--- license: apache-2.0 tags: - merge - mergekit - lazymergekit - openchat/openchat-3.5-0106 - teknium/OpenHermes-2.5-Mistral-7B base_model: - openchat/openchat-3.5-0106 - teknium/OpenHermes-2.5-Mistral-7B model-index: - name: chatty-djinn-14B results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 70.39 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mayacinka/chatty-djinn-14B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 86.45 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mayacinka/chatty-djinn-14B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 64.4 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mayacinka/chatty-djinn-14B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 67.57 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mayacinka/chatty-djinn-14B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 83.11 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mayacinka/chatty-djinn-14B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 60.58 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mayacinka/chatty-djinn-14B name: Open LLM Leaderboard --- ![thumbnail](djinn-14b.webp) # djinn djinn is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [openchat/openchat-3.5-0106](https://huggingface.co/openchat/openchat-3.5-0106) * [teknium/OpenHermes-2.5-Mistral-7B](https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B) * bardsai/jaskier-7b-dpo-v6.1 * senseable/WestLake-7B-v2 * NousResearch/Nous-Hermes-2-Mistral-7B-DPO * paulml/OGNO-7B * paulml/DPOB-INMTOB-7B * mlabonne/AlphaMonarch-7B # 🏆 Benchmarks Nous benchmarks, find more [details here](https://gist.github.com/majacinka/3f2a797c8872ca9bfdaa2bbf3369edb5) | Model |AGIEval|GPT4All|TruthfulQA|Bigbench|Average| |---------------------------------------------------------------------|------:|------:|---------:|-------:|------:| |[chatty-djinn-14B](https://huggingface.co/mayacinka/chatty-djinn-14B)| 38.43| 76.29| 68.02| 47.6| 57.59| ### AGIEval | Task |Version| Metric |Value| |Stderr| |------------------------------|------:|--------|----:|---|-----:| |agieval_aqua_rat | 0|acc |23.62|± | 2.67| | | |acc_norm|21.65|± | 2.59| |agieval_logiqa_en | 0|acc |32.26|± | 1.83| | | |acc_norm|33.79|± | 1.86| |agieval_lsat_ar | 0|acc |23.04|± | 2.78| | | |acc_norm|23.04|± | 2.78| |agieval_lsat_lr | 0|acc |38.82|± | 2.16| | | |acc_norm|39.22|± | 2.16| |agieval_lsat_rc | 0|acc |59.48|± | 3.00| | | |acc_norm|54.65|± | 3.04| |agieval_sat_en | 0|acc |75.73|± | 2.99| | | |acc_norm|74.27|± | 3.05| |agieval_sat_en_without_passage| 0|acc |35.92|± | 3.35| | | |acc_norm|34.47|± | 3.32| |agieval_sat_math | 0|acc |31.36|± | 3.14| | | |acc_norm|26.36|± | 2.98| Average: 38.43% ### GPT4All | Task |Version| Metric |Value| |Stderr| |-------------|------:|--------|----:|---|-----:| |arc_challenge| 0|acc |62.12|± | 1.42| | | |acc_norm|65.44|± | 1.39| |arc_easy | 0|acc |83.88|± | 0.75| | | |acc_norm|78.58|± | 0.84| |boolq | 1|acc |88.07|± | 0.57| |hellaswag | 0|acc |65.18|± | 0.48| | | |acc_norm|86.45|± | 0.34| |openbookqa | 0|acc |39.60|± | 2.19| | | |acc_norm|48.60|± | 2.24| |piqa | 0|acc |82.26|± | 0.89| | | |acc_norm|83.62|± | 0.86| |winogrande | 0|acc |83.27|± | 1.05| Average: 76.29% ### TruthfulQA | Task |Version|Metric|Value| |Stderr| |-------------|------:|------|----:|---|-----:| |truthfulqa_mc| 1|mc1 |50.55|± | 1.75| | | |mc2 |68.02|± | 1.52| Average: 68.02% ### Bigbench | Task |Version| Metric |Value| |Stderr| |------------------------------------------------|------:|---------------------|----:|---|-----:| |bigbench_causal_judgement | 0|multiple_choice_grade|57.89|± | 3.59| |bigbench_date_understanding | 0|multiple_choice_grade|64.50|± | 2.49| |bigbench_disambiguation_qa | 0|multiple_choice_grade|32.56|± | 2.92| |bigbench_geometric_shapes | 0|multiple_choice_grade|26.18|± | 2.32| | | |exact_str_match | 1.11|± | 0.55| |bigbench_logical_deduction_five_objects | 0|multiple_choice_grade|30.80|± | 2.07| |bigbench_logical_deduction_seven_objects | 0|multiple_choice_grade|22.86|± | 1.59| |bigbench_logical_deduction_three_objects | 0|multiple_choice_grade|57.67|± | 2.86| |bigbench_movie_recommendation | 0|multiple_choice_grade|62.00|± | 2.17| |bigbench_navigate | 0|multiple_choice_grade|56.20|± | 1.57| |bigbench_reasoning_about_colored_objects | 0|multiple_choice_grade|65.65|± | 1.06| |bigbench_ruin_names | 0|multiple_choice_grade|64.73|± | 2.26| |bigbench_salient_translation_error_detection | 0|multiple_choice_grade|17.33|± | 1.20| |bigbench_snarks | 0|multiple_choice_grade|76.24|± | 3.17| |bigbench_sports_understanding | 0|multiple_choice_grade|75.15|± | 1.38| |bigbench_temporal_sequences | 0|multiple_choice_grade|48.90|± | 1.58| |bigbench_tracking_shuffled_objects_five_objects | 0|multiple_choice_grade|22.32|± | 1.18| |bigbench_tracking_shuffled_objects_seven_objects| 0|multiple_choice_grade|18.17|± | 0.92| |bigbench_tracking_shuffled_objects_three_objects| 0|multiple_choice_grade|57.67|± | 2.86| Average: 47.6% Average score: 57.59% ## 🧩 Configuration Inspired by [theprofessor's config](https://huggingface.co/abacusai/TheProfessor-155b) ```yaml merge_method: linear # use linear so we can include multiple models, albeit at a zero weight parameters: weight: 1.0 # weight everything as 1 unless specified otherwise - linear with one model weighted at 1 is a no-op like passthrough slices: - sources: - model: openchat/openchat-3.5-0106 layer_range: [0, 1] - model: teknium/OpenHermes-2.5-Mistral-7B layer_range: [0, 1] parameters: weight: 0 - sources: - model: bardsai/jaskier-7b-dpo-v6.1 layer_range: [1, 10] - sources: - model: senseable/WestLake-7B-v2 layer_range: [10, 20] - sources: - model: NousResearch/Nous-Hermes-2-Mistral-7B-DPO layer_range: [20, 30] - sources: - model: paulml/OGNO-7B layer_range: [15, 25] - sources: - model: paulml/DPOB-INMTOB-7B layer_range: [22, 32] - sources: - model: mlabonne/AlphaMonarch-7B layer_range: [5, 15] - sources: - model: openchat/openchat-3.5-0106 layer_range: [31, 32] - model: teknium/OpenHermes-2.5-Mistral-7B layer_range: [31, 32] parameters: weight: 0 dtype: float16 tokenizer_source: model:openchat/openchat-3.5-0106 ``` ## An example *User:* Sally (a girl) has 3 brothers. Each brother has 2 sisters. How many sisters does Sally have? Think step by step and the result MUST BE A NUMBER *djinn:* In this family structure, we know there are 4 aka '1 + 3-brothers' (1 being initially for Sally) existing individuals who are also the siblings of the 3-brother-group. As each of the 3-brothers has 2-sisters each, that sums up to 6 total sister- roles. Since we already accounted for one of the sisters (assuming to be the oldest or in alphabetical order, as names were not given) to be part of the 3-brother group, we subtract one from the 6-sisters total. So, considering the provided information, Sally would have 6 - 1 = 5 remaining younger or alphabetically-wise- placed, biological-sisters. However, note that this problem statement might not perfectly align with real-life complexities, such as same-sex twins, adoption, etc., but within the given context, the solution is 5. Remember, in more intricate or unclear family tree scenarios, it'd be best to directly ask for clarifications or consider additional data points. In short, with the given constraints, Sally has 5 known, direct, biological, and likely-in-age-order, younger/alphabetically-placed, sister-siblings.(To reiterate the core result in a concise manner: 5). (Please excuse the verbosity, aiming for thoroughness and clarity.) This response maintains the initial request's numerical focus while providing a detailed explanation to ensure understanding. ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "mayacinka/djinn" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_mayacinka__chatty-djinn-14B) | Metric |Value| |---------------------------------|----:| |Avg. |72.08| |AI2 Reasoning Challenge (25-Shot)|70.39| |HellaSwag (10-Shot) |86.45| |MMLU (5-Shot) |64.40| |TruthfulQA (0-shot) |67.57| |Winogrande (5-shot) |83.11| |GSM8k (5-shot) |60.58|