File size: 2,788 Bytes
7d2b514 0a56a9d 7d2b514 7aeb93d 405a4f1 7aeb93d 840f420 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
---
license: apache-2.0
---
# **Synatra-7B-v0.3-dpoπ§**
![Synatra-7B-v0.3-dpo](./Synatra.png)
## Support Me
μλνΈλΌλ κ°μΈ νλ‘μ νΈλ‘, 1μΈμ μμμΌλ‘ κ°λ°λκ³ μμ΅λλ€. λͺ¨λΈμ΄ λ§μμ λμ
¨λ€λ©΄ μ½κ°μ μ°κ΅¬λΉ μ§μμ μ΄λ¨κΉμ?
[<img src="https://cdn.buymeacoffee.com/buttons/default-orange.png" alt="Buy me a Coffee" width="217" height="50">](https://www.buymeacoffee.com/mwell)
Wanna be a sponser? (Please) Contact me on Telegram **AlzarTakkarsen**
# **Model Details**
**Base Model**
[mistralai/Mistral-7B-Instruct-v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1)
**Trained On**
A100 80GB * 1
**Instruction format**
It follows [ChatML](https://github.com/openai/openai-python/blob/main/chatml.md) format and **Alpaca(No-Input)** format.
# **Model Benchmark**
## KOBEST_BOOLQ, SENTINEG, WIC - ZERO_SHOT
[EleutherAI/lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness/tree/polyglot)λ₯Ό μ¬μ©νμ¬ BoolQ, SentiNeg, Wicμ μΈ‘μ νμ΅λλ€.
| Model | COPA | HellaSwag | BoolQ | SentiNeg
| --- | --- | --- | --- | ---
| EleutherAI/polyglot-ko-12.8b | 0.7937 | 0.5954 | 0.4818 | 0.9117
| Synatra-7B-v0.3-base | 0.6344 | 0.5140 | 0.5226 | NaN
| **Synatra-7B-v0.3-dpo** | **0.6380** | **0.4780** | **0.8058** | **0.8942**
## Ko-LLM-Leaderboard
On Benchmarking...
# **Implementation Code**
Since, chat_template already contains insturction format above.
You can use the code below.
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
device = "cuda" # the device to load the model onto
model = AutoModelForCausalLM.from_pretrained("maywell/Synatra-7B-v0.3-dpo")
tokenizer = AutoTokenizer.from_pretrained("maywell/Synatra-7B-v0.3-dpo")
messages = [
{"role": "user", "content": "λ°λλλ μλ νμμμ΄μΌ?"},
]
encodeds = tokenizer.apply_chat_template(messages, return_tensors="pt")
model_inputs = encodeds.to(device)
model.to(device)
generated_ids = model.generate(model_inputs, max_new_tokens=1000, do_sample=True)
decoded = tokenizer.batch_decode(generated_ids)
print(decoded[0])
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_maywell__Synatra-7B-v0.3-dpo)
| Metric | Value |
|-----------------------|---------------------------|
| Avg. | 53.14 |
| ARC (25-shot) | 62.8 |
| HellaSwag (10-shot) | 82.58 |
| MMLU (5-shot) | 61.46 |
| TruthfulQA (0-shot) | 56.46 |
| Winogrande (5-shot) | 76.24 |
| GSM8K (5-shot) | 23.73 |
| DROP (3-shot) | 8.68 |
|