nrms / testset.py
pko89403's picture
Upload 4 files
f97e310 verified
raw
history blame
5.53 kB
#!/usr/bin/env python
# coding: utf-8
# In[1]:
import os
from datetime import datetime
from pathlib import Path
import polars as pl
import torch
from transformers import AutoModel, AutoTokenizer
from transformers import Trainer, TrainingArguments
from accelerate import Accelerator, DistributedType
from torch.optim import AdamW
from torch.utils.data import DataLoader
from utils._constants import *
from utils._nlp import get_transformers_word_embeddings
from utils._polars import concat_str_columns, slice_join_dataframes
from utils._articles import (
convert_text2encoding_with_transformers,
create_article_id_to_value_mapping
)
from utils._python import make_lookup_objects
from utils._behaviors import (
create_binary_labels_column,
sampling_strategy_wu2019,
truncate_history,
)
from utils._articles_behaviors import map_list_article_id_to_value
from dataset.pytorch_dataloader import (
ebnerd_from_path,
NRMSDataset,
NewsrecDataset,
)
from evaluation import (
MetricEvaluator,
AucScore,
NdcgScore,
MrrScore,
F1Score,
LogLossScore,
RootMeanSquaredError,
AccuracyScore
)
from models.nrms import NRMSModel
os.environ["TOKENIZERS_PARALLELISM"] = "false"
# In[2]:
TEST_DATA_PATH = "merged_0412_final.parquet"
# In[3]:
test_df = pl.read_parquet(TEST_DATA_PATH).with_columns(pl.Series("labels", [[]]))
# In[4]:
from transformers import AutoModel, AutoTokenizer
model_name = "Maltehb/danish-bert-botxo"
model = AutoModel.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
word2vec_embeddimg = get_transformers_word_embeddings(model)
# In[5]:
ARTICLES_DATA_PATH = "/work/Blue/ebnerd/ebnerd_testset/articles.parquet"
ARTICLE_COLUMNS = [DEFAULT_TITLE_COL, DEFAULT_SUBTITLE_COL]
TEXT_MAX_LENGTH = 30
articles_df = pl.read_parquet(ARTICLES_DATA_PATH)
df_articles, cat_col = concat_str_columns(articles_df, columns=ARTICLE_COLUMNS)
df_articles, token_col_title = convert_text2encoding_with_transformers(
df_articles, tokenizer, cat_col, max_length=TEXT_MAX_LENGTH
)
article_mapping = create_article_id_to_value_mapping(df=df_articles, value_col=token_col_title)
# In[6]:
from dataclasses import dataclass, field
import numpy as np
@dataclass
class NRMSTestDataset(NewsrecDataset):
def __post_init__(self):
"""
Post-initialization method. Loads the data and sets additional attributes.
"""
self.lookup_article_index = {id: i for i, id in enumerate(self.article_dict, start=1)}
self.lookup_article_matrix = np.array(list(self.article_dict.values()))
UNKNOWN_ARRAY = np.zeros(self.lookup_article_matrix.shape[1], dtype=self.lookup_article_matrix.dtype)
self.lookup_article_matrix = np.vstack([UNKNOWN_ARRAY, self.lookup_article_matrix])
self.unknown_index = [0]
self.X, self.y = self.load_data()
if self.kwargs is not None:
self.set_kwargs(self.kwargs)
def __getitem__(self, idx) -> dict:
"""
history_input_tensor: (samples, history_size, document_dimension)
candidate_input_title: (samples, npratio, document_dimension)
label: (samples, npratio)
"""
batch_X = self.X[idx]
article_id_fixed = [self.lookup_article_index.get(f, 0) for f in batch_X["article_id_fixed"].to_list()[0]]
history_input_tensor = self.lookup_article_matrix[article_id_fixed]
article_id_inview = [self.lookup_article_index.get(f, 0) for f in batch_X["article_ids_inview"].to_list()[0]]
candidate_input_title = self.lookup_article_matrix[article_id_inview]
return {
"user_id": self.X[idx]["user_id"][0],
"history_input_tensor": history_input_tensor,
"candidate_article_id" : self.X[idx]["article_ids_inview"][0][0],
"candidate_input_title": candidate_input_title,
"labels" : np.int32(0)
}
# In[7]:
test_dataset = NRMSTestDataset(
behaviors=test_df,
history_column=DEFAULT_HISTORY_ARTICLE_ID_COL,
article_dict=article_mapping,
unknown_representation="zeros",
eval_mode=False,
)
# In[8]:
nrms_model = NRMSModel(
pretrained_weight=torch.tensor(word2vec_embeddimg),
emb_dim=768,
num_heads=16,
hidden_dim=128,
item_dim=64,
)
state_dict = torch.load("nrms_model.epoch0.step20001.pth")
nrms_model = torch.compile(nrms_model)
nrms_model.load_state_dict(state_dict["model"])
nrms_model.to("cuda:1")
# In[ ]:
import torch._dynamo
from tqdm import tqdm
import os
from torch.utils.data import DataLoader
BATCH_SIZE = 256
test_dataloader = DataLoader(test_dataset, batch_size=BATCH_SIZE, shuffle=False, num_workers=60)
os.environ["TOKENIZERS_PARALLELISM"] = "true"
torch._dynamo.config.suppress_errors = True
nrms_model.eval()
with open("test_set.txt", 'w') as f:
with torch.no_grad():
for i, batch in enumerate(tqdm(test_dataloader)):
user_id = batch["user_id"].cpu().tolist()
candidate_article_id = batch["candidate_article_id"].cpu().tolist()
history_input_tensor = batch["history_input_tensor"].to("cuda:1")
candidate_input_title = batch["candidate_input_title"].to("cuda:1")
output_logits = nrms_model(history_input_tensor, candidate_input_title, None)[:,0].cpu().tolist()
for j in range(len(user_id)):
line = f"{user_id[j]},{candidate_article_id[j]},{output_logits[j]}\n"
f.write(line)
# In[ ]: