mcanoglu commited on
Commit
52e694e
·
verified ·
1 Parent(s): 0c343de

End of training

Browse files
Files changed (1) hide show
  1. README.md +69 -0
README.md ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: bsd-3-clause
3
+ base_model: Salesforce/codet5p-220m
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - accuracy
8
+ - f1
9
+ - precision
10
+ - recall
11
+ model-index:
12
+ - name: Salesforce-codet5p-220m-finetuned-defect-detection
13
+ results: []
14
+ ---
15
+
16
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
17
+ should probably proofread and complete it, then remove this comment. -->
18
+
19
+ # Salesforce-codet5p-220m-finetuned-defect-detection
20
+
21
+ This model is a fine-tuned version of [Salesforce/codet5p-220m](https://huggingface.co/Salesforce/codet5p-220m) on an unknown dataset.
22
+ It achieves the following results on the evaluation set:
23
+ - Loss: 0.5107
24
+ - Accuracy: 0.7108
25
+ - F1: 0.7079
26
+ - Precision: 0.6987
27
+ - Recall: 0.7174
28
+
29
+ ## Model description
30
+
31
+ More information needed
32
+
33
+ ## Intended uses & limitations
34
+
35
+ More information needed
36
+
37
+ ## Training and evaluation data
38
+
39
+ More information needed
40
+
41
+ ## Training procedure
42
+
43
+ ### Training hyperparameters
44
+
45
+ The following hyperparameters were used during training:
46
+ - learning_rate: 2e-05
47
+ - train_batch_size: 32
48
+ - eval_batch_size: 8
49
+ - seed: 4711
50
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
51
+ - lr_scheduler_type: linear
52
+ - num_epochs: 3
53
+ - mixed_precision_training: Native AMP
54
+
55
+ ### Training results
56
+
57
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
58
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
59
+ | 0.6934 | 1.0 | 997 | 0.5894 | 0.6632 | 0.5788 | 0.7435 | 0.4738 |
60
+ | 0.572 | 2.0 | 1994 | 0.5250 | 0.7063 | 0.7057 | 0.6911 | 0.7210 |
61
+ | 0.4947 | 3.0 | 2991 | 0.5107 | 0.7108 | 0.7079 | 0.6987 | 0.7174 |
62
+
63
+
64
+ ### Framework versions
65
+
66
+ - Transformers 4.36.2
67
+ - Pytorch 2.1.2+cu121
68
+ - Datasets 2.16.1
69
+ - Tokenizers 0.15.0