|
from typing import List, Dict |
|
import json |
|
import torch |
|
from transformers import BertTokenizerFast, BertForTokenClassification |
|
|
|
class BiasNERPipeline: |
|
def __init__(self, model_path: str = 'maximuspowers/bias-detection-ner'): |
|
self.tokenizer = BertTokenizerFast.from_pretrained('bert-base-uncased') |
|
self.model = BertForTokenClassification.from_pretrained(model_path) |
|
self.model.eval() |
|
self.model.to('cuda' if torch.cuda.is_available() else 'cpu') |
|
|
|
self.id2label = { |
|
0: 'O', |
|
1: 'B-STEREO', |
|
2: 'I-STEREO', |
|
3: 'B-GEN', |
|
4: 'I-GEN', |
|
5: 'B-UNFAIR', |
|
6: 'I-UNFAIR' |
|
} |
|
|
|
def __call__(self, inputs: str) -> str: |
|
tokenized_inputs = self.tokenizer(inputs, return_tensors="pt", padding=True, truncation=True, max_length=128) |
|
input_ids = tokenized_inputs['input_ids'].to(self.model.device) |
|
attention_mask = tokenized_inputs['attention_mask'].to(self.model.device) |
|
|
|
with torch.no_grad(): |
|
outputs = self.model(input_ids=input_ids, attention_mask=attention_mask) |
|
logits = outputs.logits |
|
probabilities = torch.sigmoid(logits) |
|
predicted_labels = (probabilities > 0.5).int() |
|
|
|
result = [] |
|
tokens = self.tokenizer.convert_ids_to_tokens(input_ids[0]) |
|
for i, token in enumerate(tokens): |
|
if token not in self.tokenizer.all_special_tokens: |
|
label_indices = (predicted_labels[0][i] == 1).nonzero(as_tuple=False).squeeze(-1) |
|
labels = [self.id2label[idx.item()] for idx in label_indices] if label_indices.numel() > 0 else ['O'] |
|
result.append({"token": token, "labels": labels}) |
|
|
|
return json.dumps(result, indent=4) |
|
|