|
|
|
"""gpt-dev.ipynb |
|
|
|
Automatically generated by Colab. |
|
|
|
Original file is located at |
|
https://colab.research.google.com/drive/1wAoJHP666APJNiFpvBVvJRpMwe04P4_1 |
|
""" |
|
|
|
|
|
import torch |
|
import torch.nn as nn |
|
from torch.nn import functional as F |
|
|
|
import urllib.request |
|
|
|
|
|
def load_text_file(url): |
|
"""Download and read the contents of a text file.""" |
|
|
|
response = urllib.request.urlopen(url) |
|
content = response.read().decode('utf-8') |
|
return content |
|
|
|
|
|
url = "https://raw.githubusercontent.com/PratyushChaudhary/My-LLM/refs/heads/main/cleaned_text_output.txt" |
|
|
|
|
|
text = load_text_file(url) |
|
|
|
|
|
|
|
chars = sorted(list(set(text))) |
|
vocab_size = len(chars) |
|
|
|
|
|
|
|
|
|
batch_size = 64 |
|
block_size = 256 |
|
max_iters = 5000 |
|
eval_interval = 500 |
|
learning_rate = 3e-4 |
|
device = 'cuda' if torch.cuda.is_available() else 'cpu' |
|
eval_iters = 200 |
|
n_embd = 384 |
|
n_head = 6 |
|
n_layer = 6 |
|
dropout = 0.2 |
|
|
|
torch.manual_seed(1337) |
|
|
|
|
|
stoi = { ch:i for i,ch in enumerate(chars) } |
|
itos = { i:ch for i,ch in enumerate(chars) } |
|
encode = lambda s: [stoi[c] for c in s] |
|
decode = lambda l: ''.join([itos[i] for i in l]) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import torch |
|
data = torch.tensor(encode(text), dtype=torch.long) |
|
|
|
|
|
''' |
|
Tensor: |
|
A fundamental data structure in ML. |
|
A multi-dimensional array used to store data. It generalizes matrices to higher dimensions and can be thought of as a container for numerical data. |
|
''' |
|
|
|
|
|
|
|
|
|
|
|
''' |
|
Overfitting: |
|
Overfitting is a common problem in machine learning and statistical modeling where a model learns not just the underlying patterns in the training data but also the noise or random fluctuations. This results in a model that performs very well on the training data but poorly on new, unseen data. |
|
''' |
|
|
|
|
|
n = int(0.9*len(data)) |
|
train_data = data[:n] |
|
val_data = data[n:] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
|
|
|
def get_batch(split): |
|
|
|
data = train_data if split == 'train' else val_data |
|
|
|
|
|
ix = torch.randint(len(data) - block_size, (batch_size,)) |
|
|
|
x = torch.stack([data[i:i+block_size] for i in ix]) |
|
y = torch.stack([data[i+1:i+block_size+1] for i in ix]) |
|
x, y = x.to(device), y.to(device) |
|
return x, y |
|
|
|
@torch.no_grad() |
|
def estimate_loss(): |
|
out = {} |
|
model.eval() |
|
for split in {'train', 'val'}: |
|
losses = torch.zeros(eval_iters) |
|
for k in range(eval_iters): |
|
X, Y = get_batch(split) |
|
logits, loss = model(X, Y) |
|
losses[k] = loss.item() |
|
out[split] = losses.mean() |
|
model.train() |
|
return out |
|
pass |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class Head(nn.Module): |
|
'''one head of self-attention''' |
|
def __init__(self, head_size): |
|
super().__init__() |
|
self.key = nn.Linear(n_embd, head_size, bias = False) |
|
self.query = nn.Linear(n_embd, head_size, bias = False) |
|
self.value = nn.Linear(n_embd, head_size, bias = False) |
|
self.register_buffer('tril', torch.tril(torch.ones(block_size, block_size))) |
|
|
|
self.dropout = nn.Dropout(dropout) |
|
|
|
def forward(self, x): |
|
B, T, C = x.shape |
|
k = self.key(x) |
|
q = self.query(x) |
|
|
|
wei = q @ k.transpose(-2,-1) * k.shape[-1]**-0.5 |
|
wei = wei.masked_fill(self.tril[:T, :T] == 0, float('-inf')) |
|
wei = F.softmax(wei, dim=-1) |
|
wei = self.dropout(wei) |
|
|
|
v = self.value(x) |
|
out = wei @ v |
|
return out |
|
|
|
class MultiHeadAttention(nn.Module): |
|
'''multiple heads of self-attention in parallel''' |
|
|
|
def __init__(self, num_heads, head_size): |
|
super().__init__() |
|
self.heads = nn.ModuleList([Head(head_size) for _ in range(num_heads)]) |
|
self.proj = nn.Linear(head_size * num_heads, n_embd) |
|
self.dropout = nn.Dropout(dropout) |
|
|
|
def forward(self, x): |
|
out = torch.cat([h(x) for h in self.heads], dim = -1) |
|
out = self.dropout(self.proj(out)) |
|
return out |
|
|
|
class FeedForward(nn.Module): |
|
''' a simple linear layer followed by a non-linearity ''' |
|
|
|
def __init__(self, n_embd): |
|
super().__init__() |
|
self.net = nn.Sequential( |
|
nn.Linear(n_embd, 4 * n_embd), |
|
nn.ReLU(), |
|
nn.Linear(4 * n_embd, n_embd), |
|
nn.Dropout(dropout), |
|
) |
|
|
|
def forward(self, x): |
|
return self.net(x) |
|
|
|
class Block(nn.Module): |
|
'''Transformer block: communication followed by computation''' |
|
|
|
def __init__(self, n_embd, n_head): |
|
|
|
super().__init__() |
|
head_size = n_embd // n_head |
|
self.sa = MultiHeadAttention(n_head, head_size) |
|
self.ffwd = FeedForward(n_embd) |
|
self.ln1 = nn.LayerNorm(n_embd) |
|
self.ln2 = nn.LayerNorm(n_embd) |
|
|
|
def forward(self, x): |
|
x = x + self.sa(self.ln1(x)) |
|
x = x + self.ffwd(self.ln2(x)) |
|
return x |
|
|
|
|
|
|
|
class GPTLanguageModel(nn.Module): |
|
|
|
def __init__(self): |
|
super().__init__() |
|
|
|
|
|
self.token_embedding_table = nn.Embedding(vocab_size, n_embd) |
|
self.position_embedding_table = nn.Embedding(block_size, n_embd) |
|
self.blocks = nn.Sequential(*[Block(n_embd, n_head=n_head) for _ in range(n_layer)]) |
|
self.ln_f = nn.LayerNorm(n_embd) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
self.lm_head = nn.Linear(n_embd, vocab_size) |
|
self.apply(self._init_weights) |
|
|
|
def _init_weights(self, module): |
|
if isinstance(module, nn.Linear): |
|
torch.nn.init.normal_(module.weight, mean = 0.0, std = 0.02) |
|
if module.bias is not None: |
|
torch.nn.init.zeros_(module.bias) |
|
elif isinstance(module, nn.Embedding): |
|
torch.nn.init.normal_(module.weight, mean = 0.0, std = 0.02) |
|
|
|
|
|
''' |
|
Batch is the number of sequences in the batch. |
|
Time is the length of each sequence. |
|
Channels is the size of the embedding (equal to vocab_size). |
|
''' |
|
|
|
|
|
def forward(self, idx, targets = None): |
|
B, T = idx.shape |
|
|
|
|
|
tok_emb = self.token_embedding_table(idx) |
|
pos_emb = self.position_embedding_table(torch.arange(T, device = device)) |
|
x = tok_emb + pos_emb |
|
|
|
|
|
x = self.blocks(x) |
|
x = self.ln_f(x) |
|
logits = self.lm_head(x) |
|
|
|
|
|
if targets is None: |
|
loss = None |
|
else: |
|
|
|
B, T, C = logits.shape |
|
logits = logits.view(B*T, C) |
|
targets = targets.view(B*T) |
|
|
|
|
|
|
|
loss = F.cross_entropy(logits, targets) |
|
|
|
return logits, loss |
|
|
|
|
|
def generate(self, idx, max_new_tokens): |
|
|
|
for _ in range(max_new_tokens): |
|
|
|
idx_cond = idx[:, -block_size:] |
|
|
|
logits, loss = self(idx_cond) |
|
|
|
logits = logits[:, -1, :] |
|
|
|
probs = F.softmax(logits, dim = -1) |
|
|
|
idx_next = torch.multinomial(probs, num_samples = 1) |
|
|
|
idx = torch.cat((idx, idx_next), dim = 1) |
|
return idx |
|
model = GPTLanguageModel() |
|
m = model.to(device) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
optimiser = torch.optim.AdamW(model.parameters(), lr = learning_rate) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def train_model(self, max_iters, eval_interval, optimiser): |
|
for iter in range(max_iters): |
|
|
|
if iter % eval_interval == 0 or iter == max_iters - 1: |
|
losses = estimate_loss() |
|
print(f"step {iter}: train loss {losses['train']:.4f}, val loss {losses['val']:.4f}") |
|
|
|
|
|
xb, yb = get_batch('train') |
|
|
|
|
|
logits, loss = model(xb, yb) |
|
optimiser.zero_grad(set_to_none = True) |
|
loss.backward() |
|
optimiser.step() |
|
|
|
|
|
context = torch.zeros((1,1), dtype = torch.long, device = device) |
|
|
|
"""## The mathematical trick in self-attention""" |
|
|
|
|
|
|
|
torch.manual_seed(1337) |
|
B, T, C = 4, 8, 2 |
|
x = torch.randn(B, T, C) |
|
x.shape |
|
|
|
|
|
xbow = torch.zeros((B, T, C)) |
|
for b in range(B): |
|
for t in range(T): |
|
xprev = x[b, :t+1] |
|
xbow[b, t] = torch.mean(xprev, 0) |
|
|
|
|
|
wei = torch.tril(torch.ones(T, T)) |
|
wei = wei / wei.sum(1, keepdim = True) |
|
xbow2 = wei @ x |
|
torch.allclose(xbow, xbow2) |
|
|
|
|
|
tril = torch.tril(torch.ones(T, T)) |
|
wei = torch.zeros((T, T)) |
|
wei = wei.masked_fill(tril == 0, float('-inf')) |
|
wei = F.softmax(wei, dim = -1) |
|
xbow3 = wei @ x |
|
torch.allclose(xbow, xbow3) |
|
|
|
|
|
torch.manual_seed(1337) |
|
B, T, C = 4, 8, 32 |
|
x = torch.randn(B, T, C) |
|
|
|
|
|
head_size = 16 |
|
key = nn.Linear(C, head_size, bias = False) |
|
query = nn.Linear(C, head_size, bias = False) |
|
value = nn.Linear(C, head_size, bias = False) |
|
k = key(x) |
|
q = query(x) |
|
wei = q @ k.transpose(-2, -1) |
|
|
|
tril = torch.tril(torch.ones(T, T)) |
|
|
|
wei = wei.masked_fill(tril == 0, float('-inf')) |
|
wei = F.softmax(wei, dim = -1) |
|
|
|
v = value(x) |
|
out = wei @ v |
|
|
|
k = torch.randn(B, T, head_size) |
|
q = torch.randn(B, T, head_size) |
|
wei = q @ k.transpose(-2, -1) * head_size**(-0.5) |
|
|
|
torch.softmax(torch.tensor([0.1, -0.2, 0.3, -0.2, 0.5]), dim = -1) |
|
|
|
|
|
torch.tril(torch.ones(3, 3)) |
|
|
|
|
|
torch.manual_seed(42) |
|
a = torch.tril(torch.ones(3, 3)) |
|
|
|
a = a / torch.sum(a, 1, keepdim = True) |
|
b = torch.randint(0, 10, (3, 2)).float() |
|
c = a @ b |
|
|
|
def generate_text(model, start_prompt, max_length=256, temperature=1.0): |
|
input_ids = torch.tensor(encode(start_prompt), dtype=torch.long).unsqueeze(0).to(device) |
|
model.eval() |
|
generated_ids = input_ids.tolist()[0] |
|
with torch.no_grad(): |
|
for _ in range(max_length): |
|
logits, _ = model(input_ids) |
|
logits = logits[:, -1, :] / temperature |
|
probs = torch.nn.functional.softmax(logits, dim=-1) |
|
next_token = torch.multinomial(probs, num_samples=1) |
|
generated_ids.append(next_token.item()) |
|
input_ids = torch.cat((input_ids, next_token), dim=1) |
|
return decode(generated_ids) |
|
|
|
|
|
if __name__ == "__main__": |
|
train_model() |