lcampillos
commited on
Commit
•
1002b67
1
Parent(s):
59fad7b
Update README.md
Browse files
README.md
CHANGED
@@ -39,7 +39,7 @@ The model achieves the following results on the test set (when trained with the
|
|
39 |
|
40 |
This model adapts the pre-trained model [bsc-bio-ehr-es](https://huggingface.co/PlanTL-GOB-ES/bsc-bio-ehr-es), presented in [Pio Carriño et al. (2022)](https://aclanthology.org/2022.bionlp-1.19/).
|
41 |
It is fine-tuned to conduct temporal named entity recognition on Spanish texts about clinical trials.
|
42 |
-
The model is fine-tuned on the [CT-EBM-
|
43 |
|
44 |
## Intended uses & limitations
|
45 |
|
@@ -67,7 +67,7 @@ It is a collection of 1200 texts about clinical trials studies and clinical tria
|
|
67 |
- 500 abstracts from journals published under a Creative Commons license, e.g. available in PubMed or the Scientific Electronic Library Online (SciELO)
|
68 |
- 700 clinical trials announcements published in the European Clinical Trials Register and Repositorio Español de Estudios Clínicos
|
69 |
|
70 |
-
If you use the CT-EBM-
|
71 |
|
72 |
```
|
73 |
@article{campillosetal-midm2021,
|
@@ -95,25 +95,26 @@ The following hyperparameters were used during training:
|
|
95 |
- seed: we used different seeds for 5 evaluation rounds, and uploaded the model with the best results
|
96 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
97 |
- lr_scheduler_type: linear
|
98 |
-
- num_epochs:
|
99 |
|
100 |
|
101 |
### Training results (test set; average and standard deviation of 5 rounds with different seeds)
|
102 |
|
103 |
| Precision | Recall | F1 | Accuracy |
|
104 |
|:--------------:|:--------------:|:--------------:|:--------------:|
|
105 |
-
| 0.
|
106 |
|
107 |
|
108 |
-
**Results per class (test set; average and standard deviation of 5 rounds with different seeds)**
|
109 |
|
|
|
110 |
| Class | Precision | Recall | F1 | Support |
|
111 |
|:---------:|:--------------:|:--------------:|:--------------:|:---------:|
|
112 |
-
| Age | 0.
|
113 |
-
| Date | 0.
|
114 |
-
| Duration | 0.
|
115 |
-
| Frequency | 0.
|
116 |
-
| Time | 0.
|
117 |
|
118 |
|
119 |
### Framework versions
|
|
|
39 |
|
40 |
This model adapts the pre-trained model [bsc-bio-ehr-es](https://huggingface.co/PlanTL-GOB-ES/bsc-bio-ehr-es), presented in [Pio Carriño et al. (2022)](https://aclanthology.org/2022.bionlp-1.19/).
|
41 |
It is fine-tuned to conduct temporal named entity recognition on Spanish texts about clinical trials.
|
42 |
+
The model is fine-tuned on the [CT-EBM-ES corpus (Campillos-Llanos et al. 2021)](https://bmcmedinformdecismak.biomedcentral.com/articles/10.1186/s12911-021-01395-z).
|
43 |
|
44 |
## Intended uses & limitations
|
45 |
|
|
|
67 |
- 500 abstracts from journals published under a Creative Commons license, e.g. available in PubMed or the Scientific Electronic Library Online (SciELO)
|
68 |
- 700 clinical trials announcements published in the European Clinical Trials Register and Repositorio Español de Estudios Clínicos
|
69 |
|
70 |
+
If you use the CT-EBM-ES resource, please, cite as follows:
|
71 |
|
72 |
```
|
73 |
@article{campillosetal-midm2021,
|
|
|
95 |
- seed: we used different seeds for 5 evaluation rounds, and uploaded the model with the best results
|
96 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
97 |
- lr_scheduler_type: linear
|
98 |
+
- num_epochs: 10
|
99 |
|
100 |
|
101 |
### Training results (test set; average and standard deviation of 5 rounds with different seeds)
|
102 |
|
103 |
| Precision | Recall | F1 | Accuracy |
|
104 |
|:--------------:|:--------------:|:--------------:|:--------------:|
|
105 |
+
| 0.884 (±0.011) | 0.893 (±0.010) | 0.888 (±0.009) | 0.995 (±0.001) |
|
106 |
|
107 |
|
108 |
+
** Results per class (test set; average and standard deviation of 5 rounds with different seeds) **
|
109 |
|
110 |
+
|:---------:|:--------------:|:--------------:|:--------------:|:---------:|
|
111 |
| Class | Precision | Recall | F1 | Support |
|
112 |
|:---------:|:--------------:|:--------------:|:--------------:|:---------:|
|
113 |
+
| Age | 0.905 (±0.016) | 0.920 (±0.011) | 0.912 (±0.013) | 372 |
|
114 |
+
| Date | 0.931 (±0.019) | 0.891 (±0.009) | 0.910 (±0.004) | 412 |
|
115 |
+
| Duration | 0.895 (±0.012) | 0.890 (±0.017) | 0.893 (±0.013) | 622 |
|
116 |
+
| Frequency | 0.725 (±0.047) | 0.879 (±0.006) | 0.794 (±0.029) | 73 |
|
117 |
+
| Time | 0.733 (±0.026) | 0.834 (±0.027) | 0.780 (±0.017) | 113 |
|
118 |
|
119 |
|
120 |
### Framework versions
|