First DL Model!
Browse files- README.md +37 -0
- config.json +1 -0
- moon-lander.zip +3 -0
- moon-lander/_stable_baselines3_version +1 -0
- moon-lander/data +96 -0
- moon-lander/policy.optimizer.pth +3 -0
- moon-lander/policy.pth +3 -0
- moon-lander/pytorch_variables.pth +3 -0
- moon-lander/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: moon-lander
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 265.63 +/- 24.05
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **moon-lander** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **moon-lander** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fba1cd330a0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fba1cd33130>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fba1cd331c0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fba1cd33250>", "_build": "<function ActorCriticPolicy._build at 0x7fba1cd332e0>", "forward": "<function ActorCriticPolicy.forward at 0x7fba1cd33370>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fba1cd33400>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fba1cd33490>", "_predict": "<function ActorCriticPolicy._predict at 0x7fba1cd33520>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fba1cd335b0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fba1cd33640>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fba1cd336d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fba1cd2af40>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1685571669384132393, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": null, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVOAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHI3Aqqfe1uMAWyUS/WMAXSUR0CVImuxbB42dX2UKGgGR0BwYWJAMUh3aAdNOQFoCEdAlSN118stkHV9lChoBkdAcwSzFMqSYGgHS+VoCEdAlSW6g2606nV9lChoBkdAcR+EE1VHWmgHTRwBaAhHQJUmOEal1r91fZQoaAZHQHErzFqBVdZoB01CAWgIR0CVJnxLkCFLdX2UKGgGR0BwamfBeokzaAdL9GgIR0CVJxgAIY3vdX2UKGgGR0BxScU47zTXaAdL42gIR0CVJ5GB4D9wdX2UKGgGR0BvfPdsSCe3aAdNEQFoCEdAlTrRVQyhz3V9lChoBkdAcdyG5MDfWWgHTRUCaAhHQJU7KteUpux1fZQoaAZHQHDpQ0bcXWRoB00jAWgIR0CVOzzdDYywdX2UKGgGR0BvTEWM0gr6aAdNNgFoCEdAlTyB9gF5fXV9lChoBkdAcBmNZeRgZ2gHTUgBaAhHQJU+CZiNKiB1fZQoaAZHQHEDdwWFev9oB00mAWgIR0CVPhE1EVnFdX2UKGgGR0BwjwC1Z1V6aAdNZgFoCEdAlUDalLvkR3V9lChoBkdAcGAZ6Uqx1WgHTXABaAhHQJVBy6GxlhB1fZQoaAZHQHKjrlvIfbNoB03hAmgIR0CVQumixmkFdX2UKGgGR0Bw6iFwkxATaAdNNAFoCEdAlULomXw9aHV9lChoBkdAcpBHSF49o2gHTSQBaAhHQJVDCDWbw0B1fZQoaAZHQHFp09dNWU9oB0v8aAhHQJVD5d2PkrB1fZQoaAZHQHFJZdSl3yJoB001AWgIR0CVRBva11GLdX2UKGgGR0BwuZ0aIeo2aAdNagFoCEdAlUSIRRMviHV9lChoBkdAbaZKujh1kmgHTSIBaAhHQJVFoa6z3RJ1fZQoaAZHQHMp8Y64lQdoB01zAWgIR0CVSHOymhugdX2UKGgGR0BxxriGWUr1aAdNIAFoCEdAlUi5YxL0z3V9lChoBkdAcA4OKwY+CGgHTSQBaAhHQJVI23EyckN1fZQoaAZHQHDVuCbtqpNoB02uAWgIR0CVTF9ycTakdX2UKGgGR0BxuMk0Jng6aAdNCQFoCEdAlUyn1nM+vHV9lChoBkdAcFlIK+i8F2gHTR8BaAhHQJVOs6U7jkx1fZQoaAZHQHHWJ8a4tpVoB00pAWgIR0CVT1yO7xusdX2UKGgGR0ByPnt4RmK7aAdN3AJoCEdAlVDOvQnhKnV9lChoBkdAb1KACnxaxGgHTaICaAhHQJVRSHvc8DB1fZQoaAZHQG0oHb7CSA9oB013AWgIR0CVUYjDsMRZdX2UKGgGR0Bydjt/nW8RaAdNhQFoCEdAlVHy5RTCL3V9lChoBkdAbw/RwZOzp2gHS+hoCEdAlVIijDbaiHV9lChoBkdAcWCQ/5ckdGgHTZsDaAhHQJVSZceKba11fZQoaAZHQHCy1EmY0EZoB0v8aAhHQJVSjXUYsNF1fZQoaAZHQG9O/QBxPwdoB034AWgIR0CVVCGeMAFQdX2UKGgGR0Bwgej8DSw4aAdNoAFoCEdAlVXla0QbuXV9lChoBkdAcaD1uivgWWgHTRwCaAhHQJVWzlQuVX51fZQoaAZHQG/+b04BFNNoB00JAWgIR0CVV0ALiMo+dX2UKGgGR0BwEAHTqjagaAdNdwFoCEdAlVgDfrKNhnV9lChoBkdAbmIAKfFrEmgHTfMBaAhHQJVYFF5OafB1fZQoaAZHQHDOOnl4keJoB00ZAWgIR0CVWDdRR/EwdX2UKGgGR0ByPGGYa5wwaAdNFgFoCEdAlVnmvjfelHV9lChoBkdAcD0zkZJkG2gHTR4BaAhHQJVa2x+rlvJ1fZQoaAZHQHAlWgzxgApoB0v3aAhHQJVbB+F10T11fZQoaAZHQHB/ar/82rJoB00eAWgIR0CVXQkMCtA+dX2UKGgGR0BsT6N0eU6gaAdNIwFoCEdAlV7LQTmGNHV9lChoBkdAcEfqqOtGNWgHTTIBaAhHQJVfTpRoAXF1fZQoaAZHQHEvCQo1DShoB01LAWgIR0CVX+FBppN9dX2UKGgGR0BxREI/qxC6aAdNDgFoCEdAlWAQ6dUbUHV9lChoBkdAcdzLMLWqcWgHTYsBaAhHQJVhjYukDZF1fZQoaAZHQG/QtcfNiYtoB00gAWgIR0CVYqlrdnCgdX2UKGgGR0Bwlyk/KQq7aAdNhgFoCEdAlWLd3KSxJXV9lChoBkdAb7yjMV1wHmgHTSABaAhHQJV03LKV6eJ1fZQoaAZHQHDouCK77KtoB00SAWgIR0CVdPz7MxGldX2UKGgGR0BwJsOEug6EaAdNNAFoCEdAlXUmwNb1RXV9lChoBkdAcx87pmmLtWgHTSsBaAhHQJV1rgQ6IWR1fZQoaAZHQHMe4xUNrj5oB02HAWgIR0CVeLX2ugYhdX2UKGgGR0Bt5uYQarFPaAdNZgFoCEdAlXkweV9nb3V9lChoBkdAchhRwZOzp2gHTSYBaAhHQJV5h9LHuJF1fZQoaAZHQHEoEAPuogpoB0vxaAhHQJV5xYwIt191fZQoaAZHQG/7hmXgLqloB00dAWgIR0CVey7DVH4HdX2UKGgGR0BwtecmShalaAdNTQFoCEdAlXwvkNnXd3V9lChoBkdAbuRiuMdcS2gHTTEBaAhHQJV9azhP0qZ1fZQoaAZHQHBlv7WNFSdoB00VAWgIR0CVfo1DBuXNdX2UKGgGR0By7vPmgam5aAdN2wFoCEdAlX6dPUKArnV9lChoBkdAcFytMfzSTmgHTeEBaAhHQJV++kfs/pt1fZQoaAZHQHNid2gWac9oB01QAWgIR0CVf5FLnLaFdX2UKGgGR0Bx2PVe8f3faAdNTAFoCEdAlX+R/y5I6XV9lChoBkdAbFxGKAJ9iWgHTVsBaAhHQJWBA1Gb1AZ1fZQoaAZHQHC+wLE1l5JoB010AWgIR0CVghBInSfEdX2UKGgGR0Bx4peHBUJfaAdNAgFoCEdAlYJ+/UONHnV9lChoBkdAcyokleF+NWgHS91oCEdAlYMWsq8UVXV9lChoBkdAcGUTsY2sJmgHTZABaAhHQJWDjmjj7yh1fZQoaAZHQHF+XZGrjo9oB00zAWgIR0CVg51kDp1SdX2UKGgGR0BxVZKDkELZaAdNLwJoCEdAlYRIXwb2lHV9lChoBkdAcYzVYISlFmgHTTkBaAhHQJWEYlSjxkN1fZQoaAZHQHD+rlV94NZoB00+AWgIR0CVhLHeJpFkdX2UKGgGR0ByNsBo24usaAdNEQFoCEdAlYUwW3z+WHV9lChoBkdAcSnRPGhmG2gHTWIBaAhHQJWIqasp5NZ1fZQoaAZHQHFOMTakAPxoB00/AWgIR0CViW/5tWMkdX2UKGgGR0BypFFw1ivxaAdNSwFoCEdAlYngOz6acHV9lChoBkdAcosvh60IC2gHTXIBaAhHQJWKUIa99MN1fZQoaAZHQHKawDNhVlxoB013AWgIR0CVitP0Zm7KdX2UKGgGR0BxjstnPE88aAdNGAFoCEdAlYs5rDZUUHV9lChoBkdAcLxjI7vG62gHTRcBaAhHQJWLynvUjLV1fZQoaAZHQGxMLe67NB5oB02hAWgIR0CVi8tgKF7EdX2UKGgGR0Bw4Yk+otL+aAdNVAFoCEdAlYynYQJ5V3V9lChoBkdAb+ja3Zwn6WgHTXQBaAhHQJWMrww0wal1fZQoaAZHQHGihs2vStxoB00sAWgIR0CVjbW5H3DfdX2UKGgGR0BPpxNyo4uLaAdLvWgIR0CVjvm1IAfddX2UKGgGR0Bxd/vWpZOjaAdNVQFoCEdAlY/S5VfeDXV9lChoBkdAco9eOGTLXGgHTW8BaAhHQJWR0y57PY51fZQoaAZHQHHst+PRzBBoB00EAWgIR0CVkuOObRWtdX2UKGgGR0Bxd8lAu7HyaAdL+mgIR0CVkvZgXuVpdX2UKGgGR0Bx7dk6Lfk4aAdN1QFoCEdAlZOCXt0FKXV9lChoBkdAbe5NEgGKRGgHTSkBaAhHQJWVhTfixV11fZQoaAZHQG9pz8gpz91oB00RAWgIR0CVloXPZ7HAdX2UKGgGR0BuFPPmgam5aAdNEwFoCEdAlZgTwDvE0nVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV/QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
moon-lander.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e5dbbe3eb9ab3dadd05117a1769700c92580f30d23e0d079f8279757f0a71193
|
3 |
+
size 145999
|
moon-lander/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
moon-lander/data
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fba1cd330a0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fba1cd33130>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fba1cd331c0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fba1cd33250>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fba1cd332e0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fba1cd33370>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7fba1cd33400>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fba1cd33490>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fba1cd33520>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fba1cd335b0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fba1cd33640>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fba1cd336d0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7fba1cd2af40>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1685571669384132393,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": null,
|
33 |
+
"_last_episode_starts": {
|
34 |
+
":type:": "<class 'numpy.ndarray'>",
|
35 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
36 |
+
},
|
37 |
+
"_last_original_obs": null,
|
38 |
+
"_episode_num": 0,
|
39 |
+
"use_sde": false,
|
40 |
+
"sde_sample_freq": -1,
|
41 |
+
"_current_progress_remaining": -0.015808000000000044,
|
42 |
+
"_stats_window_size": 100,
|
43 |
+
"ep_info_buffer": {
|
44 |
+
":type:": "<class 'collections.deque'>",
|
45 |
+
":serialized:": "gAWVOAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHI3Aqqfe1uMAWyUS/WMAXSUR0CVImuxbB42dX2UKGgGR0BwYWJAMUh3aAdNOQFoCEdAlSN118stkHV9lChoBkdAcwSzFMqSYGgHS+VoCEdAlSW6g2606nV9lChoBkdAcR+EE1VHWmgHTRwBaAhHQJUmOEal1r91fZQoaAZHQHErzFqBVdZoB01CAWgIR0CVJnxLkCFLdX2UKGgGR0BwamfBeokzaAdL9GgIR0CVJxgAIY3vdX2UKGgGR0BxScU47zTXaAdL42gIR0CVJ5GB4D9wdX2UKGgGR0BvfPdsSCe3aAdNEQFoCEdAlTrRVQyhz3V9lChoBkdAcdyG5MDfWWgHTRUCaAhHQJU7KteUpux1fZQoaAZHQHDpQ0bcXWRoB00jAWgIR0CVOzzdDYywdX2UKGgGR0BvTEWM0gr6aAdNNgFoCEdAlTyB9gF5fXV9lChoBkdAcBmNZeRgZ2gHTUgBaAhHQJU+CZiNKiB1fZQoaAZHQHEDdwWFev9oB00mAWgIR0CVPhE1EVnFdX2UKGgGR0BwjwC1Z1V6aAdNZgFoCEdAlUDalLvkR3V9lChoBkdAcGAZ6Uqx1WgHTXABaAhHQJVBy6GxlhB1fZQoaAZHQHKjrlvIfbNoB03hAmgIR0CVQumixmkFdX2UKGgGR0Bw6iFwkxATaAdNNAFoCEdAlULomXw9aHV9lChoBkdAcpBHSF49o2gHTSQBaAhHQJVDCDWbw0B1fZQoaAZHQHFp09dNWU9oB0v8aAhHQJVD5d2PkrB1fZQoaAZHQHFJZdSl3yJoB001AWgIR0CVRBva11GLdX2UKGgGR0BwuZ0aIeo2aAdNagFoCEdAlUSIRRMviHV9lChoBkdAbaZKujh1kmgHTSIBaAhHQJVFoa6z3RJ1fZQoaAZHQHMp8Y64lQdoB01zAWgIR0CVSHOymhugdX2UKGgGR0BxxriGWUr1aAdNIAFoCEdAlUi5YxL0z3V9lChoBkdAcA4OKwY+CGgHTSQBaAhHQJVI23EyckN1fZQoaAZHQHDVuCbtqpNoB02uAWgIR0CVTF9ycTakdX2UKGgGR0BxuMk0Jng6aAdNCQFoCEdAlUyn1nM+vHV9lChoBkdAcFlIK+i8F2gHTR8BaAhHQJVOs6U7jkx1fZQoaAZHQHHWJ8a4tpVoB00pAWgIR0CVT1yO7xusdX2UKGgGR0ByPnt4RmK7aAdN3AJoCEdAlVDOvQnhKnV9lChoBkdAb1KACnxaxGgHTaICaAhHQJVRSHvc8DB1fZQoaAZHQG0oHb7CSA9oB013AWgIR0CVUYjDsMRZdX2UKGgGR0Bydjt/nW8RaAdNhQFoCEdAlVHy5RTCL3V9lChoBkdAbw/RwZOzp2gHS+hoCEdAlVIijDbaiHV9lChoBkdAcWCQ/5ckdGgHTZsDaAhHQJVSZceKba11fZQoaAZHQHCy1EmY0EZoB0v8aAhHQJVSjXUYsNF1fZQoaAZHQG9O/QBxPwdoB034AWgIR0CVVCGeMAFQdX2UKGgGR0Bwgej8DSw4aAdNoAFoCEdAlVXla0QbuXV9lChoBkdAcaD1uivgWWgHTRwCaAhHQJVWzlQuVX51fZQoaAZHQG/+b04BFNNoB00JAWgIR0CVV0ALiMo+dX2UKGgGR0BwEAHTqjagaAdNdwFoCEdAlVgDfrKNhnV9lChoBkdAbmIAKfFrEmgHTfMBaAhHQJVYFF5OafB1fZQoaAZHQHDOOnl4keJoB00ZAWgIR0CVWDdRR/EwdX2UKGgGR0ByPGGYa5wwaAdNFgFoCEdAlVnmvjfelHV9lChoBkdAcD0zkZJkG2gHTR4BaAhHQJVa2x+rlvJ1fZQoaAZHQHAlWgzxgApoB0v3aAhHQJVbB+F10T11fZQoaAZHQHB/ar/82rJoB00eAWgIR0CVXQkMCtA+dX2UKGgGR0BsT6N0eU6gaAdNIwFoCEdAlV7LQTmGNHV9lChoBkdAcEfqqOtGNWgHTTIBaAhHQJVfTpRoAXF1fZQoaAZHQHEvCQo1DShoB01LAWgIR0CVX+FBppN9dX2UKGgGR0BxREI/qxC6aAdNDgFoCEdAlWAQ6dUbUHV9lChoBkdAcdzLMLWqcWgHTYsBaAhHQJVhjYukDZF1fZQoaAZHQG/QtcfNiYtoB00gAWgIR0CVYqlrdnCgdX2UKGgGR0Bwlyk/KQq7aAdNhgFoCEdAlWLd3KSxJXV9lChoBkdAb7yjMV1wHmgHTSABaAhHQJV03LKV6eJ1fZQoaAZHQHDouCK77KtoB00SAWgIR0CVdPz7MxGldX2UKGgGR0BwJsOEug6EaAdNNAFoCEdAlXUmwNb1RXV9lChoBkdAcx87pmmLtWgHTSsBaAhHQJV1rgQ6IWR1fZQoaAZHQHMe4xUNrj5oB02HAWgIR0CVeLX2ugYhdX2UKGgGR0Bt5uYQarFPaAdNZgFoCEdAlXkweV9nb3V9lChoBkdAchhRwZOzp2gHTSYBaAhHQJV5h9LHuJF1fZQoaAZHQHEoEAPuogpoB0vxaAhHQJV5xYwIt191fZQoaAZHQG/7hmXgLqloB00dAWgIR0CVey7DVH4HdX2UKGgGR0BwtecmShalaAdNTQFoCEdAlXwvkNnXd3V9lChoBkdAbuRiuMdcS2gHTTEBaAhHQJV9azhP0qZ1fZQoaAZHQHBlv7WNFSdoB00VAWgIR0CVfo1DBuXNdX2UKGgGR0By7vPmgam5aAdN2wFoCEdAlX6dPUKArnV9lChoBkdAcFytMfzSTmgHTeEBaAhHQJV++kfs/pt1fZQoaAZHQHNid2gWac9oB01QAWgIR0CVf5FLnLaFdX2UKGgGR0Bx2PVe8f3faAdNTAFoCEdAlX+R/y5I6XV9lChoBkdAbFxGKAJ9iWgHTVsBaAhHQJWBA1Gb1AZ1fZQoaAZHQHC+wLE1l5JoB010AWgIR0CVghBInSfEdX2UKGgGR0Bx4peHBUJfaAdNAgFoCEdAlYJ+/UONHnV9lChoBkdAcyokleF+NWgHS91oCEdAlYMWsq8UVXV9lChoBkdAcGUTsY2sJmgHTZABaAhHQJWDjmjj7yh1fZQoaAZHQHF+XZGrjo9oB00zAWgIR0CVg51kDp1SdX2UKGgGR0BxVZKDkELZaAdNLwJoCEdAlYRIXwb2lHV9lChoBkdAcYzVYISlFmgHTTkBaAhHQJWEYlSjxkN1fZQoaAZHQHD+rlV94NZoB00+AWgIR0CVhLHeJpFkdX2UKGgGR0ByNsBo24usaAdNEQFoCEdAlYUwW3z+WHV9lChoBkdAcSnRPGhmG2gHTWIBaAhHQJWIqasp5NZ1fZQoaAZHQHFOMTakAPxoB00/AWgIR0CViW/5tWMkdX2UKGgGR0BypFFw1ivxaAdNSwFoCEdAlYngOz6acHV9lChoBkdAcosvh60IC2gHTXIBaAhHQJWKUIa99MN1fZQoaAZHQHKawDNhVlxoB013AWgIR0CVitP0Zm7KdX2UKGgGR0BxjstnPE88aAdNGAFoCEdAlYs5rDZUUHV9lChoBkdAcLxjI7vG62gHTRcBaAhHQJWLynvUjLV1fZQoaAZHQGxMLe67NB5oB02hAWgIR0CVi8tgKF7EdX2UKGgGR0Bw4Yk+otL+aAdNVAFoCEdAlYynYQJ5V3V9lChoBkdAb+ja3Zwn6WgHTXQBaAhHQJWMrww0wal1fZQoaAZHQHGihs2vStxoB00sAWgIR0CVjbW5H3DfdX2UKGgGR0BPpxNyo4uLaAdLvWgIR0CVjvm1IAfddX2UKGgGR0Bxd/vWpZOjaAdNVQFoCEdAlY/S5VfeDXV9lChoBkdAco9eOGTLXGgHTW8BaAhHQJWR0y57PY51fZQoaAZHQHHst+PRzBBoB00EAWgIR0CVkuOObRWtdX2UKGgGR0Bxd8lAu7HyaAdL+mgIR0CVkvZgXuVpdX2UKGgGR0Bx7dk6Lfk4aAdN1QFoCEdAlZOCXt0FKXV9lChoBkdAbe5NEgGKRGgHTSkBaAhHQJWVhTfixV11fZQoaAZHQG9pz8gpz91oB00RAWgIR0CVloXPZ7HAdX2UKGgGR0BuFPPmgam5aAdNEwFoCEdAlZgTwDvE0nVlLg=="
|
46 |
+
},
|
47 |
+
"ep_success_buffer": {
|
48 |
+
":type:": "<class 'collections.deque'>",
|
49 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
50 |
+
},
|
51 |
+
"_n_updates": 248,
|
52 |
+
"observation_space": {
|
53 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
54 |
+
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
55 |
+
"dtype": "float32",
|
56 |
+
"bounded_below": "[ True True True True True True True True]",
|
57 |
+
"bounded_above": "[ True True True True True True True True]",
|
58 |
+
"_shape": [
|
59 |
+
8
|
60 |
+
],
|
61 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
62 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
63 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
64 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
65 |
+
"_np_random": null
|
66 |
+
},
|
67 |
+
"action_space": {
|
68 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
69 |
+
":serialized:": "gAWV/QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
70 |
+
"n": "4",
|
71 |
+
"start": "0",
|
72 |
+
"_shape": [],
|
73 |
+
"dtype": "int64",
|
74 |
+
"_np_random": null
|
75 |
+
},
|
76 |
+
"n_envs": 1,
|
77 |
+
"n_steps": 1024,
|
78 |
+
"gamma": 0.999,
|
79 |
+
"gae_lambda": 0.98,
|
80 |
+
"ent_coef": 0.01,
|
81 |
+
"vf_coef": 0.5,
|
82 |
+
"max_grad_norm": 0.5,
|
83 |
+
"batch_size": 64,
|
84 |
+
"n_epochs": 4,
|
85 |
+
"clip_range": {
|
86 |
+
":type:": "<class 'function'>",
|
87 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
88 |
+
},
|
89 |
+
"clip_range_vf": null,
|
90 |
+
"normalize_advantage": true,
|
91 |
+
"target_kl": null,
|
92 |
+
"lr_schedule": {
|
93 |
+
":type:": "<class 'function'>",
|
94 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
95 |
+
}
|
96 |
+
}
|
moon-lander/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f08bc9375b90140ec9d90f7a1fe946eeb08a489c712b6d71e6cb585a60e24871
|
3 |
+
size 88057
|
moon-lander/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:86b415d8a5f13fc04f23ce6333b4eed24b43a23590d6f16639c808604219b73c
|
3 |
+
size 43329
|
moon-lander/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
moon-lander/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023
|
2 |
+
- Python: 3.10.11
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (170 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 265.63216473158604, "std_reward": 24.05006121702237, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-05-31T22:49:26.074418"}
|