GGUF
sft
File size: 2,839 Bytes
78cc94b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
---
license: apache-2.0
language:
- en
- de
- es
- fr
tags:
- sft
inference: false
datasets:
- OpenAssistant/oasst1
---

# Open-Assistant Falcon 40B SFT OASST-TOP1 Model

This model is a fine-tuning of TII's [Falcon 40B](https://huggingface.co/tiiuae/falcon-40b) LLM. 
It was trained with top-1 (high-quality) demonstrations of the OASST data set (exported on May 6, 2023) with an effective batch size of 144 for ~7.5 epochs with LIMA style dropout (p=0.3) and a context-length of 2048 tokens.

## Model Details

- **Finetuned from:** [tiiuae/falcon-40b]((https://huggingface.co/tiiuae/falcon-40b)
- **Model type:** Causal decoder-only transformer language model
- **Language:** English, German, Spanish, French (and limited capabilities in Italian, Portuguese, Polish, Dutch, Romanian, Czech, Swedish);
- **Demo:** [Continuations for 250 random prompts](https://open-assistant.github.io/oasst-model-eval/?f=https%3A%2F%2Fraw.githubusercontent.com%2FOpen-Assistant%2Foasst-model-eval%2Fmain%2Fsampling_reports%2Fchat-gpt%2F2023-04-11_gpt-3.5-turbo_lottery.json%0Ahttps%3A%2F%2Fraw.githubusercontent.com%2FOpen-Assistant%2Foasst-model-eval%2Fmain%2Fsampling_reports%2Foasst-sft%2F2023-06-03_OpenAssistant_falcon-40b-sft-top1-560_sampling_noprefix2.json)
- **Eval results:** [ilm-eval](https://tju01.github.io/ilm-eval/)
- **Weights & Biases**: [Training log](https://wandb.ai/open-assistant/public-sft/runs/3lr77x4h) (Checkpoint: 560 steps)
- **License:** Apache 2.0
- **Contact:** [Open-Assistant Discord](https://ykilcher.com/open-assistant-discord)


## Prompting

Two special tokens are used to mark the beginning of user and assistant turns:
`<|prompter|>` and `<|assistant|>`. Each turn ends with a `<|endoftext|>` token.

Input prompt example:
```
<|prompter|>What is a meme, and what's the history behind this word?<|endoftext|><|assistant|>
```
The input ends with the `<|assistant|>` token to signal that the model should 
start generating the assistant reply.

## Configuration Details

Model:
```
falcon-40b:
  dtype: bf16
  log_dir: "falcon_log_40b"
  learning_rate: 5e-6
  model_name: "tiiuae/falcon-40b"
  deepspeed_config: configs/zero3_config_falcon.json
  output_dir: falcon
  weight_decay: 0.0
  max_length: 2048
  warmup_steps: 20
  gradient_checkpointing: true
  gradient_accumulation_steps: 1
  per_device_train_batch_size: 18
  per_device_eval_batch_size: 10
  eval_steps: 80
  save_steps: 80
  num_train_epochs: 8
  save_total_limit: 4
  use_flash_attention: false
  residual_dropout: 0.3
  residual_dropout_lima: true
  sort_by_length: false
  save_strategy: steps
```

Dataset:
```
oasst-top1:
  datasets:
    - oasst_export:
        lang: "bg,ca,cs,da,de,en,es,fr,hr,hu,it,nl,pl,pt,ro,ru,sl,sr,sv,uk" # sft-8.0
        input_file_path: 2023-05-06_OASST_labels.jsonl.gz
        val_split: 0.05
        top_k: 1
```