--- library_name: transformers base_model: dmis-lab/biobert-v1.1 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: biobert-v1.1-finetuned-medmcqa-2024-11-30-T11-55-31 results: [] --- # biobert-v1.1-finetuned-medmcqa-2024-11-30-T11-55-31 This model is a fine-tuned version of [dmis-lab/biobert-v1.1](https://huggingface.co/dmis-lab/biobert-v1.1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.9007 - Accuracy: 0.5807 - F1: 0.5819 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000159 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:------:|:-----:|:---------------:|:--------:|:------:| | 0.7469 | 1.0000 | 5713 | 0.9493 | 0.5403 | 0.5412 | | 0.7588 | 1.9999 | 11426 | 0.9328 | 0.5549 | 0.5532 | | 0.5385 | 2.9999 | 17139 | 0.9007 | 0.5807 | 0.5819 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3