--- library_name: transformers base_model: dmis-lab/biobert-v1.1 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: biobert-v1.1-finetuned-medmcqa-5pct-2024-12-03-T09-43-29 results: [] --- # biobert-v1.1-finetuned-medmcqa-5pct-2024-12-03-T09-43-29 This model is a fine-tuned version of [dmis-lab/biobert-v1.1](https://huggingface.co/dmis-lab/biobert-v1.1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.2074 - Accuracy: 0.5532 - F1: 0.5543 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000159 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:------:|:----:|:---------------:|:--------:|:------:| | 0.7328 | 0.9974 | 285 | 0.9662 | 0.5398 | 0.5408 | | 0.5829 | 1.9987 | 571 | 0.9861 | 0.5520 | 0.5529 | | 0.2838 | 2.9930 | 855 | 1.2074 | 0.5532 | 0.5543 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3