lcampillos commited on
Commit
1002b67
1 Parent(s): 59fad7b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +11 -10
README.md CHANGED
@@ -39,7 +39,7 @@ The model achieves the following results on the test set (when trained with the
39
 
40
  This model adapts the pre-trained model [bsc-bio-ehr-es](https://huggingface.co/PlanTL-GOB-ES/bsc-bio-ehr-es), presented in [Pio Carriño et al. (2022)](https://aclanthology.org/2022.bionlp-1.19/).
41
  It is fine-tuned to conduct temporal named entity recognition on Spanish texts about clinical trials.
42
- The model is fine-tuned on the [CT-EBM-SP corpus (Campillos-Llanos et al. 2021)](https://bmcmedinformdecismak.biomedcentral.com/articles/10.1186/s12911-021-01395-z).
43
 
44
  ## Intended uses & limitations
45
 
@@ -67,7 +67,7 @@ It is a collection of 1200 texts about clinical trials studies and clinical tria
67
  - 500 abstracts from journals published under a Creative Commons license, e.g. available in PubMed or the Scientific Electronic Library Online (SciELO)
68
  - 700 clinical trials announcements published in the European Clinical Trials Register and Repositorio Español de Estudios Clínicos
69
 
70
- If you use the CT-EBM-SP resource, please, cite as follows:
71
 
72
  ```
73
  @article{campillosetal-midm2021,
@@ -95,25 +95,26 @@ The following hyperparameters were used during training:
95
  - seed: we used different seeds for 5 evaluation rounds, and uploaded the model with the best results
96
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
97
  - lr_scheduler_type: linear
98
- - num_epochs: 8
99
 
100
 
101
  ### Training results (test set; average and standard deviation of 5 rounds with different seeds)
102
 
103
  | Precision | Recall | F1 | Accuracy |
104
  |:--------------:|:--------------:|:--------------:|:--------------:|
105
- | 0.975 (±0.001) | 0.984 (±0.001) | 0.980 (±0.001) | 0.999 (±0.001) |
106
 
107
 
108
- **Results per class (test set; average and standard deviation of 5 rounds with different seeds)**
109
 
 
110
  | Class | Precision | Recall | F1 | Support |
111
  |:---------:|:--------------:|:--------------:|:--------------:|:---------:|
112
- | Age | 0.974 (±0.002) | 0.979 (±0.001) | 0.977 (±0.001) | 634 |
113
- | Date | 0.983 (±0.006) | 0.981 (±0.003) | 0.982 (±0.003) | 647 |
114
- | Duration | 0.978 (±0.002) | 0.983 (±0.001) | 0.981 (±0.001) | 1164 |
115
- | Frequency | 0.971 (±0.004) | 0.999 (±0.002) | 0.985 (±0.003) | 292 |
116
- | Time | 0.950 (±0.009) | 0.991 (±0.005) | 0.970 (±0.006) | 228 |
117
 
118
 
119
  ### Framework versions
 
39
 
40
  This model adapts the pre-trained model [bsc-bio-ehr-es](https://huggingface.co/PlanTL-GOB-ES/bsc-bio-ehr-es), presented in [Pio Carriño et al. (2022)](https://aclanthology.org/2022.bionlp-1.19/).
41
  It is fine-tuned to conduct temporal named entity recognition on Spanish texts about clinical trials.
42
+ The model is fine-tuned on the [CT-EBM-ES corpus (Campillos-Llanos et al. 2021)](https://bmcmedinformdecismak.biomedcentral.com/articles/10.1186/s12911-021-01395-z).
43
 
44
  ## Intended uses & limitations
45
 
 
67
  - 500 abstracts from journals published under a Creative Commons license, e.g. available in PubMed or the Scientific Electronic Library Online (SciELO)
68
  - 700 clinical trials announcements published in the European Clinical Trials Register and Repositorio Español de Estudios Clínicos
69
 
70
+ If you use the CT-EBM-ES resource, please, cite as follows:
71
 
72
  ```
73
  @article{campillosetal-midm2021,
 
95
  - seed: we used different seeds for 5 evaluation rounds, and uploaded the model with the best results
96
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
97
  - lr_scheduler_type: linear
98
+ - num_epochs: 10
99
 
100
 
101
  ### Training results (test set; average and standard deviation of 5 rounds with different seeds)
102
 
103
  | Precision | Recall | F1 | Accuracy |
104
  |:--------------:|:--------------:|:--------------:|:--------------:|
105
+ | 0.884 (±0.011) | 0.893 (±0.010) | 0.888 (±0.009) | 0.995 (±0.001) |
106
 
107
 
108
+ ** Results per class (test set; average and standard deviation of 5 rounds with different seeds) **
109
 
110
+ |:---------:|:--------------:|:--------------:|:--------------:|:---------:|
111
  | Class | Precision | Recall | F1 | Support |
112
  |:---------:|:--------------:|:--------------:|:--------------:|:---------:|
113
+ | Age | 0.905 (±0.016) | 0.920 (±0.011) | 0.912 (±0.013) | 372 |
114
+ | Date | 0.931 (±0.019) | 0.891 (±0.009) | 0.910 (±0.004) | 412 |
115
+ | Duration | 0.895 (±0.012) | 0.890 (±0.017) | 0.893 (±0.013) | 622 |
116
+ | Frequency | 0.725 (±0.047) | 0.879 (±0.006) | 0.794 (±0.029) | 73 |
117
+ | Time | 0.733 (±0.026) | 0.834 (±0.027) | 0.780 (±0.017) | 113 |
118
 
119
 
120
  ### Framework versions