matthieulel commited on
Commit
3ed9b70
1 Parent(s): aa594a9

Model save

Browse files
Files changed (2) hide show
  1. README.md +98 -0
  2. model.safetensors +1 -1
README.md ADDED
@@ -0,0 +1,98 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: google/vit-large-patch32-224-in21k
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - accuracy
8
+ - precision
9
+ - recall
10
+ - f1
11
+ model-index:
12
+ - name: vit-large-patch32-224-in21k-finetuned-galaxy10-decals
13
+ results: []
14
+ ---
15
+
16
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
17
+ should probably proofread and complete it, then remove this comment. -->
18
+
19
+ # vit-large-patch32-224-in21k-finetuned-galaxy10-decals
20
+
21
+ This model is a fine-tuned version of [google/vit-large-patch32-224-in21k](https://huggingface.co/google/vit-large-patch32-224-in21k) on an unknown dataset.
22
+ It achieves the following results on the evaluation set:
23
+ - Loss: 0.7429
24
+ - Accuracy: 0.8202
25
+ - Precision: 0.8190
26
+ - Recall: 0.8202
27
+ - F1: 0.8173
28
+
29
+ ## Model description
30
+
31
+ More information needed
32
+
33
+ ## Intended uses & limitations
34
+
35
+ More information needed
36
+
37
+ ## Training and evaluation data
38
+
39
+ More information needed
40
+
41
+ ## Training procedure
42
+
43
+ ### Training hyperparameters
44
+
45
+ The following hyperparameters were used during training:
46
+ - learning_rate: 0.0001
47
+ - train_batch_size: 32
48
+ - eval_batch_size: 32
49
+ - seed: 42
50
+ - gradient_accumulation_steps: 4
51
+ - total_train_batch_size: 128
52
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
53
+ - lr_scheduler_type: linear
54
+ - lr_scheduler_warmup_ratio: 0.1
55
+ - num_epochs: 30
56
+
57
+ ### Training results
58
+
59
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
60
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
61
+ | 1.1583 | 0.99 | 124 | 1.0551 | 0.7069 | 0.6559 | 0.7069 | 0.6758 |
62
+ | 0.8599 | 2.0 | 249 | 0.7914 | 0.7621 | 0.7717 | 0.7621 | 0.7557 |
63
+ | 0.854 | 3.0 | 374 | 0.7115 | 0.7672 | 0.7850 | 0.7672 | 0.7642 |
64
+ | 0.7282 | 4.0 | 499 | 0.6807 | 0.7683 | 0.7746 | 0.7683 | 0.7604 |
65
+ | 0.6165 | 4.99 | 623 | 0.6208 | 0.8016 | 0.8088 | 0.8016 | 0.8015 |
66
+ | 0.5946 | 6.0 | 748 | 0.5850 | 0.8044 | 0.8084 | 0.8044 | 0.8009 |
67
+ | 0.6243 | 7.0 | 873 | 0.6090 | 0.7931 | 0.8037 | 0.7931 | 0.7935 |
68
+ | 0.5429 | 8.0 | 998 | 0.5830 | 0.8021 | 0.8087 | 0.8021 | 0.8006 |
69
+ | 0.558 | 8.99 | 1122 | 0.5725 | 0.8095 | 0.8191 | 0.8095 | 0.8081 |
70
+ | 0.457 | 10.0 | 1247 | 0.5702 | 0.8123 | 0.8144 | 0.8123 | 0.8085 |
71
+ | 0.4399 | 11.0 | 1372 | 0.5973 | 0.8021 | 0.8013 | 0.8021 | 0.7995 |
72
+ | 0.4055 | 12.0 | 1497 | 0.5799 | 0.8157 | 0.8186 | 0.8157 | 0.8122 |
73
+ | 0.417 | 12.99 | 1621 | 0.6006 | 0.8061 | 0.8175 | 0.8061 | 0.8066 |
74
+ | 0.3843 | 14.0 | 1746 | 0.5849 | 0.8236 | 0.8257 | 0.8236 | 0.8212 |
75
+ | 0.371 | 15.0 | 1871 | 0.5711 | 0.8196 | 0.8157 | 0.8196 | 0.8161 |
76
+ | 0.3546 | 16.0 | 1996 | 0.6050 | 0.8140 | 0.8171 | 0.8140 | 0.8147 |
77
+ | 0.2935 | 16.99 | 2120 | 0.6425 | 0.8106 | 0.8159 | 0.8106 | 0.8091 |
78
+ | 0.2505 | 18.0 | 2245 | 0.6569 | 0.8112 | 0.8091 | 0.8112 | 0.8086 |
79
+ | 0.3094 | 19.0 | 2370 | 0.6558 | 0.8162 | 0.8137 | 0.8162 | 0.8137 |
80
+ | 0.2739 | 20.0 | 2495 | 0.7201 | 0.8067 | 0.8094 | 0.8067 | 0.8025 |
81
+ | 0.2224 | 20.99 | 2619 | 0.7227 | 0.8140 | 0.8175 | 0.8140 | 0.8114 |
82
+ | 0.2359 | 22.0 | 2744 | 0.6941 | 0.8157 | 0.8142 | 0.8157 | 0.8136 |
83
+ | 0.2535 | 23.0 | 2869 | 0.7086 | 0.8157 | 0.8160 | 0.8157 | 0.8123 |
84
+ | 0.2047 | 24.0 | 2994 | 0.7185 | 0.8236 | 0.8236 | 0.8236 | 0.8207 |
85
+ | 0.2162 | 24.99 | 3118 | 0.7135 | 0.8219 | 0.8200 | 0.8219 | 0.8194 |
86
+ | 0.2297 | 26.0 | 3243 | 0.7269 | 0.8213 | 0.8172 | 0.8213 | 0.8179 |
87
+ | 0.2048 | 27.0 | 3368 | 0.7392 | 0.8145 | 0.8156 | 0.8145 | 0.8143 |
88
+ | 0.2156 | 28.0 | 3493 | 0.7453 | 0.8207 | 0.8182 | 0.8207 | 0.8174 |
89
+ | 0.1785 | 28.99 | 3617 | 0.7497 | 0.8168 | 0.8157 | 0.8168 | 0.8145 |
90
+ | 0.1785 | 29.82 | 3720 | 0.7429 | 0.8202 | 0.8190 | 0.8202 | 0.8173 |
91
+
92
+
93
+ ### Framework versions
94
+
95
+ - Transformers 4.37.2
96
+ - Pytorch 2.3.0
97
+ - Datasets 2.19.1
98
+ - Tokenizers 0.15.1
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:bbe5ee22386d83e8992c037ab0fd2e786e77cc24ba52f52b41be6baa2f739306
3
  size 1222129168
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cede71d1692660063311bf09e805a39c1344ff02654db0e7d544edca5fe7218c
3
  size 1222129168