File size: 4,343 Bytes
63ab24f
 
b25d2de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63ab24f
4c38809
 
 
 
 
 
 
5d1159d
4c38809
 
 
 
 
 
 
 
 
 
b25d2de
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
---
license: cc-by-nc-4.0
model-index:
- name: PiVoT-MoE
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 63.91
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=maywell/PiVoT-MoE
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 83.52
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=maywell/PiVoT-MoE
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 60.71
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=maywell/PiVoT-MoE
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 54.64
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=maywell/PiVoT-MoE
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 76.32
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=maywell/PiVoT-MoE
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 39.12
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=maywell/PiVoT-MoE
      name: Open LLM Leaderboard
---
# PiVot-MoE
![img](./PiVoT-MoE.png)

## Model Description

PiVoT-MoE, is an advanced AI model specifically designed for roleplaying purposes. It has been trained using a combination of four 10.7B sized experts, each with their own specialized characteristic, all fine-tuned to bring a unique and diverse roleplaying experience.

The Mixture of Experts (MoE) technique is utilized in this model, allowing the experts to work together synergistically, resulting in a more cohesive and natural conversation flow. The MoE architecture allows for a higher level of flexibility and adaptability, enabling PiVoT-MoE to handle a wide variety of roleplaying scenarios and characters.

Based on the PiVoT-10.7B-Mistral-v0.2-RP model, PiVoT-MoE takes it a step further with the incorporation of the MoE technique. This means that not only does the model have an expansive knowledge base, but it also has the ability to mix and match its expertise to better suit the specific roleplaying scenario.

## Prompt Template - Alpaca (ChatML works)
```
{system}
### Instruction:
{instruction}
### Response:
{response}
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_maywell__PiVoT-MoE)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |63.04|
|AI2 Reasoning Challenge (25-Shot)|63.91|
|HellaSwag (10-Shot)              |83.52|
|MMLU (5-Shot)                    |60.71|
|TruthfulQA (0-shot)              |54.64|
|Winogrande (5-shot)              |76.32|
|GSM8k (5-shot)                   |39.12|