mdroth commited on
Commit
5eafac1
1 Parent(s): 6b13ac5

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +14 -14
README.md CHANGED
@@ -22,16 +22,16 @@ model-index:
22
  metrics:
23
  - name: Precision
24
  type: precision
25
- value: 0.9255213505461768
26
  - name: Recall
27
  type: recall
28
- value: 0.9383599955252265
29
  - name: F1
30
  type: f1
31
- value: 0.931896455949339
32
  - name: Accuracy
33
  type: accuracy
34
- value: 0.9840977330134876
35
  ---
36
 
37
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -41,11 +41,11 @@ should probably proofread and complete it, then remove this comment. -->
41
 
42
  This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset.
43
  It achieves the following results on the evaluation set:
44
- - Loss: 0.0582
45
- - Precision: 0.9255
46
- - Recall: 0.9384
47
- - F1: 0.9319
48
- - Accuracy: 0.9841
49
 
50
  ## Model description
51
 
@@ -76,14 +76,14 @@ The following hyperparameters were used during training:
76
 
77
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
78
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
79
- | 0.2429 | 1.0 | 878 | 0.0697 | 0.9094 | 0.9182 | 0.9138 | 0.9805 |
80
- | 0.0555 | 2.0 | 1756 | 0.0581 | 0.9206 | 0.9351 | 0.9278 | 0.9833 |
81
- | 0.0296 | 3.0 | 2634 | 0.0582 | 0.9255 | 0.9384 | 0.9319 | 0.9841 |
82
 
83
 
84
  ### Framework versions
85
 
86
- - Transformers 4.18.0
87
- - Pytorch 1.10.0+cu111
88
  - Datasets 2.0.0
89
  - Tokenizers 0.11.6
 
22
  metrics:
23
  - name: Precision
24
  type: precision
25
+ value: 0.9233990962195525
26
  - name: Recall
27
  type: recall
28
+ value: 0.9372413021590782
29
  - name: F1
30
  type: f1
31
+ value: 0.9302687097490562
32
  - name: Accuracy
33
  type: accuracy
34
+ value: 0.9833193003637981
35
  ---
36
 
37
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
41
 
42
  This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset.
43
  It achieves the following results on the evaluation set:
44
+ - Loss: 0.0619
45
+ - Precision: 0.9234
46
+ - Recall: 0.9372
47
+ - F1: 0.9303
48
+ - Accuracy: 0.9833
49
 
50
  ## Model description
51
 
 
76
 
77
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
78
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
79
+ | 0.2421 | 1.0 | 878 | 0.0750 | 0.9086 | 0.9178 | 0.9132 | 0.9797 |
80
+ | 0.056 | 2.0 | 1756 | 0.0601 | 0.9213 | 0.9363 | 0.9288 | 0.9828 |
81
+ | 0.0319 | 3.0 | 2634 | 0.0619 | 0.9234 | 0.9372 | 0.9303 | 0.9833 |
82
 
83
 
84
  ### Framework versions
85
 
86
+ - Transformers 4.17.0
87
+ - Pytorch 1.9.0
88
  - Datasets 2.0.0
89
  - Tokenizers 0.11.6