|
--- |
|
tags: [autonlp, Text Classification, Politics] |
|
language: fr |
|
widget: |
|
- text: "Il y a dans ce pays une fracture" |
|
datasets: |
|
- mazancourt/autonlp-data-politics-sentence-classifier |
|
co2_eq_emissions: 1.06099358268878 |
|
--- |
|
|
|
# Prediction of sentence "nature" in a French political sentence |
|
|
|
This model aims at predicting the nature of a sentence in a French political sentence. |
|
The predictions fall in three categories: |
|
- `problem`: the sentence describes a problem (usually to be tackled by the speaker), for example _il y a dans ce pays une fracture_ (J. Chirac) |
|
- `solution`: the sentences describes a solution (typically part of a political programme), for example: _J’ai supprimé les droits de succession parce que je crois au travail et parce que je crois à la famille._ (N. Sarkozy) |
|
- `other`: the sentence does not belong to any of these categories, for example: _vive la République, vive la France_ |
|
|
|
This model was trained using AutoNLP based on sentences extracted from a mix of political tweets and speeches. |
|
|
|
# Model Trained Using AutoNLP |
|
|
|
- Problem type: Multi-class Classification |
|
- Model ID: 23105051 |
|
- CO2 Emissions (in grams): 1.06099358268878 |
|
|
|
## Validation Metrics |
|
|
|
- Loss: 0.6050735712051392 |
|
- Accuracy: 0.8097826086956522 |
|
- Macro F1: 0.7713543865034599 |
|
- Micro F1: 0.8097826086956522 |
|
- Weighted F1: 0.8065488494385247 |
|
- Macro Precision: 0.7861074705111403 |
|
- Micro Precision: 0.8097826086956522 |
|
- Weighted Precision: 0.806470454156932 |
|
- Macro Recall: 0.7599656456873758 |
|
- Micro Recall: 0.8097826086956522 |
|
- Weighted Recall: 0.8097826086956522 |
|
|
|
|
|
## Usage |
|
|
|
You can use cURL to access this model: |
|
|
|
``` |
|
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "Il y a dans ce pays une fracture"}' https://api-inference.huggingface.co/models/mazancourt/politics-sentence-classifier |
|
``` |
|
|
|
Or Python API: |
|
|
|
``` |
|
from transformers import AutoModelForSequenceClassification, AutoTokenizer |
|
|
|
model = AutoModelForSequenceClassification.from_pretrained("mazancourt/autonlp-politics-sentence-classifier-23105051", use_auth_token=True) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("mazancourt/politics-sentence-classifier", use_auth_token=True) |
|
|
|
inputs = tokenizer("Il y a dans ce pays une fracture", return_tensors="pt") |
|
|
|
outputs = model(**inputs) |
|
|
|
# Category can be "problem", "solution" or "other" |
|
category = outputs[0]["label"] |
|
score = outputs[0]["score"] |
|
``` |