{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fba1cd2af40>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1685571669384132393, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": null, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVOAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHI3Aqqfe1uMAWyUS/WMAXSUR0CVImuxbB42dX2UKGgGR0BwYWJAMUh3aAdNOQFoCEdAlSN118stkHV9lChoBkdAcwSzFMqSYGgHS+VoCEdAlSW6g2606nV9lChoBkdAcR+EE1VHWmgHTRwBaAhHQJUmOEal1r91fZQoaAZHQHErzFqBVdZoB01CAWgIR0CVJnxLkCFLdX2UKGgGR0BwamfBeokzaAdL9GgIR0CVJxgAIY3vdX2UKGgGR0BxScU47zTXaAdL42gIR0CVJ5GB4D9wdX2UKGgGR0BvfPdsSCe3aAdNEQFoCEdAlTrRVQyhz3V9lChoBkdAcdyG5MDfWWgHTRUCaAhHQJU7KteUpux1fZQoaAZHQHDpQ0bcXWRoB00jAWgIR0CVOzzdDYywdX2UKGgGR0BvTEWM0gr6aAdNNgFoCEdAlTyB9gF5fXV9lChoBkdAcBmNZeRgZ2gHTUgBaAhHQJU+CZiNKiB1fZQoaAZHQHEDdwWFev9oB00mAWgIR0CVPhE1EVnFdX2UKGgGR0BwjwC1Z1V6aAdNZgFoCEdAlUDalLvkR3V9lChoBkdAcGAZ6Uqx1WgHTXABaAhHQJVBy6GxlhB1fZQoaAZHQHKjrlvIfbNoB03hAmgIR0CVQumixmkFdX2UKGgGR0Bw6iFwkxATaAdNNAFoCEdAlULomXw9aHV9lChoBkdAcpBHSF49o2gHTSQBaAhHQJVDCDWbw0B1fZQoaAZHQHFp09dNWU9oB0v8aAhHQJVD5d2PkrB1fZQoaAZHQHFJZdSl3yJoB001AWgIR0CVRBva11GLdX2UKGgGR0BwuZ0aIeo2aAdNagFoCEdAlUSIRRMviHV9lChoBkdAbaZKujh1kmgHTSIBaAhHQJVFoa6z3RJ1fZQoaAZHQHMp8Y64lQdoB01zAWgIR0CVSHOymhugdX2UKGgGR0BxxriGWUr1aAdNIAFoCEdAlUi5YxL0z3V9lChoBkdAcA4OKwY+CGgHTSQBaAhHQJVI23EyckN1fZQoaAZHQHDVuCbtqpNoB02uAWgIR0CVTF9ycTakdX2UKGgGR0BxuMk0Jng6aAdNCQFoCEdAlUyn1nM+vHV9lChoBkdAcFlIK+i8F2gHTR8BaAhHQJVOs6U7jkx1fZQoaAZHQHHWJ8a4tpVoB00pAWgIR0CVT1yO7xusdX2UKGgGR0ByPnt4RmK7aAdN3AJoCEdAlVDOvQnhKnV9lChoBkdAb1KACnxaxGgHTaICaAhHQJVRSHvc8DB1fZQoaAZHQG0oHb7CSA9oB013AWgIR0CVUYjDsMRZdX2UKGgGR0Bydjt/nW8RaAdNhQFoCEdAlVHy5RTCL3V9lChoBkdAbw/RwZOzp2gHS+hoCEdAlVIijDbaiHV9lChoBkdAcWCQ/5ckdGgHTZsDaAhHQJVSZceKba11fZQoaAZHQHCy1EmY0EZoB0v8aAhHQJVSjXUYsNF1fZQoaAZHQG9O/QBxPwdoB034AWgIR0CVVCGeMAFQdX2UKGgGR0Bwgej8DSw4aAdNoAFoCEdAlVXla0QbuXV9lChoBkdAcaD1uivgWWgHTRwCaAhHQJVWzlQuVX51fZQoaAZHQG/+b04BFNNoB00JAWgIR0CVV0ALiMo+dX2UKGgGR0BwEAHTqjagaAdNdwFoCEdAlVgDfrKNhnV9lChoBkdAbmIAKfFrEmgHTfMBaAhHQJVYFF5OafB1fZQoaAZHQHDOOnl4keJoB00ZAWgIR0CVWDdRR/EwdX2UKGgGR0ByPGGYa5wwaAdNFgFoCEdAlVnmvjfelHV9lChoBkdAcD0zkZJkG2gHTR4BaAhHQJVa2x+rlvJ1fZQoaAZHQHAlWgzxgApoB0v3aAhHQJVbB+F10T11fZQoaAZHQHB/ar/82rJoB00eAWgIR0CVXQkMCtA+dX2UKGgGR0BsT6N0eU6gaAdNIwFoCEdAlV7LQTmGNHV9lChoBkdAcEfqqOtGNWgHTTIBaAhHQJVfTpRoAXF1fZQoaAZHQHEvCQo1DShoB01LAWgIR0CVX+FBppN9dX2UKGgGR0BxREI/qxC6aAdNDgFoCEdAlWAQ6dUbUHV9lChoBkdAcdzLMLWqcWgHTYsBaAhHQJVhjYukDZF1fZQoaAZHQG/QtcfNiYtoB00gAWgIR0CVYqlrdnCgdX2UKGgGR0Bwlyk/KQq7aAdNhgFoCEdAlWLd3KSxJXV9lChoBkdAb7yjMV1wHmgHTSABaAhHQJV03LKV6eJ1fZQoaAZHQHDouCK77KtoB00SAWgIR0CVdPz7MxGldX2UKGgGR0BwJsOEug6EaAdNNAFoCEdAlXUmwNb1RXV9lChoBkdAcx87pmmLtWgHTSsBaAhHQJV1rgQ6IWR1fZQoaAZHQHMe4xUNrj5oB02HAWgIR0CVeLX2ugYhdX2UKGgGR0Bt5uYQarFPaAdNZgFoCEdAlXkweV9nb3V9lChoBkdAchhRwZOzp2gHTSYBaAhHQJV5h9LHuJF1fZQoaAZHQHEoEAPuogpoB0vxaAhHQJV5xYwIt191fZQoaAZHQG/7hmXgLqloB00dAWgIR0CVey7DVH4HdX2UKGgGR0BwtecmShalaAdNTQFoCEdAlXwvkNnXd3V9lChoBkdAbuRiuMdcS2gHTTEBaAhHQJV9azhP0qZ1fZQoaAZHQHBlv7WNFSdoB00VAWgIR0CVfo1DBuXNdX2UKGgGR0By7vPmgam5aAdN2wFoCEdAlX6dPUKArnV9lChoBkdAcFytMfzSTmgHTeEBaAhHQJV++kfs/pt1fZQoaAZHQHNid2gWac9oB01QAWgIR0CVf5FLnLaFdX2UKGgGR0Bx2PVe8f3faAdNTAFoCEdAlX+R/y5I6XV9lChoBkdAbFxGKAJ9iWgHTVsBaAhHQJWBA1Gb1AZ1fZQoaAZHQHC+wLE1l5JoB010AWgIR0CVghBInSfEdX2UKGgGR0Bx4peHBUJfaAdNAgFoCEdAlYJ+/UONHnV9lChoBkdAcyokleF+NWgHS91oCEdAlYMWsq8UVXV9lChoBkdAcGUTsY2sJmgHTZABaAhHQJWDjmjj7yh1fZQoaAZHQHF+XZGrjo9oB00zAWgIR0CVg51kDp1SdX2UKGgGR0BxVZKDkELZaAdNLwJoCEdAlYRIXwb2lHV9lChoBkdAcYzVYISlFmgHTTkBaAhHQJWEYlSjxkN1fZQoaAZHQHD+rlV94NZoB00+AWgIR0CVhLHeJpFkdX2UKGgGR0ByNsBo24usaAdNEQFoCEdAlYUwW3z+WHV9lChoBkdAcSnRPGhmG2gHTWIBaAhHQJWIqasp5NZ1fZQoaAZHQHFOMTakAPxoB00/AWgIR0CViW/5tWMkdX2UKGgGR0BypFFw1ivxaAdNSwFoCEdAlYngOz6acHV9lChoBkdAcosvh60IC2gHTXIBaAhHQJWKUIa99MN1fZQoaAZHQHKawDNhVlxoB013AWgIR0CVitP0Zm7KdX2UKGgGR0BxjstnPE88aAdNGAFoCEdAlYs5rDZUUHV9lChoBkdAcLxjI7vG62gHTRcBaAhHQJWLynvUjLV1fZQoaAZHQGxMLe67NB5oB02hAWgIR0CVi8tgKF7EdX2UKGgGR0Bw4Yk+otL+aAdNVAFoCEdAlYynYQJ5V3V9lChoBkdAb+ja3Zwn6WgHTXQBaAhHQJWMrww0wal1fZQoaAZHQHGihs2vStxoB00sAWgIR0CVjbW5H3DfdX2UKGgGR0BPpxNyo4uLaAdLvWgIR0CVjvm1IAfddX2UKGgGR0Bxd/vWpZOjaAdNVQFoCEdAlY/S5VfeDXV9lChoBkdAco9eOGTLXGgHTW8BaAhHQJWR0y57PY51fZQoaAZHQHHst+PRzBBoB00EAWgIR0CVkuOObRWtdX2UKGgGR0Bxd8lAu7HyaAdL+mgIR0CVkvZgXuVpdX2UKGgGR0Bx7dk6Lfk4aAdN1QFoCEdAlZOCXt0FKXV9lChoBkdAbe5NEgGKRGgHTSkBaAhHQJWVhTfixV11fZQoaAZHQG9pz8gpz91oB00RAWgIR0CVloXPZ7HAdX2UKGgGR0BuFPPmgam5aAdNEwFoCEdAlZgTwDvE0nVlLg=="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWV/QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}