from typing import List, Dict import json import torch from transformers import BertTokenizerFast, BertForTokenClassification class BiasNERPipeline: def __init__(self, model_path: str = 'maximuspowers/bias-detection-ner'): self.tokenizer = BertTokenizerFast.from_pretrained('bert-base-uncased') self.model = BertForTokenClassification.from_pretrained(model_path) self.model.eval() self.model.to('cuda' if torch.cuda.is_available() else 'cpu') self.id2label = { 0: 'O', 1: 'B-STEREO', 2: 'I-STEREO', 3: 'B-GEN', 4: 'I-GEN', 5: 'B-UNFAIR', 6: 'I-UNFAIR' } def __call__(self, inputs: str) -> str: tokenized_inputs = self.tokenizer(inputs, return_tensors="pt", padding=True, truncation=True, max_length=128) input_ids = tokenized_inputs['input_ids'].to(self.model.device) attention_mask = tokenized_inputs['attention_mask'].to(self.model.device) with torch.no_grad(): outputs = self.model(input_ids=input_ids, attention_mask=attention_mask) logits = outputs.logits probabilities = torch.sigmoid(logits) predicted_labels = (probabilities > 0.5).int() result = [] tokens = self.tokenizer.convert_ids_to_tokens(input_ids[0]) for i, token in enumerate(tokens): if token not in self.tokenizer.all_special_tokens: label_indices = (predicted_labels[0][i] == 1).nonzero(as_tuple=False).squeeze(-1) labels = [self.id2label[idx.item()] for idx in label_indices] if label_indices.numel() > 0 else ['O'] result.append({"token": token, "labels": labels}) return json.dumps(result, indent=4)