--- library_name: transformers base_model: dmis-lab/biobert-v1.1 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: biobert-v1.1-finetuned-medmcqa-2024-11-25-T16-48-24 results: [] --- # biobert-v1.1-finetuned-medmcqa-2024-11-25-T16-48-24 This model is a fine-tuned version of [dmis-lab/biobert-v1.1](https://huggingface.co/dmis-lab/biobert-v1.1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.7763 - Accuracy: 0.8095 - F1: 0.8138 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000159 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 128 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:------:|:----:|:---------------:|:--------:|:------:| | 1.3838 | 0.9739 | 14 | 1.0207 | 0.6905 | 0.6764 | | 1.086 | 1.9478 | 28 | 0.9525 | 0.6190 | 0.6189 | | 0.6655 | 2.9913 | 43 | 0.7763 | 0.8095 | 0.8138 | | 0.5349 | 3.9652 | 57 | 0.8631 | 0.7381 | 0.7368 | | 0.3138 | 4.8696 | 70 | 0.8401 | 0.7857 | 0.7854 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3