File size: 6,163 Bytes
f97e310
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 35,
   "id": "0562d8a6-e8e3-4659-ab21-e99d76adcf3c",
   "metadata": {
    "tags": []
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "35982,9796527,0.12911629676818848\n",
      "\n",
      "35982,9796527,0.12911629676818848\n",
      "\n",
      "35982,9796527,0.12911629676818848\n",
      "\n",
      "35982,9796527,0.12911629676818848\n",
      "\n",
      "35982,9796527,0.12911629676818848\n",
      "\n",
      "35982,9796527,0.12911629676818848\n",
      "\n",
      "35982,9796527,0.12911629676818848\n",
      "\n",
      "35982,9796527,0.12911629676818848\n",
      "\n",
      "35982,9796527,0.12911629676818848\n",
      "\n",
      "35982,9796527,0.12911629676818848\n",
      "\n"
     ]
    }
   ],
   "source": [
    "for i in range(10):\n",
    "    with open(\"test_set.txt\") as f:\n",
    "        print(f.readline())"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "9e72123e-5a81-4fd1-a07b-f847aee5a590",
   "metadata": {
    "tags": []
   },
   "outputs": [],
   "source": [
    "test_behavior_path = \"/work/Blue/ebnerd/ebnerd_testset/test/behaviors.parquet\"\n",
    "\n",
    "import polars as pl\n",
    "\n",
    "test_behavior_df = pl.read_parquet(test_behavior_path)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 95,
   "id": "7c337f1c-8a0e-4a61-9916-0c86887f320e",
   "metadata": {
    "tags": []
   },
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "100%|โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ| 13536710/13536710 [18:13<00:00, 12380.33it/s]\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Zipping predictions.txt to predictions.zip\n"
     ]
    }
   ],
   "source": [
    "from tqdm import tqdm\n",
    "import numpy as np\n",
    "from pathlib import Path\n",
    "import zipfile\n",
    "\n",
    "\n",
    "def transform_list(input_list):\n",
    "    # ์ž…๋ ฅ ๋ฆฌ์ŠคํŠธ๋ฅผ Numpy ๋ฐฐ์—ด๋กœ ๋ณ€ํ™˜ํ•ฉ๋‹ˆ๋‹ค.\n",
    "    arr = np.array(input_list)\n",
    "\n",
    "    # ๋‚ด๋ฆผ์ฐจ์ˆœ์œผ๋กœ ์ •๋ ฌ๋œ ์ธ๋ฑ์Šค๋ฅผ ๊ฐ€์ ธ์˜ต๋‹ˆ๋‹ค.\n",
    "    sorted_indices = np.argsort(-arr)\n",
    "\n",
    "    # ์ˆœ์œ„๋ฅผ ๋งค๊น๋‹ˆ๋‹ค (1๋ถ€ํ„ฐ ์‹œ์ž‘).\n",
    "    ranks = np.empty_like(sorted_indices)\n",
    "    ranks[sorted_indices] = np.arange(1, len(arr) + 1)\n",
    "\n",
    "    return ranks.tolist()\n",
    "\n",
    "def zip_submission_file(\n",
    "    path: Path,\n",
    "    filename_zip: str = None,\n",
    "    verbose: bool = True,\n",
    "    rm_file: bool = True,\n",
    ") -> None:\n",
    "    \"\"\"\n",
    "    Compresses a specified file into a ZIP archive within the same directory.\n",
    "\n",
    "    Args:\n",
    "        path (Path): The directory path where the file to be zipped and the resulting zip file will be located.\n",
    "        filename_input (str, optional): The name of the file to be compressed. Defaults to the path.name.\n",
    "        filename_zip (str, optional): The name of the output ZIP file. Defaults to \"prediction.zip\".\n",
    "        verbose (bool, optional): If set to True, the function will print the process details. Defaults to True.\n",
    "        rm_file (bool, optional): If set to True, the original file will be removed after compression. Defaults to True.\n",
    "\n",
    "    Returns:\n",
    "        None: This function does not return any value.\n",
    "    \"\"\"\n",
    "    path = Path(path)\n",
    "    if filename_zip:\n",
    "        path_zip = path.parent.joinpath(filename_zip)\n",
    "    else:\n",
    "        path_zip = path.with_suffix(\".zip\")\n",
    "\n",
    "    if path_zip.suffix != \".zip\":\n",
    "        raise ValueError(f\"suffix for {path_zip.name} has to be '.zip'\")\n",
    "    if verbose:\n",
    "        print(f\"Zipping {path} to {path_zip}\")\n",
    "    f = zipfile.ZipFile(path_zip, \"w\", zipfile.ZIP_DEFLATED)\n",
    "    f.write(path, arcname=path.name)\n",
    "    f.close()\n",
    "    if rm_file:\n",
    "        path.unlink()\n",
    "\n",
    "with open(\"predictions.txt\", 'w') as wf:\n",
    "    with open(\"test_set.txt\", 'r') as f:\n",
    "        behaviors_iter = test_behavior_df.select(\"impression_id\", \"user_id\", \"article_ids_inview\").iter_rows()\n",
    "        index = 0\n",
    "        for data in tqdm(behaviors_iter, total=len(test_behavior_df)):\n",
    "            impression_id = data[0]\n",
    "            user_id = data[1]\n",
    "            article_ids_inview = data[2]\n",
    "\n",
    "            scores = []\n",
    "\n",
    "            for article_id in article_ids_inview:\n",
    "                preds = f.readline().split(\",\")\n",
    "\n",
    "                p_user_id = preds[0]\n",
    "                p_article_id = preds[1]\n",
    "                p_score = preds[2]\n",
    "\n",
    "                if str(article_id) == str(p_article_id):\n",
    "                    scores.append(float(p_score))\n",
    "                else:\n",
    "                    print(\"Different 0.0\")\n",
    "                    scores.append(float(0.0))\n",
    "\n",
    "            index_ranked = transform_list(scores)\n",
    "            preds = \"[\" + \",\".join([str(ir) for ir in index_ranked]) + \"]\"\n",
    "\n",
    "            wf.write(\" \".join([str(impression_id), preds]) + \"\\n\")\n",
    "\n",
    "zip_submission_file(path=Path(\"predictions.txt\"), rm_file=True)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "2d5c1bcc-e4b0-4217-93ec-4ca3e24dc6ab",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "blue",
   "language": "python",
   "name": "blue"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.13"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}