--- license: apache-2.0 base_model: bert-base-cased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: [] --- # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2040 - Precision: 0.8009 - Recall: 0.8341 - F1: 0.8171 - Accuracy: 0.9414 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1983 | 1.0 | 16471 | 0.1868 | 0.7919 | 0.8142 | 0.8029 | 0.9382 | | 0.1527 | 2.0 | 32942 | 0.1889 | 0.7951 | 0.8344 | 0.8143 | 0.9406 | | 0.1142 | 3.0 | 49413 | 0.2040 | 0.8009 | 0.8341 | 0.8171 | 0.9414 | ### Framework versions - Transformers 4.37.0 - Pytorch 2.1.2+cu118 - Datasets 2.16.1 - Tokenizers 0.15.1