File size: 4,366 Bytes
4afa21e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 |
---
license: llama3.1
library_name: transformers
tags:
- abliterated
- uncensored
base_model: meta-llama/Meta-Llama-3.1-8B-Instruct
model-index:
- name: Meta-Llama-3.1-8B-Instruct-abliterated
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 73.29
name: strict accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=mlabonne/Meta-Llama-3.1-8B-Instruct-abliterated
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 27.13
name: normalized accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=mlabonne/Meta-Llama-3.1-8B-Instruct-abliterated
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 6.42
name: exact match
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=mlabonne/Meta-Llama-3.1-8B-Instruct-abliterated
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 0.89
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=mlabonne/Meta-Llama-3.1-8B-Instruct-abliterated
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 3.21
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=mlabonne/Meta-Llama-3.1-8B-Instruct-abliterated
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 27.81
name: accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=mlabonne/Meta-Llama-3.1-8B-Instruct-abliterated
name: Open LLM Leaderboard
---
# 🦙 Meta-Llama-3.1-8B-Instruct-abliterated
![image/png](https://cdn-uploads.huggingface.co/production/uploads/61b8e2ba285851687028d395/AsTgL8VCgMHgobq4cr46b.png)
<center>🦙 <a href="https://huggingface.co/mlabonne/Llama-3.1-70B-Instruct-lorablated"><i>Llama 3.1 70B Instruct lorablated</i></a></center>
This is an uncensored version of Llama 3.1 8B Instruct created with abliteration (see [this article](https://huggingface.co/blog/mlabonne/abliteration) to know more about it).
Special thanks to [@FailSpy](https://huggingface.co/failspy) for the original code and technique. Please follow him if you're interested in abliterated models.
## ⚡️ Quantization
Thanks to ZeroWw and Apel-sin for the quants.
* **New GGUF**: https://huggingface.co/mlabonne/Meta-Llama-3.1-8B-Instruct-abliterated-GGUF
* **ZeroWw GGUF**: https://huggingface.co/ZeroWw/Meta-Llama-3.1-8B-Instruct-abliterated-GGUF
* **EXL2**: https://huggingface.co/Apel-sin/llama-3.1-8B-abliterated-exl2
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_mlabonne__Meta-Llama-3.1-8B-Instruct-abliterated)
| Metric |Value|
|-------------------|----:|
|Avg. |23.13|
|IFEval (0-Shot) |73.29|
|BBH (3-Shot) |27.13|
|MATH Lvl 5 (4-Shot)| 6.42|
|GPQA (0-shot) | 0.89|
|MuSR (0-shot) | 3.21|
|MMLU-PRO (5-shot) |27.81|
|