.h.25.mlp.fc2.bias": "model-00001-of-00002.safetensors",
200
+ "transformer.h.25.mlp.fc2.weight": "model-00001-of-00002.safetensors",
201
+ "transformer.h.26.ln.bias": "model-00001-of-00002.safetensors",
202
+ "transformer.h.26.ln.weight": "model-00001-of-00002.safetensors",
203
+ "transformer.h.26.mixer.Wqkv.bias": "model-00001-of-00002.safetensors",
204
+ "transformer.h.26.mixer.Wqkv.weight": "model-00001-of-00002.safetensors",
205
+ "transformer.h.26.mixer.out_proj.bias": "model-00001-of-00002.safetensors",
206
+ "transformer.h.26.mixer.out_proj.weight": "model-00001-of-00002.safetensors",
207
+ "transformer.h.26.mlp.fc1.bias": "model-00001-of-00002.safetensors",
208
+ "transformer.h.26.mlp.fc1.weight": "model-00001-of-00002.safetensors",
209
+ "transformer.h.26.mlp.fc2.bias": "model-00001-of-00002.safetensors",
210
+ "transformer.h.26.mlp.fc2.weight": "model-00001-of-00002.safetensors",
211
+ "transformer.h.27.ln.bias": "model-00001-of-00002.safetensors",
212
+ "transformer.h.27.ln.weight": "model-00001-of-00002.safetensors",
213
+ "transformer.h.27.mixer.Wqkv.bias": "model-00001-of-00002.safetensors",
214
+ "transformer.h.27.mixer.Wqkv.weight": "model-00001-of-00002.safetensors",
215
+ "transformer.h.27.mixer.out_proj.bias": "model-00001-of-00002.safetensors",
216
+ "transformer.h.27.mixer.out_proj.weight": "model-00001-of-00002.safetensors",
217
+ "transformer.h.27.mlp.fc1.bias": "model-00001-of-00002.safetensors",
218
+ "transformer.h.27.mlp.fc1.weight": "model-00001-of-00002.safetensors",
219
+ "transformer.h.27.mlp.fc2.bias": "model-00001-of-00002.safetensors",
220
+ "transformer.h.27.mlp.fc2.weight": "model-00001-of-00002.safetensors",
221
+ "transformer.h.28.ln.bias": "model-00001-of-00002.safetensors",
222
+ "transformer.h.28.ln.weight": "model-00001-of-00002.safetensors",
223
+ "transformer.h.28.mixer.Wqkv.bias": "model-00001-of-00002.safetensors",
224
+ "transformer.h.28.mixer.Wqkv.weight": "model-00001-of-00002.safetensors",
225
+ "transformer.h.28.mixer.out_proj.bias": "model-00001-of-00002.safetensors",
226
+ "transformer.h.28.mixer.out_proj.weight": "model-00001-of-00002.safetensors",
227
+ "transformer.h.28.mlp.fc1.bias": "model-00001-of-00002.safetensors",
228
+ "transformer.h.28.mlp.fc1.weight": "model-00001-of-00002.safetensors",
229
+ "transformer.h.28.mlp.fc2.bias": "model-00001-of-00002.safetensors",
230
+ "transformer.h.28.mlp.fc2.weight": "model-00001-of-00002.safetensors",
231
+ "transformer.h.29.ln.bias": "model-00001-of-00002.safetensors",
232
+ "transformer.h.29.ln.weight": "model-00001-of-00002.safetensors",
233
+ "transformer.h.29.mixer.Wqkv.bias": "model-00001-of-00002.safetensors",
234
+ "transformer.h.29.mixer.Wqkv.weight": "model-00001-of-00002.safetensors",
235
+ "transformer.h.29.mixer.out_proj.bias": "model-00001-of-00002.safetensors",
236
+ "transformer.h.29.mixer.out_proj.weight": "model-00001-of-00002.safetensors",
237
+ "transformer.h.29.mlp.fc1.bias": "model-00001-of-00002.safetensors",
238
+ "transformer.h.29.mlp.fc1.weight": "model-00001-of-00002.safetensors",
239
+ "transformer.h.29.mlp.fc2.bias": "model-00001-of-00002.safetensors",
240
+ "transformer.h.29.mlp.fc2.weight": "model-00001-of-00002.safetensors",
241
+ "transformer.h.3.ln.bias": "model-00001-of-00002.safetensors",
242
+ "transformer.h.3.ln.weight": "model-00001-of-00002.safetensors",
243
+ "transformer.h.3.mixer.Wqkv.bias": "model-00001-of-00002.safetensors",
244
+ "transformer.h.3.mixer.Wqkv.weight": "model-00001-of-00002.safetensors",
245
+ "transformer.h.3.mixer.out_proj.bias": "model-00001-of-00002.safetensors",
246
+ "transformer.h.3.mixer.out_proj.weight": "model-00001-of-00002.safetensors",
247
+ "transformer.h.3.mlp.fc1.bias": "model-00001-of-00002.safetensors",
248
+ "transformer.h.3.mlp.fc1.weight": "model-00001-of-00002.safetensors",
249
+ "transformer.h.3.mlp.fc2.bias": "model-00001-of-00002.safetensors",
250
+ "transformer.h.3.mlp.fc2.weight": "model-00001-of-00002.safetensors",
251
+ "transformer.h.30.ln.bias": "model-00001-of-00002.safetensors",
252
+ "transformer.h.30.ln.weight": "model-00001-of-00002.safetensors",
253
+ "transformer.h.30.mixer.Wqkv.bias": "model-00002-of-00002.safetensors",
254
+ "transformer.h.30.mixer.Wqkv.weight": "model-00002-of-00002.safetensors",
255
+ "transformer.h.30.mixer.out_proj.bias": "model-00002-of-00002.safetensors",
256
+ "transformer.h.30.mixer.out_proj.weight": "model-00002-of-00002.safetensors",
257
+ "transformer.h.30.mlp.fc1.bias": "model-00002-of-00002.safetensors",
258
+ "transformer.h.30.mlp.fc1.weight": "model-00002-of-00002.safetensors",
259
+ "transformer.h.30.mlp.fc2.bias": "model-00002-of-00002.safetensors",
260
+ "transformer.h.30.mlp.fc2.weight": "model-00002-of-00002.safetensors",
261
+ "transformer.h.31.ln.bias": "model-00002-of-00002.safetensors",
262
+ "transformer.h.31.ln.weight": "model-00002-of-00002.safetensors",
263
+ "transformer.h.31.mixer.Wqkv.bias": "model-00002-of-00002.safetensors",
264
+ "transformer.h.31.mixer.Wqkv.weight": "model-00002-of-00002.safetensors",
265
+ "transformer.h.31.mixer.out_proj.bias": "model-00002-of-00002.safetensors",
266
+ "transformer.h.31.mixer.out_proj.weight": "model-00002-of-00002.safetensors",
267
+ "transformer.h.31.mlp.fc1.bias": "model-00002-of-00002.safetensors",
268
+ "transformer.h.31.mlp.fc1.weight": "model-00002-of-00002.safetensors",
269
+ "transformer.h.31.mlp.fc2.bias": "model-00002-of-00002.safetensors",
270
+ "transformer.h.31.mlp.fc2.weight": "model-00002-of-00002.safetensors",
271
+ "transformer.h.4.ln.bias": "model-00001-of-00002.safetensors",
272
+ "transformer.h.4.ln.weight": "model-00001-of-00002.safetensors",
273
+ "transformer.h.4.mixer.Wqkv.bias": "model-00001-of-00002.safetensors",
274
+ "transformer.h.4.mixer.Wqkv.weight": "model-00001-of-00002.safetensors",
275
+ "transformer.h.4.mixer.out_proj.bias": "model-00001-of-00002.safetensors",
276
+ "transformer.h.4.mixer.out_proj.weight": "model-00001-of-00002.safetensors",
277
+ "transformer.h.4.mlp.fc1.bias": "model-00001-of-00002.safetensors",
278
+ "transformer.h.4.mlp.fc1.weight": "model-00001-of-00002.safetensors",
279
+ "transformer.h.4.mlp.fc2.bias": "model-00001-of-00002.safetensors",
280
+ "transformer.h.4.mlp.fc2.weight": "model-00001-of-00002.safetensors",
281
+ "transformer.h.5.ln.bias": "model-00001-of-00002.safetensors",
282
+ "transformer.h.5.ln.weight": "model-00001-of-00002.safetensors",
283
+ "transformer.h.5.mixer.Wqkv.bias": "model-00001-of-00002.safetensors",
284
+ "transformer.h.5.mixer.Wqkv.weight": "model-00001-of-00002.safetensors",
285
+ "transformer.h.5.mixer.out_proj.bias": "model-00001-of-00002.safetensors",
286
+ "transformer.h.5.mixer.out_proj.weight": "model-00001-of-00002.safetensors",
287
+ "transformer.h.5.mlp.fc1.bias": "model-00001-of-00002.safetensors",
288
+ "transformer.h.5.mlp.fc1.weight": "model-00001-of-00002.safetensors",
289
+ "transformer.h.5.mlp.fc2.bias": "model-00001-of-00002.safetensors",
290
+ "transformer.h.5.mlp.fc2.weight": "model-00001-of-00002.safetensors",
291
+ "transformer.h.6.ln.bias": "model-00001-of-00002.safetensors",
292
+ "transformer.h.6.ln.weight": "model-00001-of-00002.safetensors",
293
+ "transformer.h.6.mixer.Wqkv.bias": "model-00001-of-00002.safetensors",
294
+ "transformer.h.6.mixer.Wqkv.weight": "model-00001-of-00002.safetensors",
295
+ "transformer.h.6.mixer.out_proj.bias": "model-00001-of-00002.safetensors",
296
+ "transformer.h.6.mixer.out_proj.weight": "model-00001-of-00002.safetensors",
297
+ "transformer.h.6.mlp.fc1.bias": "model-00001-of-00002.safetensors",
298
+ "transformer.h.6.mlp.fc1.weight": "model-00001-of-00002.safetensors",
299
+ "transformer.h.6.mlp.fc2.bias": "model-00001-of-00002.safetensors",
300
+ "transformer.h.6.mlp.fc2.weight": "model-00001-of-00002.safetensors",
301
+ "transformer.h.7.ln.bias": "model-00001-of-00002.safetensors",
302
+ "transformer.h.7.ln.weight": "model-00001-of-00002.safetensors",
303
+ "transformer.h.7.mixer.Wqkv.bias": "model-00001-of-00002.safetensors",
304
+ "transformer.h.7.mixer.Wqkv.weight": "model-00001-of-00002.safetensors",
305
+ "transformer.h.7.mixer.out_proj.bias": "model-00001-of-00002.safetensors",
306
+ "transformer.h.7.mixer.out_proj.weight": "model-00001-of-00002.safetensors",
307
+ "transformer.h.7.mlp.fc1.bias": "model-00001-of-00002.safetensors",
308
+ "transformer.h.7.mlp.fc1.weight": "model-00001-of-00002.safetensors",
309
+ "transformer.h.7.mlp.fc2.bias": "model-00001-of-00002.safetensors",
310
+ "transformer.h.7.mlp.fc2.weight": "model-00001-of-00002.safetensors",
311
+ "transformer.h.8.ln.bias": "model-00001-of-00002.safetensors",
312
+ "transformer.h.8.ln.weight": "model-00001-of-00002.safetensors",
313
+ "transformer.h.8.mixer.Wqkv.bias": "model-00001-of-00002.safetensors",
314
+ "transformer.h.8.mixer.Wqkv.weight": "model-00001-of-00002.safetensors",
315
+ "transformer.h.8.mixer.out_proj.bias": "model-00001-of-00002.safetensors",
316
+ "transformer.h.8.mixer.out_proj.weight": "model-00001-of-00002.safetensors",
317
+ "transformer.h.8.mlp.fc1.bias": "model-00001-of-00002.safetensors",
318
+ "transformer.h.8.mlp.fc1.weight": "model-00001-of-00002.safetensors",
319
+ "transformer.h.8.mlp.fc2.bias": "model-00001-of-00002.safetensors",
320
+ "transformer.h.8.mlp.fc2.weight": "model-00001-of-00002.safetensors",
321
+ "transformer.h.9.ln.bias": "model-00001-of-00002.safetensors",
322
+ "transformer.h.9.ln.weight": "model-00001-of-00002.safetensors",
323
+ "transformer.h.9.mixer.Wqkv.bias": "model-00001-of-00002.safetensors",
324
+ "transformer.h.9.mixer.Wqkv.weight": "model-00001-of-00002.safetensors",
325
+ "transformer.h.9.mixer.out_proj.bias": "model-00001-of-00002.safetensors",
326
+ "transformer.h.9.mixer.out_proj.weight": "model-00001-of-00002.safetensors",
327
+ "transformer.h.9.mlp.fc1.bias": "model-00001-of-00002.safetensors",
328
+ "transformer.h.9.mlp.fc1.weight": "model-00001-of-00002.safetensors",
329
+ "transformer.h.9.mlp.fc2.bias": "model-00001-of-00002.safetensors",
330
+ "transformer.h.9.mlp.fc2.weight": "model-00001-of-00002.safetensors"
331
+ }
332
+ }
modeling_phi.py ADDED
@@ -0,0 +1,980 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Microsoft Corporation.
2
+ # Licensed under the MIT license.
3
+ #
4
+ # Copyright (c) 2022, Tri Dao, trid@cs.stanford.edu.
5
+ # Licensed under the BSD 3-Clause License.
6
+
7
+ from __future__ import annotations
8
+
9
+ import math
10
+ from dataclasses import dataclass, field
11
+ from typing import Any, Dict, Optional, Tuple, Union
12
+
13
+ import torch
14
+ import torch.nn as nn
15
+ from einops import rearrange, repeat
16
+ from transformers import PretrainedConfig, PreTrainedModel
17
+ from transformers.activations import ACT2FN
18
+ from transformers.modeling_outputs import CausalLMOutputWithPast, BaseModelOutputWithNoAttention
19
+
20
+ from .configuration_phi import PhiConfig
21
+
22
+ try:
23
+ from flash_attn.bert_padding import pad_input, unpad_input
24
+ from flash_attn.layers.rotary import RotaryEmbedding as FlashRotaryEmbedding
25
+ from flash_attn.modules.mha import FlashCrossAttention, FlashSelfAttention
26
+ from flash_attn.ops.fused_dense import FusedDense
27
+ except:
28
+ pad_input, unpad_input = None, None
29
+ FlashRotaryEmbedding = None
30
+ FlashSelfAttention, FlashCrossAttention = None, None
31
+ FusedDense = None
32
+
33
+
34
+ @dataclass
35
+ class InferenceParams:
36
+ """Inference parameters passed to model to efficiently calculate
37
+ and store context during inference.
38
+
39
+ Reference:
40
+ https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/utils/generation.py.
41
+
42
+ Args:
43
+ max_seqlen: Maximum sequence length.
44
+ max_batch_size: Maximum batch size.
45
+ seqlen_offset: Sequence length offset.
46
+ batch_size_offset: Batch size offset.
47
+ key_value_memory_dict: Key value memory dictionary.
48
+ lengths_per_sample: Lengths per sample.
49
+
50
+ """
51
+
52
+ max_seqlen: int = field(metadata={"help": "Maximum sequence length."})
53
+
54
+ max_batch_size: int = field(metadata={"help": "Maximum batch size."})
55
+
56
+ seqlen_offset: int = field(default=0, metadata={"help": "Sequence length offset."})
57
+
58
+ batch_size_offset: int = field(default=0, metadata={"help": "Batch size offset."})
59
+
60
+ key_value_memory_dict: Dict[str, Any] = field(
61
+ default_factory=dict, metadata={"help": "Key value memory dictionary."}
62
+ )
63
+
64
+ lengths_per_sample: torch.Tensor = field(default=None, metadata={"help": "Lengths per sample."})
65
+
66
+
67
+ class Embedding(nn.Module):
68
+ """Token embedding with dropout."""
69
+
70
+ def __init__(self, config: PretrainedConfig) -> None:
71
+ super().__init__()
72
+
73
+ self.wte = nn.Embedding(config.vocab_size, config.n_embd)
74
+ self.drop = nn.Dropout(config.embd_pdrop)
75
+
76
+ def forward(self, input_ids: torch.LongTensor) -> torch.FloatTensor:
77
+ input_shape = input_ids.size()
78
+ input_ids = input_ids.view(-1, input_shape[-1])
79
+
80
+ hidden_states = self.wte(input_ids)
81
+ hidden_states = self.drop(hidden_states)
82
+
83
+ return hidden_states
84
+
85
+
86
+ def _apply_rotary_emb(
87
+ x: torch.FloatTensor,
88
+ cos: torch.FloatTensor,
89
+ sin: torch.FloatTensor,
90
+ ) -> torch.FloatTensor:
91
+ _, seqlen, _, _ = x.shape
92
+ _, rotary_dim = cos.shape
93
+ rotary_dim *= 2
94
+
95
+ x_rot = x[:, :, :, :rotary_dim]
96
+ x_pass = x[:, :, :, rotary_dim:]
97
+
98
+ x1, x2 = x_rot.chunk(2, dim=-1)
99
+ c, s = rearrange(cos[:seqlen], "s d -> s 1 d"), rearrange(sin[:seqlen], "s d -> s 1 d")
100
+ x1, x2, c, s = [t.to(dtype=torch.float32) for t in [x1, x2, c, s]]
101
+
102
+ x_rot = torch.cat([x1 * c - x2 * s, x1 * s + x2 * c], axis=-1).to(x.dtype)
103
+
104
+ return torch.cat([x_rot, x_pass], axis=-1)
105
+
106
+
107
+ def _apply_rotary_emb_kv(
108
+ kv: torch.FloatTensor,
109
+ cos: torch.FloatTensor,
110
+ sin: torch.FloatTensor,
111
+ cos_k: Optional[torch.FloatTensor] = None,
112
+ sin_k: Optional[torch.FloatTensor] = None,
113
+ ) -> torch.FloatTensor:
114
+ _, seqlen, _, _, _ = kv.shape
115
+ _, rotary_dim = cos.shape
116
+ rotary_dim *= 2
117
+
118
+ k_rot = kv[:, :, 0, :, :rotary_dim]
119
+ k_pass = kv[:, :, 0, :, rotary_dim:]
120
+
121
+ k1, k2 = k_rot.chunk(2, dim=-1)
122
+ c, s = rearrange(cos[:seqlen], "s d -> s 1 d"), rearrange(sin[:seqlen], "s d -> s 1 d")
123
+ k1, k2, c, s = [t.to(dtype=torch.float32) for t in [k1, k2, c, s]]
124
+
125
+ k_rot = torch.cat([k1 * c - k2 * s, k1 * s + k2 * c], axis=-1).to(kv.dtype)
126
+
127
+ return torch.cat(
128
+ [
129
+ torch.cat([k_rot, k_pass], axis=-1).unsqueeze(2),
130
+ kv[:, :, 1:2, :, :],
131
+ ],
132
+ axis=2,
133
+ )
134
+
135
+
136
+ def _apply_rotary_emb_qkv(
137
+ qkv: torch.FloatTensor,
138
+ cos: torch.FloatTensor,
139
+ sin: torch.FloatTensor,
140
+ cos_k: Optional[torch.FloatTensor] = None,
141
+ sin_k: Optional[torch.FloatTensor] = None,
142
+ ) -> torch.FloatTensor:
143
+ _, seqlen, _, _, _ = qkv.shape
144
+ _, rotary_dim = cos.shape
145
+ rotary_dim *= 2
146
+
147
+ q_rot = qkv[:, :, 0, :, :rotary_dim]
148
+ q_pass = qkv[:, :, 0, :, rotary_dim:]
149
+
150
+ k_rot = qkv[:, :, 1, :, :rotary_dim]
151
+ k_pass = qkv[:, :, 1, :, rotary_dim:]
152
+
153
+ q1, q2 = q_rot.chunk(2, dim=-1)
154
+ k1, k2 = k_rot.chunk(2, dim=-1)
155
+ c, s = rearrange(cos[:seqlen], "s d -> s 1 d"), rearrange(sin[:seqlen], "s d -> s 1 d")
156
+ q1, q2, k1, k2, c, s = [t.to(dtype=torch.float32) for t in [q1, q2, k1, k2, c, s]]
157
+
158
+ q_rot = torch.cat([q1 * c - q2 * s, q1 * s + q2 * c], axis=-1).to(qkv.dtype)
159
+ k_rot = torch.cat([k1 * c - k2 * s, k1 * s + k2 * c], axis=-1).to(qkv.dtype)
160
+
161
+ return torch.cat(
162
+ [
163
+ torch.cat([q_rot, q_pass], axis=-1).unsqueeze(2),
164
+ torch.cat([k_rot, k_pass], axis=-1).unsqueeze(2),
165
+ qkv[:, :, 2:3, :, :],
166
+ ],
167
+ axis=2,
168
+ )
169
+
170
+
171
+ class RotaryEmbedding(nn.Module):
172
+ """Rotary positional embedding (RoPE).
173
+
174
+ Reference:
175
+ RoFormer: Enhanced Transformer with Rotary Position Embedding.
176
+ https://arxiv.org/pdf/2104.09864.pdf.
177
+
178
+ """
179
+
180
+ def __init__(
181
+ self,
182
+ dim: int,
183
+ base: int = 10000,
184
+ scale_base: Optional[float] = None,
185
+ pos_idx_in_fp32: bool = True,
186
+ max_position_embeddings: int = 2048,
187
+ device: Optional[str] = None,
188
+ **kwargs,
189
+ ) -> None:
190
+ super().__init__()
191
+
192
+ if scale_base is not None:
193
+ raise NotImplementedError
194
+
195
+ self.dim = dim
196
+ self.base = float(base)
197
+ self.scale_base = scale_base
198
+ self.pos_idx_in_fp32 = pos_idx_in_fp32
199
+ self.max_position_embeddings = max_position_embeddings
200
+ self.device = device
201
+
202
+ # Generate and save the inverse frequency buffer (non-trainable)
203
+ inv_freq = self._compute_inv_freq(device)
204
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
205
+
206
+ # Generate and save the scale buffer (non-trainable)
207
+ scale = (
208
+ (torch.arange(0, dim, 2, device=device, dtype=torch.float32) + 0.4 * dim) / (1.4 * dim)
209
+ if scale_base is not None
210
+ else None
211
+ )
212
+ self.register_buffer("scale", scale, persistent=False)
213
+
214
+ # Initialize cached attributes since ONNX can't rely on dynamic initialization
215
+ self._update_cos_sin_cache(max_position_embeddings, device=device, dtype=torch.float32)
216
+
217
+ def _compute_inv_freq(self, device: Optional[str] = None) -> torch.FloatTensor:
218
+ return 1.0 / (self.base ** (torch.arange(0, self.dim, 2, device=device, dtype=torch.float32) / self.dim))
219
+
220
+ def _update_cos_sin_cache(
221
+ self,
222
+ seqlen: int,
223
+ device: Optional[str] = None,
224
+ dtype: Optional[torch.dtype] = None,
225
+ ) -> None:
226
+ self._seq_len_cached = seqlen
227
+
228
+ # fp32 is preferred since the output of `torch.arange` can be quite large
229
+ # and bf16 would lose a lot of precision
230
+ if self.pos_idx_in_fp32:
231
+ t = torch.arange(seqlen, device=device, dtype=torch.float32)
232
+ if self.inv_freq.dtype != torch.float32:
233
+ inv_freq = self._compute_inv_freq(device=device)
234
+ else:
235
+ inv_freq = self.inv_freq
236
+ else:
237
+ t = torch.arange(seqlen, device=device, dtype=self.inv_freq.dtype)
238
+ inv_freq = self.inv_freq
239
+
240
+ # `torch.outer` is preferred since `torch.einsum` converts from fp32 to fp16 if used with AMP
241
+ freqs = torch.outer(t, inv_freq)
242
+ if self.scale is None:
243
+ self._cos_cached = torch.cos(freqs).to(dtype)
244
+ self._sin_cached = torch.sin(freqs).to(dtype)
245
+ else:
246
+ power = (
247
+ torch.arange(seqlen, dtype=self.scale.dtype, device=self.scale.device) - seqlen // 2
248
+ ) / self.scale_base
249
+ scale = self.scale.to(device=power.device) ** rearrange(power, "s -> s 1")
250
+
251
+ # Force the scale multiplication to happen in fp32
252
+ self._cos_cached = (torch.cos(freqs) * scale).to(dtype)
253
+ self._sin_cached = (torch.sin(freqs) * scale).to(dtype)
254
+ self._cos_k_cached = (torch.cos(freqs) / scale).to(dtype)
255
+ self._sin_k_cached = (torch.sin(freqs) / scale).to(dtype)
256
+
257
+ def forward(
258
+ self,
259
+ qkv: torch.Tensor,
260
+ kv: Optional[torch.Tensor] = None,
261
+ seqlen_offset: int = 0,
262
+ **kwargs,
263
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
264
+ if (
265
+ self._seq_len_cached < qkv.shape[1] + seqlen_offset
266
+ or self._cos_cached.device != qkv.device
267
+ or self._cos_cached.dtype != qkv.dtype
268
+ or (self.training and self._cos_cached.is_inference())
269
+ ):
270
+ self._update_cos_sin_cache(qkv.shape[1] + seqlen_offset, device=qkv.device, dtype=qkv.dtype)
271
+
272
+ if kv is None:
273
+ return _apply_rotary_emb_qkv(
274
+ qkv,
275
+ self._cos_cached[seqlen_offset:],
276
+ self._sin_cached[seqlen_offset:],
277
+ )
278
+ else:
279
+ q = _apply_rotary_emb(
280
+ qkv,
281
+ self._cos_cached[seqlen_offset:],
282
+ self._sin_cached[seqlen_offset:],
283
+ )
284
+ kv = _apply_rotary_emb_kv(
285
+ kv,
286
+ self._cos_cached[seqlen_offset:],
287
+ self._sin_cached[seqlen_offset:],
288
+ )
289
+
290
+ return q, kv
291
+
292
+
293
+ class MLP(nn.Module):
294
+ """Multi-Layer Perceptron.
295
+
296
+ Reference:
297
+ Attention Is All You Need.
298
+ https://arxiv.org/pdf/1706.03762.pdf.
299
+
300
+ """
301
+
302
+ def __init__(
303
+ self,
304
+ config: PretrainedConfig,
305
+ n_inner: Optional[int] = None,
306
+ act_fn: Optional[str] = None,
307
+ ) -> None:
308
+ super().__init__()
309
+
310
+ act_fn = config.activation_function if act_fn is None else act_fn
311
+
312
+ n_inner = getattr(config, "n_inner", None) if n_inner is None else n_inner
313
+ n_inner = n_inner if n_inner is not None else 4 * config.n_embd
314
+
315
+ self.fc1 = nn.Linear(config.n_embd, n_inner)
316
+ self.fc2 = nn.Linear(n_inner, config.n_embd)
317
+ self.act = ACT2FN[act_fn]
318
+
319
+ def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor:
320
+ hidden_states = self.fc1(hidden_states)
321
+ hidden_states = self.act(hidden_states)
322
+ hidden_states = self.fc2(hidden_states)
323
+
324
+ return hidden_states
325
+
326
+
327
+ class SelfAttention(nn.Module):
328
+ """Self-attention layer (compatible with PyTorch).
329
+
330
+ Reference:
331
+ https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/modules/mha.py.
332
+
333
+ """
334
+
335
+ def __init__(
336
+ self,
337
+ causal: bool = True,
338
+ softmax_scale: Optional[float] = None,
339
+ attention_dropout: float = 0.0,
340
+ ) -> None:
341
+ super().__init__()
342
+
343
+ self.causal = causal
344
+ self.softmax_scale = softmax_scale
345
+ self.drop = nn.Dropout(attention_dropout)
346
+
347
+ @torch.autocast("cpu", enabled=False)
348
+ @torch.autocast("cuda", enabled=False)
349
+ def forward(
350
+ self,
351
+ qkv: torch.FloatTensor,
352
+ causal: bool = None,
353
+ key_padding_mask: Optional[torch.BoolTensor] = None,
354
+ **kwargs,
355
+ ) -> torch.FloatTensor:
356
+ batch_size, seqlen = qkv.shape[0], qkv.shape[1]
357
+ q, k, v = qkv.unbind(dim=2)
358
+
359
+ q = q.to(torch.float32)
360
+ k = k.to(torch.float32)
361
+
362
+ causal = self.causal if causal is None else causal
363
+ softmax_scale = self.softmax_scale or 1.0 / math.sqrt(q.shape[-1])
364
+
365
+ # Autocast is manually disabled to avoid `torch.einsum` performing the operation
366
+ # using float16, which might lead to overflow
367
+ scores = torch.einsum("bthd,bshd->bhts", q, k * softmax_scale)
368
+
369
+ if key_padding_mask is not None:
370
+ padding_mask = torch.full((batch_size, seqlen), -10000.0, dtype=scores.dtype, device=scores.device)
371
+ padding_mask.masked_fill_(key_padding_mask, 0.0)
372
+
373
+ scores = scores + rearrange(padding_mask, "b s -> b 1 1 s")
374
+
375
+ if causal:
376
+ causal_mask = torch.triu(torch.full((seqlen, seqlen), -10000.0, device=scores.device), 1)
377
+ scores = scores + causal_mask.to(dtype=scores.dtype)
378
+
379
+ attention = torch.softmax(scores, dim=-1).to(v.dtype)
380
+ attention = self.drop(attention)
381
+
382
+ output = torch.einsum("bhts,bshd->bthd", attention, v)
383
+
384
+ return output
385
+
386
+
387
+ class CrossAttention(nn.Module):
388
+ """Cross-attention layer (compatible with PyTorch).
389
+
390
+ Reference:
391
+ https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/modules/mha.py.
392
+
393
+ """
394
+
395
+ def __init__(
396
+ self,
397
+ causal: bool = True,
398
+ softmax_scale: Optional[float] = None,
399
+ attention_dropout: float = 0.0,
400
+ ) -> None:
401
+ super().__init__()
402
+
403
+ self.causal = causal
404
+ self.softmax_scale = softmax_scale
405
+ self.drop = nn.Dropout(attention_dropout)
406
+
407
+ @torch.autocast("cpu", enabled=False)
408
+ @torch.autocast("cuda", enabled=False)
409
+ def forward(
410
+ self,
411
+ q: torch.FloatTensor,
412
+ kv: torch.FloatTensor,
413
+ causal: bool = None,
414
+ key_padding_mask: Optional[torch.BoolTensor] = None,
415
+ **kwargs,
416
+ ) -> torch.FloatTensor:
417
+ batch_size, seqlen_q = q.shape[0], q.shape[1]
418
+ seqlen_k = kv.shape[1]
419
+
420
+ if kv.shape[3] != q.shape[2]:
421
+ kv = repeat(kv, "... hkv d -> ... (hkv g) d", g=q.shape[2] // kv.shape[3])
422
+ k, v = kv.unbind(dim=2)
423
+
424
+ q = q.to(torch.float32)
425
+ k = k.to(torch.float32)
426
+
427
+ causal = self.causal if causal is None else causal
428
+ softmax_scale = self.softmax_scale or 1.0 / math.sqrt(q.shape[-1])
429
+
430
+ # Autocast is manually disabled to avoid `torch.einsum` performing the operation
431
+ # using float16, which might lead to overflow
432
+ scores = torch.einsum("bthd,bshd->bhts", q, k * softmax_scale)
433
+
434
+ if key_padding_mask is not None:
435
+ padding_mask = torch.full(
436
+ (batch_size, seqlen_k),
437
+ -10000.0,
438
+ dtype=scores.dtype,
439
+ device=scores.device,
440
+ )
441
+ padding_mask.masked_fill_(key_padding_mask, 0.0)
442
+
443
+ scores = scores + rearrange(padding_mask, "b s -> b 1 1 s")
444
+
445
+ if causal:
446
+ rows = rearrange(torch.arange(seqlen_q, device=q.device, dtype=torch.long), "s -> s 1")
447
+ cols = torch.arange(seqlen_k, device=k.device, dtype=torch.long)
448
+ causal_mask = cols > rows + seqlen_k - seqlen_q
449
+
450
+ scores = scores.masked_fill(causal_mask, -10000.0)
451
+
452
+ attention = torch.softmax(scores, dim=-1).to(v.dtype)
453
+ attention = self.drop(attention)
454
+
455
+ output = torch.einsum("bhts,bshd->bthd", attention, v)
456
+
457
+ return output
458
+
459
+
460
+ def _find_mha_dims(
461
+ config: PretrainedConfig,
462
+ n_head: Optional[int] = None,
463
+ n_head_kv: Optional[int] = None,
464
+ head_dim: Optional[int] = None,
465
+ ) -> Tuple[int, int]:
466
+ if n_head is None and head_dim is None:
467
+ head_dim = config.n_embd // config.n_head
468
+ n_head = config.n_head
469
+ elif n_head is None or head_dim is None:
470
+ raise ValueError("`n_head` and `head_dim` must be both specified or `None`.")
471
+
472
+ if n_head_kv is None:
473
+ n_head_kv = getattr(config, "n_head_kv", None) or n_head
474
+
475
+ return n_head, n_head_kv, head_dim
476
+
477
+
478
+ def _update_kv_cache(kv: torch.FloatTensor, inference_params: InferenceParams, layer_idx: int) -> torch.FloatTensor:
479
+ num_heads, head_dim = kv.shape[-2:]
480
+
481
+ if layer_idx not in inference_params.key_value_memory_dict:
482
+ inference_params.key_value_memory_dict[layer_idx] = torch.empty(
483
+ inference_params.max_batch_size,
484
+ inference_params.max_seqlen,
485
+ 2,
486
+ num_heads,
487
+ head_dim,
488
+ dtype=kv.dtype,
489
+ device=kv.device,
490
+ )
491
+
492
+ batch_start = inference_params.batch_size_offset
493
+ batch_end = batch_start + kv.shape[0]
494
+
495
+ sequence_start = inference_params.seqlen_offset
496
+ sequence_end = sequence_start + kv.shape[1]
497
+
498
+ # When the current sequence length is equal to or larger than the maximum sequence length,
499
+ # we need to concatenate the current `kv` with the cached `kv` to expand its length
500
+ if sequence_end >= inference_params.max_seqlen:
501
+ inference_params.key_value_memory_dict[layer_idx] = torch.concatenate((inference_params.key_value_memory_dict[layer_idx], kv), dim=1)
502
+
503
+ inference_params.key_value_memory_dict[layer_idx][batch_start:batch_end, sequence_start:sequence_end, ...] = kv
504
+ kv = inference_params.key_value_memory_dict[layer_idx][batch_start:batch_end, :sequence_end, ...]
505
+
506
+ return kv
507
+
508
+
509
+ class MHA(nn.Module):
510
+ """Multi-head attention layer."""
511
+
512
+ def __init__(
513
+ self,
514
+ config: PretrainedConfig,
515
+ dtype: Optional[torch.dtype] = None,
516
+ device: Optional[str] = None,
517
+ rotary_dim: Optional[int] = None,
518
+ rotary_base: float = 10000.0,
519
+ rotary_scale_base: Optional[float] = None,
520
+ n_head: Optional[int] = None,
521
+ n_head_kv: Optional[int] = None,
522
+ head_dim: Optional[int] = None,
523
+ bias: bool = True,
524
+ causal: bool = True,
525
+ softmax_scale: Optional[float] = None,
526
+ layer_idx: Optional[int] = None,
527
+ return_residual: bool = False,
528
+ checkpointing: bool = False,
529
+ ) -> None:
530
+ super().__init__()
531
+
532
+ # Rotary embedding
533
+ self.rotary_dim = rotary_dim if rotary_dim is not None else getattr(config, "rotary_dim", 0)
534
+ if self.rotary_dim > 0:
535
+ rotary_cls = FlashRotaryEmbedding if config.flash_rotary else RotaryEmbedding
536
+ if rotary_cls is None:
537
+ rotary_cls = RotaryEmbedding
538
+
539
+ rotary_kwargs = {}
540
+ if rotary_cls is RotaryEmbedding:
541
+ rotary_kwargs["max_position_embeddings"] = config.n_positions
542
+
543
+ self.rotary_emb = rotary_cls(
544
+ self.rotary_dim,
545
+ base=rotary_base,
546
+ scale_base=rotary_scale_base,
547
+ device=device,
548
+ **rotary_kwargs,
549
+ )
550
+
551
+ # MLP
552
+ self.n_head, self.n_head_kv, self.head_dim = _find_mha_dims(
553
+ config, n_head=n_head, n_head_kv=n_head_kv, head_dim=head_dim
554
+ )
555
+ op_size = self.head_dim * (self.n_head + 2 * self.n_head_kv)
556
+ hidden_size = config.n_embd
557
+
558
+ linear_cls = FusedDense if config.fused_dense else nn.Linear
559
+ if linear_cls is None:
560
+ linear_cls = nn.Linear
561
+
562
+ self.Wqkv = linear_cls(hidden_size, op_size, bias=bias, device=device, dtype=dtype)
563
+ self.out_proj = linear_cls(hidden_size, hidden_size, bias=bias, device=device, dtype=dtype)
564
+
565
+ # Attention
566
+ attn_cls = FlashSelfAttention if config.flash_attn else SelfAttention
567
+ if attn_cls is None:
568
+ attn_cls = SelfAttention
569
+
570
+ cross_attn_cls = FlashCrossAttention if config.flash_attn else CrossAttention
571
+ if cross_attn_cls is None:
572
+ cross_attn_cls = CrossAttention
573
+
574
+ self.inner_attn = attn_cls(
575
+ causal=causal,
576
+ softmax_scale=softmax_scale,
577
+ attention_dropout=config.attn_pdrop,
578
+ )
579
+ self.inner_cross_attn = cross_attn_cls(
580
+ causal=causal,
581
+ softmax_scale=softmax_scale,
582
+ attention_dropout=config.attn_pdrop,
583
+ )
584
+
585
+ self.flash_attn = config.flash_attn and attn_cls is FlashSelfAttention
586
+ self.layer_idx = layer_idx
587
+ self.return_residual = return_residual
588
+ self.checkpointing = checkpointing
589
+
590
+ def _forward_self_attn(
591
+ self, x: torch.FloatTensor, key_padding_mask: Optional[torch.BoolTensor]
592
+ ) -> torch.FloatTensor:
593
+ qkv = self.Wqkv(x)
594
+ qkv = rearrange(qkv, "... (three h d) -> ... three h d", three=3, d=self.head_dim)
595
+
596
+ if self.rotary_dim > 0:
597
+ qkv = self.rotary_emb(qkv)
598
+
599
+ if self.flash_attn:
600
+ batch_size, seqlen = qkv.shape[0], qkv.shape[1]
601
+
602
+ cu_seqlens, max_seqlen = None, None
603
+ if key_padding_mask is not None:
604
+ # If `key_padding_mask` is supplied, we need to unpad the input and retrieve
605
+ # the `cu_seqlens` and `max_seqlen` to be used by `flash-attn`
606
+ qkv, indices, cu_seqlens, max_seqlen = unpad_input(qkv, key_padding_mask)
607
+
608
+ if self.checkpointing:
609
+ attn_output = torch.utils.checkpoint.checkpoint(
610
+ self.inner_attn, qkv, cu_seqlens=cu_seqlens, max_seqlen=max_seqlen
611
+ )
612
+ else:
613
+ attn_output = self.inner_attn(qkv, cu_seqlens=cu_seqlens, max_seqlen=max_seqlen).to(qkv.device)
614
+
615
+ # If `key_padding_mask` is supplied, we need to pad the output back to the original shape
616
+ return pad_input(attn_output, indices, batch_size, seqlen) if key_padding_mask is not None else attn_output
617
+
618
+ if self.checkpointing:
619
+ return torch.utils.checkpoint.checkpoint(self.inner_attn, qkv, key_padding_mask=key_padding_mask)
620
+
621
+ return self.inner_attn(qkv, key_padding_mask=key_padding_mask)
622
+
623
+ def _forward_cross_attn(
624
+ self,
625
+ x: torch.FloatTensor,
626
+ past_key_values: Optional[InferenceParams],
627
+ key_padding_mask: Optional[torch.BoolTensor],
628
+ ) -> torch.FloatTensor:
629
+ batch_size = x.shape[0]
630
+
631
+ qkv = self.Wqkv(x)
632
+
633
+ q = qkv[..., : self.n_head * self.head_dim]
634
+ q = rearrange(q, "... (h d) -> ... h d", d=self.head_dim)
635
+
636
+ kv = qkv[..., self.n_head * self.head_dim :]
637
+ kv = rearrange(kv, "... (two hkv d) -> ... two hkv d", two=2, d=self.head_dim)
638
+
639
+ seqlen_offset = past_key_values.seqlen_offset if past_key_values is not None else 0
640
+ causal = None if seqlen_offset == 0 else False
641
+ if self.rotary_dim > 0:
642
+ q, kv = self.rotary_emb(q, kv=kv, seqlen_offset=seqlen_offset)
643
+
644
+ if past_key_values is not None:
645
+ kv = _update_kv_cache(kv, past_key_values, self.layer_idx)
646
+
647
+ if self.flash_attn:
648
+ batch_size, seqlen_q = q.shape[0], q.shape[1]
649
+ seqlen_k = kv.shape[1]
650
+
651
+ cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k = (
652
+ None,
653
+ None,
654
+ None,
655
+ None,
656
+ )
657
+ if key_padding_mask is not None:
658
+ kv, _, cu_seqlens_k, max_seqlen_k = unpad_input(kv, key_padding_mask)
659
+
660
+ if seqlen_q == 1:
661
+ key_padding_mask = torch.ones(batch_size, 1, device=q.device)
662
+ elif seqlen_q != seqlen_k:
663
+ key_padding_mask = key_padding_mask[:, -seqlen_q:]
664
+
665
+ q, indices_q, cu_seqlens_q, max_seqlen_q = unpad_input(q, key_padding_mask)
666
+
667
+ if self.checkpointing:
668
+ attn_output = torch.utils.checkpoint.checkpoint(
669
+ self.inner_cross_attn,
670
+ q,
671
+ kv,
672
+ causal=causal,
673
+ cu_seqlens=cu_seqlens_q,
674
+ max_seqlen=max_seqlen_q,
675
+ cu_seqlens_k=cu_seqlens_k,
676
+ max_seqlen_k=max_seqlen_k,
677
+ )
678
+ else:
679
+ attn_output = self.inner_cross_attn(
680
+ q,
681
+ kv,
682
+ causal=causal,
683
+ cu_seqlens=cu_seqlens_q,
684
+ max_seqlen=max_seqlen_q,
685
+ cu_seqlens_k=cu_seqlens_k,
686
+ max_seqlen_k=max_seqlen_k,
687
+ )
688
+
689
+ return (
690
+ pad_input(attn_output, indices_q, batch_size, max_seqlen_q)
691
+ if key_padding_mask is not None
692
+ else attn_output
693
+ )
694
+
695
+ if self.checkpointing:
696
+ return torch.utils.checkpoint.checkpoint(
697
+ self.inner_cross_attn,
698
+ q,
699
+ kv,
700
+ key_padding_mask=key_padding_mask,
701
+ causal=causal,
702
+ )
703
+
704
+ return self.inner_cross_attn(q, kv, key_padding_mask=key_padding_mask, causal=causal)
705
+
706
+ def forward(
707
+ self,
708
+ x: torch.FloatTensor,
709
+ past_key_values: Optional[InferenceParams] = None,
710
+ attention_mask: Optional[Union[torch.LongTensor, torch.BoolTensor]] = None,
711
+ **kwargs,
712
+ ) -> Tuple[torch.FloatTensor, torch.FloatTensor]:
713
+ if attention_mask is not None:
714
+ attention_mask = attention_mask.bool()
715
+ else:
716
+ attention_mask = None
717
+
718
+ # MHA
719
+ if self.n_head == self.n_head_kv:
720
+ if past_key_values is None:
721
+ # If `past_key_values` are not supplied, we run self-attention
722
+ attn_output = self._forward_self_attn(x, attention_mask)
723
+ else:
724
+ # If `past_key_values` are supplied, it means that we might have cached values and
725
+ # could take advantage of cross-attention
726
+ attn_output = self._forward_cross_attn(x, past_key_values, attention_mask)
727
+ # MQA / GQA
728
+ else:
729
+ # Regardless of `past_key_values` being supplied or not, it always use cross-attention
730
+ # because `q` and `kv` lengths might be different
731
+ attn_output = self._forward_cross_attn(x, past_key_values, attention_mask)
732
+
733
+ output = rearrange(attn_output, "... h d -> ... (h d)")
734
+ output = self.out_proj(output)
735
+
736
+ return output if not self.return_residual else (output, x)
737
+
738
+
739
+ class ParallelBlock(nn.Module):
740
+ """Parallel block.
741
+
742
+ This block applies parallel mixer and MLP layers to the input (used in GPT-J and CodeGen).
743
+
744
+ """
745
+
746
+ def __init__(
747
+ self,
748
+ config: PretrainedConfig,
749
+ block_idx: Optional[int] = None,
750
+ ) -> None:
751
+ super().__init__()
752
+
753
+ self.ln = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
754
+ self.resid_dropout = nn.Dropout(config.resid_pdrop)
755
+ self.block_idx = block_idx
756
+
757
+ self.mixer = MHA(config, layer_idx=block_idx)
758
+ self.mlp = MLP(config)
759
+
760
+ def forward(
761
+ self,
762
+ hidden_states: torch.FloatTensor,
763
+ past_key_values: Optional[Union[torch.FloatTensor, InferenceParams]] = None,
764
+ attention_mask: Optional[torch.BoolTensor] = None,
765
+ **kwargs,
766
+ ) -> torch.FloatTensor:
767
+ residual = hidden_states
768
+ hidden_states = self.ln(hidden_states)
769
+
770
+ attn_outputs = self.mixer(
771
+ hidden_states,
772
+ past_key_values=past_key_values,
773
+ attention_mask=attention_mask,
774
+ )
775
+ if isinstance(attn_outputs, tuple):
776
+ attn_outputs = attn_outputs[0]
777
+
778
+ attn_outputs = self.resid_dropout(attn_outputs)
779
+ feed_forward_hidden_states = self.resid_dropout(self.mlp(hidden_states))
780
+
781
+ hidden_states = attn_outputs + feed_forward_hidden_states + residual
782
+
783
+ return hidden_states
784
+
785
+
786
+ class CausalLMHead(nn.Module):
787
+ """Causal Language Modeling head.
788
+
789
+ Reference:
790
+ Improving Language Understanding by Generative Pre-Training.
791
+ https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf.
792
+
793
+ """
794
+
795
+ def __init__(self, config: PretrainedConfig) -> None:
796
+ super().__init__()
797
+
798
+ self.ln = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
799
+ self.linear = nn.Linear(config.n_embd, config.vocab_size)
800
+
801
+ def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor:
802
+ hidden_states = self.ln(hidden_states)
803
+ logits = self.linear(hidden_states).to(torch.float32)
804
+
805
+ return logits
806
+
807
+
808
+ class CausalLMLoss(nn.Module):
809
+ """Causal Language Modeling loss.
810
+
811
+ Reference:
812
+ Improving Language Understanding by Generative Pre-Training.
813
+ https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf.
814
+
815
+ """
816
+
817
+ def __init__(self, shift_labels: bool = True) -> None:
818
+ super().__init__()
819
+
820
+ self.shift_labels = shift_labels
821
+ self.loss_fct = nn.CrossEntropyLoss()
822
+
823
+ def forward(self, logits: torch.FloatTensor, labels: torch.LongTensor) -> torch.FloatTensor:
824
+ if self.shift_labels:
825
+ logits = logits[..., :-1, :].contiguous()
826
+ labels = labels[..., 1:].contiguous()
827
+
828
+ loss = self.loss_fct(logits.view(-1, logits.size(-1)), labels.view(-1))
829
+
830
+ return loss
831
+
832
+
833
+ class PhiPreTrainedModel(PreTrainedModel):
834
+ """Phi pre-trained model."""
835
+
836
+ config_class = PhiConfig
837
+ base_model_prefix = "transformer"
838
+ supports_gradient_checkpointing = False
839
+ _no_split_modules = ["ParallelBlock"]
840
+
841
+ def __init__(self, *inputs, **kwargs) -> None:
842
+ super().__init__(*inputs, **kwargs)
843
+
844
+ def _init_weights(self, module: nn.Module) -> None:
845
+ if isinstance(module, (nn.Linear,)):
846
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
847
+ if module.bias is not None:
848
+ module.bias.data.zero_()
849
+ elif isinstance(module, nn.Embedding):
850
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
851
+ if module.padding_idx is not None:
852
+ module.weight.data[module.padding_idx].zero_()
853
+ elif isinstance(module, nn.LayerNorm):
854
+ if module.bias is not None:
855
+ module.bias.data.zero_()
856
+ module.weight.data.fill_(1.0)
857
+
858
+ def prepare_inputs_for_generation(
859
+ self,
860
+ input_ids: torch.LongTensor,
861
+ past_key_values: Optional[Union[torch.FloatTensor, InferenceParams]] = None,
862
+ attention_mask: Optional[Union[torch.LongTensor, torch.BoolTensor]] = None,
863
+ **kwargs,
864
+ ) -> Dict[str, Any]:
865
+ if past_key_values is None or not (isinstance(past_key_values, InferenceParams)):
866
+ past_key_values = InferenceParams(
867
+ max_seqlen=self.config.n_positions,
868
+ max_batch_size=input_ids.shape[0],
869
+ seqlen_offset=0,
870
+ batch_size_offset=0,
871
+ key_value_memory_dict={},
872
+ lengths_per_sample=None,
873
+ )
874
+ else:
875
+ # Assume that `past_key_values` has cached all tokens up to the last token in `input_ids`
876
+ past_key_values.seqlen_offset = input_ids.shape[1] - 1
877
+ input_ids = input_ids[:, -1].unsqueeze(-1)
878
+
879
+ return {
880
+ "input_ids": input_ids,
881
+ "past_key_values": past_key_values,
882
+ "attention_mask": attention_mask,
883
+ }
884
+
885
+
886
+ class PhiModel(PhiPreTrainedModel):
887
+ """Phi model."""
888
+
889
+ _keys_to_ignore_on_load_missing = [""]
890
+ _keys_to_ignore_on_load_unexpected = [r"h\.\d+\.mlp.(fc_in|fc_out)\.(weight|bias)"]
891
+
892
+ def __init__(self, config: PhiConfig) -> None:
893
+ super().__init__(config)
894
+
895
+ self.embd = Embedding(config)
896
+ self.h = nn.ModuleList([ParallelBlock(config, block_idx=i) for i in range(config.n_layer)])
897
+ self.gradient_checkpointing = False
898
+ self.post_init()
899
+
900
+ def get_input_embeddings(self) -> nn.Embedding:
901
+ return self.embd.wte
902
+
903
+ def set_input_embeddings(self, new_embeddings: nn.Embedding) -> None:
904
+ self.embd.wte = new_embeddings
905
+
906
+ def forward(
907
+ self,
908
+ input_ids: torch.LongTensor,
909
+ past_key_values: Optional[Union[torch.FloatTensor, InferenceParams]] = None,
910
+ attention_mask: Optional[torch.BoolTensor] = None,
911
+ output_hidden_states: Optional[bool] = None,
912
+ ) -> torch.FloatTensor:
913
+
914
+ all_hidden_states = () if output_hidden_states else None
915
+
916
+ hidden_states = self.embd(input_ids)
917
+
918
+ for layer in self.h:
919
+ if output_hidden_states:
920
+ all_hidden_states = all_hidden_states + (hidden_states,)
921
+
922
+ hidden_states = layer(
923
+ hidden_states,
924
+ past_key_values=past_key_values,
925
+ attention_mask=attention_mask,
926
+ )
927
+ if output_hidden_states:
928
+ all_hidden_states = all_hidden_states + (hidden_states,)
929
+ return BaseModelOutputWithNoAttention(
930
+ last_hidden_state=hidden_states,
931
+ hidden_states = all_hidden_states
932
+ )
933
+
934
+
935
+ class PhiForCausalLM(PhiPreTrainedModel):
936
+ """Phi for Causal Language Modeling."""
937
+
938
+ _keys_to_ignore_on_load_missing = [""]
939
+ _keys_to_ignore_on_load_unexpected = [r"transformer\.h\.\d+\.mlp.(fc_in|fc_out)\.(weight|bias)"]
940
+
941
+ def __init__(self, config: PhiConfig) -> None:
942
+ super().__init__(config)
943
+
944
+ self.transformer = PhiModel(config)
945
+ self.lm_head = CausalLMHead(config)
946
+ self.loss = CausalLMLoss()
947
+
948
+ self.post_init()
949
+
950
+ def get_output_embeddings(self) -> nn.Linear:
951
+ return self.lm_head.linear
952
+
953
+ def set_output_embeddings(self, new_embeddings: nn.Linear) -> None:
954
+ self.lm_head.linear = new_embeddings
955
+
956
+ def forward(
957
+ self,
958
+ input_ids: torch.LongTensor,
959
+ past_key_values: Optional[Union[torch.FloatTensor, InferenceParams]] = None,
960
+ attention_mask: Optional[torch.BoolTensor] = None,
961
+ labels: Optional[torch.LongTensor] = None,
962
+ output_hidden_states: Optional[bool] = None,
963
+ **kwargs,
964
+ ) -> CausalLMOutputWithPast:
965
+ output = self.transformer(
966
+ input_ids, past_key_values=past_key_values,
967
+ attention_mask=attention_mask, output_hidden_states=output_hidden_states)
968
+ hidden_states = output.last_hidden_state
969
+ lm_logits = self.lm_head(hidden_states)
970
+
971
+ loss = None
972
+ if labels is not None:
973
+ loss = self.loss(lm_logits, labels)
974
+
975
+ return CausalLMOutputWithPast(
976
+ loss=loss,
977
+ logits=lm_logits,
978
+ past_key_values=past_key_values,
979
+ hidden_states=output.hidden_states
980
+ )
special_tokens_map.json ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "<|endoftext|>",
3
+ "eos_token": "<|endoftext|>",
4
+ "unk_token": "<|endoftext|>"
5
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,323 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "50256": {
5
+ "content": "<|endoftext|>",
6
+ "lstrip": false,
7
+ "normalized": false,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "50257": {
13
+ "content": " ",
14
+ "lstrip": false,
15
+ "normalized": true,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": false
19
+ },
20
+ "50258": {
21
+ "content": " ",
22
+ "lstrip": false,
23
+ "normalized": true,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": false
27
+ },
28
+ "50259": {
29
+ "content": " ",
30
+ "lstrip": false,
31
+ "normalized": true,
32
+ "rstrip": false,
33
+ "single_word": false,
34
+ "special": false
35
+ },
36
+ "50260": {
37
+ "content": " ",
38
+ "lstrip": false,
39
+ "normalized": true,
40
+ "rstrip": false,
41
+ "single_word": false,
42
+ "special": false
43
+ },
44
+ "50261": {
45
+ "content": " ",
46
+ "lstrip": false,
47
+ "normalized": true,
48
+ "rstrip": false,
49
+ "single_word": false,
50
+ "special": false
51
+ },
52
+ "50262": {
53
+ "content": " ",
54
+ "lstrip": false,
55
+ "normalized": true,
56
+ "rstrip": false,
57
+ "single_word": false,
58
+ "special": false
59
+ },
60
+ "50263": {
61
+ "content": " ",
62
+ "lstrip": false,
63
+ "normalized": true,
64
+ "rstrip": false,
65
+ "single_word": false,
66
+ "special": false
67
+ },
68
+ "50264": {
69
+ "content": " ",
70
+ "lstrip": false,
71
+ "normalized": true,
72
+ "rstrip": false,
73
+ "single_word": false,
74
+ "special": false
75
+ },
76
+ "50265": {
77
+ "content": " ",
78
+ "lstrip": false,
79
+ "normalized": true,
80
+ "rstrip": false,
81
+ "single_word": false,
82
+ "special": false
83
+ },
84
+ "50266": {
85
+ "content": " ",
86
+ "lstrip": false,
87
+ "normalized": true,
88
+ "rstrip": false,
89
+ "single_word": false,
90
+ "special": false
91
+ },
92
+ "50267": {
93
+ "content": " ",
94
+ "lstrip": false,
95
+ "normalized": true,
96
+ "rstrip": false,
97
+ "single_word": false,
98
+ "special": false
99
+ },
100
+ "50268": {
101
+ "content": " ",
102
+ "lstrip": false,
103
+ "normalized": true,
104
+ "rstrip": false,
105
+ "single_word": false,
106
+ "special": false
107
+ },
108
+ "50269": {
109
+ "content": " ",
110
+ "lstrip": false,
111
+ "normalized": true,
112
+ "rstrip": false,
113
+ "single_word": false,
114
+ "special": false
115
+ },
116
+ "50270": {
117
+ "content": " ",
118
+ "lstrip": false,
119
+ "normalized": true,
120
+ "rstrip": false,
121
+ "single_word": false,
122
+ "special": false
123
+ },
124
+ "50271": {
125
+ "content": " ",
126
+ "lstrip": false,
127
+ "normalized": true,
128
+ "rstrip": false,
129
+ "single_word": false,
130
+ "special": false
131
+ },
132
+ "50272": {
133
+ "content": " ",
134
+ "lstrip": false,
135
+ "normalized": true,
136
+ "rstrip": false,
137
+ "single_word": false,
138
+ "special": false
139
+ },
140
+ "50273": {
141
+ "content": " ",
142
+ "lstrip": false,
143
+ "normalized": true,
144
+ "rstrip": false,
145
+ "single_word": false,
146
+ "special": false
147
+ },
148
+ "50274": {
149
+ "content": " ",
150
+ "lstrip": false,
151
+ "normalized": true,
152
+ "rstrip": false,
153
+ "single_word": false,
154
+ "special": false
155
+ },
156
+ "50275": {
157
+ "content": " ",
158
+ "lstrip": false,
159
+ "normalized": true,
160
+ "rstrip": false,
161
+ "single_word": false,
162
+ "special": false
163
+ },
164
+ "50276": {
165
+ "content": " ",
166
+ "lstrip": false,
167
+ "normalized": true,
168
+ "rstrip": false,
169
+ "single_word": false,
170
+ "special": false
171
+ },
172
+ "50277": {
173
+ "content": " ",
174
+ "lstrip": false,
175
+ "normalized": true,
176
+ "rstrip": false,
177
+ "single_word": false,
178
+ "special": false
179
+ },
180
+ "50278": {
181
+ "content": " ",
182
+ "lstrip": false,
183
+ "normalized": true,
184
+ "rstrip": false,
185
+ "single_word": false,
186
+ "special": false
187
+ },
188
+ "50279": {
189
+ "content": " ",
190
+ "lstrip": false,
191
+ "normalized": true,
192
+ "rstrip": false,
193
+ "single_word": false,
194
+ "special": false
195
+ },
196
+ "50280": {
197
+ "content": " ",
198
+ "lstrip": false,
199
+ "normalized": true,
200
+ "rstrip": false,
201
+ "single_word": false,
202
+ "special": false
203
+ },
204
+ "50281": {
205
+ "content": " ",
206
+ "lstrip": false,
207
+ "normalized": true,
208
+ "rstrip": false,
209
+ "single_word": false,
210
+ "special": false
211
+ },
212
+ "50282": {
213
+ "content": " ",
214
+ "lstrip": false,
215
+ "normalized": true,
216
+ "rstrip": false,
217
+ "single_word": false,
218
+ "special": false
219
+ },
220
+ "50283": {
221
+ "content": " ",
222
+ "lstrip": false,
223
+ "normalized": true,
224
+ "rstrip": false,
225
+ "single_word": false,
226
+ "special": false
227
+ },
228
+ "50284": {
229
+ "content": " ",
230
+ "lstrip": false,
231
+ "normalized": true,
232
+ "rstrip": false,
233
+ "single_word": false,
234
+ "special": false
235
+ },
236
+ "50285": {
237
+ "content": " ",
238
+ "lstrip": false,
239
+ "normalized": true,
240
+ "rstrip": false,
241
+ "single_word": false,
242
+ "special": false
243
+ },
244
+ "50286": {
245
+ "content": " ",
246
+ "lstrip": false,
247
+ "normalized": true,
248
+ "rstrip": false,
249
+ "single_word": false,
250
+ "special": false
251
+ },
252
+ "50287": {
253
+ "content": "\t\t\t\t\t\t\t\t\t",
254
+ "lstrip": false,
255
+ "normalized": true,
256
+ "rstrip": false,
257
+ "single_word": false,
258
+ "special": false
259
+ },
260
+ "50288": {
261
+ "content": "\t\t\t\t\t\t\t\t",
262
+ "lstrip": false,
263
+ "normalized": true,
264
+ "rstrip": false,
265
+ "single_word": false,
266
+ "special": false
267
+ },
268
+ "50289": {
269
+ "content": "\t\t\t\t\t\t\t",
270
+ "lstrip": false,
271
+ "normalized": true,
272
+ "rstrip": false,
273
+ "single_word": false,
274
+ "special": false
275
+ },
276
+ "50290": {
277
+ "content": "\t\t\t\t\t\t",
278
+ "lstrip": false,
279
+ "normalized": true,
280
+ "rstrip": false,
281
+ "single_word": false,
282
+ "special": false
283
+ },
284
+ "50291": {
285
+ "content": "\t\t\t\t\t",
286
+ "lstrip": false,
287
+ "normalized": true,
288
+ "rstrip": false,
289
+ "single_word": false,
290
+ "special": false
291
+ },
292
+ "50292": {
293
+ "content": "\t\t\t\t",
294
+ "lstrip": false,
295
+ "normalized": true,
296
+ "rstrip": false,
297
+ "single_word": false,
298
+ "special": false
299
+ },
300
+ "50293": {
301
+ "content": "\t\t\t",
302
+ "lstrip": false,
303
+ "normalized": true,
304
+ "rstrip": false,
305
+ "single_word": false,
306
+ "special": false
307
+ },
308
+ "50294": {
309
+ "content": "\t\t",
310
+ "lstrip": false,
311
+ "normalized": true,
312
+ "rstrip": false,
313
+ "single_word": false,
314
+ "special": false
315
+ }
316
+ },
317
+ "bos_token": "<|endoftext|>",
318
+ "clean_up_tokenization_spaces": true,
319
+ "eos_token": "<|endoftext|>",
320
+ "model_max_length": 2048,
321
+ "tokenizer_class": "CodeGenTokenizer",
322
+ "unk_token": "<|endoftext|>"
323
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff