Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 269.98 +/- 14.34
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7a1399181bd0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a1399181c60>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a1399181cf0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a1399181d80>", "_build": "<function ActorCriticPolicy._build at 0x7a1399181e10>", "forward": "<function ActorCriticPolicy.forward at 0x7a1399181ea0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7a1399181f30>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a1399181fc0>", "_predict": "<function ActorCriticPolicy._predict at 0x7a1399182050>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a13991820e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a1399182170>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7a1399182200>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7a1399188740>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1693751367890824441, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAObU4702RMA/8ye/vrA+Xb6QL1C+6OBWvgAAAAAAAAAAJmD5PZZ6hT+OSAs+BzifvjRNLj5ABAg9AAAAAAAAAADNXBU7PaZQu8KNe7yj1X483OiTvF5hXD0AAIA/AACAP7M/C727bAo/QPpOPrbPiL6Q89o9/4iZOwAAAAAAAAAAAJ83PVlsMz567Y687XmPvsHLm73Whv+8AAAAAAAAAABaq7k9XfJePwiLIbyMQ7++DWvtPBQfo70AAAAAAAAAADO/0rvhZIO6Pu2NO13OjzZKTdM68mOlugAAgD8AAIA/msuQvIUbkLltZXK7A5NxOJ7hhTtK4Ao6AACAPwAAgD9Nlye99tonP4Nk6rwp85C+hlC/vbgaLj0AAAAAAAAAAE071j0JyCI/FtcKPfA4c76qGqu7cImaPQAAAAAAAAAATRU9PeEMmbqCkYE6sQ8CtbHPVbp4spW5AACAPwAAgD+a//+8j8ZYupgg2DVxRt4wd8HiuqX7+LQAAIA/AACAP4XLh74XT5E/9C4YPYDhU7724We+fu4EPgAAAAAAAAAAmg7PvMOxWbo6uVC5JhBMtH5EUjuq0nU4AACAPwAAgD/mAVi9rn2KuuVqjznuz5Y0p445O1ecprgAAIA/AACAP83uRrxIK5u6ey33twvH6bLUcvA5rq8ONwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGXR1QIldC6MAWyUTegDjAF0lEdAlcUsfq5byHV9lChoBkdAZaQ4kNWluWgHTegDaAhHQJXnSswL3K11fZQoaAZHQGcDfukUKzBoB03oA2gIR0CV6IHu7YkFdX2UKGgGR0BnWV6PbO/taAdN6ANoCEdAleqhs2vSt3V9lChoBkdAcw49ORDCxmgHTfsCaAhHQJXr8S5AhSt1fZQoaAZHQF7xkdmxt55oB03oA2gIR0CV8tK0lZ5idX2UKGgGR0Bv7qWAwwj/aAdNMgNoCEdAlfP+sHSncnV9lChoBkdAbTubwz+FUWgHTUcDaAhHQJX6vlyR0U51fZQoaAZHQGb6neBQN1BoB03oA2gIR0CV/BU8mrsCdX2UKGgGR0BkfrQNTcZcaAdN6ANoCEdAlf6WbobGWHV9lChoBkdAaBe/zreImGgHTegDaAhHQJX/U5sCT2Z1fZQoaAZHQGDbBPsRg7ZoB03oA2gIR0CWBQESuhbodX2UKGgGR0BhZJjhDPWyaAdN6ANoCEdAlgbO+AVfu3V9lChoBkdAYnVJiiItUWgHTegDaAhHQJYPwGu9vjx1fZQoaAZHQGWA/u1F6RhoB03oA2gIR0CWFKDIBBAwdX2UKGgGR0BjX3t8eCCjaAdN6ANoCEdAlhqyLdepoHV9lChoBkdAYjCQZn+Q2mgHTegDaAhHQJYgNU0elsR1fZQoaAZHQHKoCauwHJNoB02NAmgIR0CWISzyBkI5dX2UKGgGR0BNHcTJyQxOaAdLp2gIR0CWKUCswL3LdX2UKGgGR0BmxS/GlyimaAdN6ANoCEdAljDqTGHYYnV9lChoBkdAXIZ6X0Gu92gHTegDaAhHQJZC5PhybQV1fZQoaAZHQGYJeXzDn/1oB03oA2gIR0CWREKa5PM0dX2UKGgGR0BvyMGNaQmvaAdNwwJoCEdAlkTHqZ+hG3V9lChoBkdAZZDp22XsxGgHTegDaAhHQJZFDnHNorZ1fZQoaAZHQHEYGRRuTA5oB00uAWgIR0CWSII/JNj9dX2UKGgGR0BCJwl0HQhPaAdL6mgIR0CWScshxHXmdX2UKGgGR0BinaFyq+8HaAdN6ANoCEdAlknbypaRp3V9lChoBkdAQipkPMB6r2gHS6VoCEdAlkrU5hjOLXV9lChoBkdAQ8p5qubI92gHS69oCEdAlk0e27Wd3HV9lChoBkdAY/wQq7ROUWgHTegDaAhHQJZQdUn5SFZ1fZQoaAZHQGU+X7cfvF5oB03oA2gIR0CWUY1e0G/vdX2UKGgGR0BvwPxnWattaAdNSANoCEdAllHzAN5MUXV9lChoBkdAaSTFd9lVcWgHTegDaAhHQJZT7AoG6f91fZQoaAZHQFJlBfrrxAloB00bAWgIR0CWVn47zTWodX2UKGgGR0Bj7XPJJXhgaAdN6ANoCEdAllilGXokiXV9lChoBkdANKLuUliSaGgHS+5oCEdAlllfRNRFZ3V9lChoBkfAWNEW8AaNuWgHS7loCEdAllvPL5h0AHV9lChoBkdAZF+Nb1RLsmgHTegDaAhHQJZkuois4kx1fZQoaAZHQGU7leOXE61oB03oA2gIR0CWaqdtEXtTdX2UKGgGR0BnYtEG7jDLaAdN6ANoCEdAlnWgiA2AG3V9lChoBkdAcGl/RE4NqmgHTSQCaAhHQJaAHeVLSNR1fZQoaAZHQGeW6wUxmCloB03oA2gIR0CWhH6ZYxL1dX2UKGgGR0Byym1KGtZFaAdNIwJoCEdAlpbQydnTRnV9lChoBkdAZW9mh/RVqGgHTegDaAhHQJaXyJfpljF1fZQoaAZHQGWVNR3u/lBoB03oA2gIR0CWmClRP421dX2UKGgGR0Bw4jRqoIfKaAdNxQJoCEdAlpjIXXRPXXV9lChoBkdAcJy55Z8rqmgHTcMDaAhHQJacFYPoV211fZQoaAZHQGjQY8+zMRpoB03oA2gIR0CWnsEmICU5dX2UKGgGR0BpGf1rZamoaAdN6ANoCEdAlqAcscyWRnV9lChoBkdAZTxftQbdamgHTegDaAhHQJaoPai9Iwx1fZQoaAZHQGMO1EuxrzpoB03oA2gIR0CWqpX/YJ3QdX2UKGgGR0Bykxq9GqgiaAdNpQNoCEdAlrASFfzBh3V9lChoBkdAbmNwaR6ni2gHTScBaAhHQJayOhIvrW11fZQoaAZHQHNKb0Bfa6BoB02FAWgIR0CWtCa6z3RHdX2UKGgGR0BejhRuTA32aAdN6ANoCEdAlrT/uG9HtnV9lChoBkdAcYnw++ueSWgHTRQDaAhHQJa92eNDMNd1fZQoaAZHQGBueOXE61doB03oA2gIR0CWvecwQDmsdX2UKGgGR0BgCem1pj+aaAdN6ANoCEdAlsIgcHWz4XV9lChoBkdAcLP8scyWRmgHTQ0CaAhHQJbCby+YdAB1fZQoaAZHQHKKFRUFSsNoB00sAWgIR0CWwodfsu3+dX2UKGgGR0BtugPbwjMWaAdNPwJoCEdAlsZIUN8VpXV9lChoBkdAcBwk0Jng52gHTdECaAhHQJbIarMkhRt1fZQoaAZHQHFovKZDzAhoB01oAmgIR0CWzp3azu4PdX2UKGgGR0BudLs8gZCOaAdNtQNoCEdAls8DTBqKxnV9lChoBkdAcqIi2lVLjGgHTUABaAhHQJbP4Ttb9qF1fZQoaAZHQG9ihpQDV6NoB02VAmgIR0CW0rphF3INdX2UKGgGR0Bx1Qckt29taAdNOwJoCEdAltMMJlar3nV9lChoBkdAb8MmGdqcmWgHTVIBaAhHQJbU5VhkRSR1fZQoaAZHQGD1Bw2l2vBoB03oA2gIR0CW1Qtygf2cdX2UKGgGR0BnnGSlnAZbaAdN6ANoCEdAltXlY6nzhHV9lChoBkdAZ/ZEJBw++2gHTegDaAhHQJbuMuAZsKt1fZQoaAZHQHGHUYKpkwxoB020AWgIR0CW9o/6O5rhdX2UKGgGR0BxuEKSgXdkaAdNQgFoCEdAlvfH0XgtOHV9lChoBkdAciO03fhuO2gHTY0BaAhHQJb7FUQ04zd1fZQoaAZHQG/BVLrX18NoB01eA2gIR0CW++znA6+4dX2UKGgGR0BuH7UPQOWjaAdNyAFoCEdAlwI/8AJb+3V9lChoBkdAbBkv114gR2gHTeMDaAhHQJcClnXd0q91fZQoaAZHQHKs83AEdNpoB02gAWgIR0CXApK3d9DydX2UKGgGR0BsFOIwdsBRaAdN4AFoCEdAlwa/NJOFg3V9lChoBkdAcQUy/9Hc12gHTRkDaAhHQJcH+OIZZSx1fZQoaAZHQG8I5flZHNJoB03wAWgIR0CXCKUsFt9AdX2UKGgGR0BwZwQUYbbUaAdNQgJoCEdAlwjWy1NQCXV9lChoBkdALIloDgZTAGgHS/NoCEdAlwj0b1h9cHV9lChoBkdAaLMBreqJdmgHTegDaAhHQJcKv7Lt/nZ1fZQoaAZHQHKpcNx2jfxoB02rA2gIR0CXC2WrfcesdX2UKGgGR0BkGpgTh5xBaAdN6ANoCEdAlw35qVQhwHV9lChoBkdAa4coXsPatmgHTb8BaAhHQJcO03Ns3yZ1fZQoaAZHQG3k0rCm/FloB02VAWgIR0CXD5AaNuLrdX2UKGgGR0ByEPWTX8O1aAdNCwJoCEdAlxEvZyuIRHV9lChoBkdAcrHMhX8wYmgHTUgBaAhHQJcR/C4z7/J1fZQoaAZHQHIml3IMjNZoB01LAWgIR0CXEiujASFodX2UKGgGR0Bw6k/dIoVmaAdNagNoCEdAlxJkAggX/HV9lChoBkdAcPLHPu5SWWgHTbEBaAhHQJcWVxgiNbV1fZQoaAZHQCRKAjIJZ4hoB0vpaAhHQJcZJtelbeN1fZQoaAZHQHB0i4jKPn1oB02vA2gIR0CXHTtwJgLJdX2UKGgGR0BvHdw1ivxIaAdNsAFoCEdAlx4nMt9QXXV9lChoBkdAb72auOjqOmgHTagBaAhHQJce3dj5Kvp1fZQoaAZHQHDVPNu+AVhoB00nAWgIR0CXIFkgfU4JdX2UKGgGR0BwvmjDbah6aAdNoQFoCEdAlyJiZBsyi3V9lChoBkdAcOnXQtz0YmgHTcQBaAhHQJcju2AoXsR1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:002ca9e52e6a0138cdfec00846aedb79dce8272a593d8166051b5f46fd790e95
|
3 |
+
size 146746
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7a1399181bd0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a1399181c60>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a1399181cf0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a1399181d80>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7a1399181e10>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7a1399181ea0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7a1399181f30>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a1399181fc0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7a1399182050>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a13991820e0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a1399182170>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7a1399182200>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7a1399188740>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1693751367890824441,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAObU4702RMA/8ye/vrA+Xb6QL1C+6OBWvgAAAAAAAAAAJmD5PZZ6hT+OSAs+BzifvjRNLj5ABAg9AAAAAAAAAADNXBU7PaZQu8KNe7yj1X483OiTvF5hXD0AAIA/AACAP7M/C727bAo/QPpOPrbPiL6Q89o9/4iZOwAAAAAAAAAAAJ83PVlsMz567Y687XmPvsHLm73Whv+8AAAAAAAAAABaq7k9XfJePwiLIbyMQ7++DWvtPBQfo70AAAAAAAAAADO/0rvhZIO6Pu2NO13OjzZKTdM68mOlugAAgD8AAIA/msuQvIUbkLltZXK7A5NxOJ7hhTtK4Ao6AACAPwAAgD9Nlye99tonP4Nk6rwp85C+hlC/vbgaLj0AAAAAAAAAAE071j0JyCI/FtcKPfA4c76qGqu7cImaPQAAAAAAAAAATRU9PeEMmbqCkYE6sQ8CtbHPVbp4spW5AACAPwAAgD+a//+8j8ZYupgg2DVxRt4wd8HiuqX7+LQAAIA/AACAP4XLh74XT5E/9C4YPYDhU7724We+fu4EPgAAAAAAAAAAmg7PvMOxWbo6uVC5JhBMtH5EUjuq0nU4AACAPwAAgD/mAVi9rn2KuuVqjznuz5Y0p445O1ecprgAAIA/AACAP83uRrxIK5u6ey33twvH6bLUcvA5rq8ONwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.015808000000000044,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVPAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGXR1QIldC6MAWyUTegDjAF0lEdAlcUsfq5byHV9lChoBkdAZaQ4kNWluWgHTegDaAhHQJXnSswL3K11fZQoaAZHQGcDfukUKzBoB03oA2gIR0CV6IHu7YkFdX2UKGgGR0BnWV6PbO/taAdN6ANoCEdAleqhs2vSt3V9lChoBkdAcw49ORDCxmgHTfsCaAhHQJXr8S5AhSt1fZQoaAZHQF7xkdmxt55oB03oA2gIR0CV8tK0lZ5idX2UKGgGR0Bv7qWAwwj/aAdNMgNoCEdAlfP+sHSncnV9lChoBkdAbTubwz+FUWgHTUcDaAhHQJX6vlyR0U51fZQoaAZHQGb6neBQN1BoB03oA2gIR0CV/BU8mrsCdX2UKGgGR0BkfrQNTcZcaAdN6ANoCEdAlf6WbobGWHV9lChoBkdAaBe/zreImGgHTegDaAhHQJX/U5sCT2Z1fZQoaAZHQGDbBPsRg7ZoB03oA2gIR0CWBQESuhbodX2UKGgGR0BhZJjhDPWyaAdN6ANoCEdAlgbO+AVfu3V9lChoBkdAYnVJiiItUWgHTegDaAhHQJYPwGu9vjx1fZQoaAZHQGWA/u1F6RhoB03oA2gIR0CWFKDIBBAwdX2UKGgGR0BjX3t8eCCjaAdN6ANoCEdAlhqyLdepoHV9lChoBkdAYjCQZn+Q2mgHTegDaAhHQJYgNU0elsR1fZQoaAZHQHKoCauwHJNoB02NAmgIR0CWISzyBkI5dX2UKGgGR0BNHcTJyQxOaAdLp2gIR0CWKUCswL3LdX2UKGgGR0BmxS/GlyimaAdN6ANoCEdAljDqTGHYYnV9lChoBkdAXIZ6X0Gu92gHTegDaAhHQJZC5PhybQV1fZQoaAZHQGYJeXzDn/1oB03oA2gIR0CWREKa5PM0dX2UKGgGR0BvyMGNaQmvaAdNwwJoCEdAlkTHqZ+hG3V9lChoBkdAZZDp22XsxGgHTegDaAhHQJZFDnHNorZ1fZQoaAZHQHEYGRRuTA5oB00uAWgIR0CWSII/JNj9dX2UKGgGR0BCJwl0HQhPaAdL6mgIR0CWScshxHXmdX2UKGgGR0BinaFyq+8HaAdN6ANoCEdAlknbypaRp3V9lChoBkdAQipkPMB6r2gHS6VoCEdAlkrU5hjOLXV9lChoBkdAQ8p5qubI92gHS69oCEdAlk0e27Wd3HV9lChoBkdAY/wQq7ROUWgHTegDaAhHQJZQdUn5SFZ1fZQoaAZHQGU+X7cfvF5oB03oA2gIR0CWUY1e0G/vdX2UKGgGR0BvwPxnWattaAdNSANoCEdAllHzAN5MUXV9lChoBkdAaSTFd9lVcWgHTegDaAhHQJZT7AoG6f91fZQoaAZHQFJlBfrrxAloB00bAWgIR0CWVn47zTWodX2UKGgGR0Bj7XPJJXhgaAdN6ANoCEdAllilGXokiXV9lChoBkdANKLuUliSaGgHS+5oCEdAlllfRNRFZ3V9lChoBkfAWNEW8AaNuWgHS7loCEdAllvPL5h0AHV9lChoBkdAZF+Nb1RLsmgHTegDaAhHQJZkuois4kx1fZQoaAZHQGU7leOXE61oB03oA2gIR0CWaqdtEXtTdX2UKGgGR0BnYtEG7jDLaAdN6ANoCEdAlnWgiA2AG3V9lChoBkdAcGl/RE4NqmgHTSQCaAhHQJaAHeVLSNR1fZQoaAZHQGeW6wUxmCloB03oA2gIR0CWhH6ZYxL1dX2UKGgGR0Byym1KGtZFaAdNIwJoCEdAlpbQydnTRnV9lChoBkdAZW9mh/RVqGgHTegDaAhHQJaXyJfpljF1fZQoaAZHQGWVNR3u/lBoB03oA2gIR0CWmClRP421dX2UKGgGR0Bw4jRqoIfKaAdNxQJoCEdAlpjIXXRPXXV9lChoBkdAcJy55Z8rqmgHTcMDaAhHQJacFYPoV211fZQoaAZHQGjQY8+zMRpoB03oA2gIR0CWnsEmICU5dX2UKGgGR0BpGf1rZamoaAdN6ANoCEdAlqAcscyWRnV9lChoBkdAZTxftQbdamgHTegDaAhHQJaoPai9Iwx1fZQoaAZHQGMO1EuxrzpoB03oA2gIR0CWqpX/YJ3QdX2UKGgGR0Bykxq9GqgiaAdNpQNoCEdAlrASFfzBh3V9lChoBkdAbmNwaR6ni2gHTScBaAhHQJayOhIvrW11fZQoaAZHQHNKb0Bfa6BoB02FAWgIR0CWtCa6z3RHdX2UKGgGR0BejhRuTA32aAdN6ANoCEdAlrT/uG9HtnV9lChoBkdAcYnw++ueSWgHTRQDaAhHQJa92eNDMNd1fZQoaAZHQGBueOXE61doB03oA2gIR0CWvecwQDmsdX2UKGgGR0BgCem1pj+aaAdN6ANoCEdAlsIgcHWz4XV9lChoBkdAcLP8scyWRmgHTQ0CaAhHQJbCby+YdAB1fZQoaAZHQHKKFRUFSsNoB00sAWgIR0CWwodfsu3+dX2UKGgGR0BtugPbwjMWaAdNPwJoCEdAlsZIUN8VpXV9lChoBkdAcBwk0Jng52gHTdECaAhHQJbIarMkhRt1fZQoaAZHQHFovKZDzAhoB01oAmgIR0CWzp3azu4PdX2UKGgGR0BudLs8gZCOaAdNtQNoCEdAls8DTBqKxnV9lChoBkdAcqIi2lVLjGgHTUABaAhHQJbP4Ttb9qF1fZQoaAZHQG9ihpQDV6NoB02VAmgIR0CW0rphF3INdX2UKGgGR0Bx1Qckt29taAdNOwJoCEdAltMMJlar3nV9lChoBkdAb8MmGdqcmWgHTVIBaAhHQJbU5VhkRSR1fZQoaAZHQGD1Bw2l2vBoB03oA2gIR0CW1Qtygf2cdX2UKGgGR0BnnGSlnAZbaAdN6ANoCEdAltXlY6nzhHV9lChoBkdAZ/ZEJBw++2gHTegDaAhHQJbuMuAZsKt1fZQoaAZHQHGHUYKpkwxoB020AWgIR0CW9o/6O5rhdX2UKGgGR0BxuEKSgXdkaAdNQgFoCEdAlvfH0XgtOHV9lChoBkdAciO03fhuO2gHTY0BaAhHQJb7FUQ04zd1fZQoaAZHQG/BVLrX18NoB01eA2gIR0CW++znA6+4dX2UKGgGR0BuH7UPQOWjaAdNyAFoCEdAlwI/8AJb+3V9lChoBkdAbBkv114gR2gHTeMDaAhHQJcClnXd0q91fZQoaAZHQHKs83AEdNpoB02gAWgIR0CXApK3d9DydX2UKGgGR0BsFOIwdsBRaAdN4AFoCEdAlwa/NJOFg3V9lChoBkdAcQUy/9Hc12gHTRkDaAhHQJcH+OIZZSx1fZQoaAZHQG8I5flZHNJoB03wAWgIR0CXCKUsFt9AdX2UKGgGR0BwZwQUYbbUaAdNQgJoCEdAlwjWy1NQCXV9lChoBkdALIloDgZTAGgHS/NoCEdAlwj0b1h9cHV9lChoBkdAaLMBreqJdmgHTegDaAhHQJcKv7Lt/nZ1fZQoaAZHQHKpcNx2jfxoB02rA2gIR0CXC2WrfcesdX2UKGgGR0BkGpgTh5xBaAdN6ANoCEdAlw35qVQhwHV9lChoBkdAa4coXsPatmgHTb8BaAhHQJcO03Ns3yZ1fZQoaAZHQG3k0rCm/FloB02VAWgIR0CXD5AaNuLrdX2UKGgGR0ByEPWTX8O1aAdNCwJoCEdAlxEvZyuIRHV9lChoBkdAcrHMhX8wYmgHTUgBaAhHQJcR/C4z7/J1fZQoaAZHQHIml3IMjNZoB01LAWgIR0CXEiujASFodX2UKGgGR0Bw6k/dIoVmaAdNagNoCEdAlxJkAggX/HV9lChoBkdAcPLHPu5SWWgHTbEBaAhHQJcWVxgiNbV1fZQoaAZHQCRKAjIJZ4hoB0vpaAhHQJcZJtelbeN1fZQoaAZHQHB0i4jKPn1oB02vA2gIR0CXHTtwJgLJdX2UKGgGR0BvHdw1ivxIaAdNsAFoCEdAlx4nMt9QXXV9lChoBkdAb72auOjqOmgHTagBaAhHQJce3dj5Kvp1fZQoaAZHQHDVPNu+AVhoB00nAWgIR0CXIFkgfU4JdX2UKGgGR0BwvmjDbah6aAdNoQFoCEdAlyJiZBsyi3V9lChoBkdAcOnXQtz0YmgHTcQBaAhHQJcju2AoXsR1ZS4="
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 248,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e9e80b47036d8fa64bfe2b19c80d8b1ca8db9d4a9d1e2681ade07cc8d5cca3c5
|
3 |
+
size 87929
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6a748df03393fbc5b8e3c123ebf27505e2456213bac67aa70b0bfa5f78ea2219
|
3 |
+
size 43329
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.23.5
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (177 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 269.9750667893365, "std_reward": 14.340943826114627, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-09-03T14:57:04.883406"}
|