--- library_name: peft base_model: mistralai/Mistral-7B-v0.1 --- ### Model Details ### Model Description This is quantized model of mistral-7B. - **Developed by:** Rais Kazi ### Model Sources [optional] https://github.com/meetrais/LLM-Fine-Tuning/blob/main/finetune_mistral_7b.py https://github.com/meetrais/LLM-Fine-Tuning/blob/main/call_finetune_mistral_7b.py ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: QuantizationMethod.BITS_AND_BYTES - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.6.2.dev0 ## Code to call this mnodel import torch from peft import PeftModel, PeftConfig from transformers import AutoModelForCausalLM, AutoTokenizer from transformers import BitsAndBytesConfig peft_model_id = "meetrais/finetuned_mistral_7b" config = PeftConfig.from_pretrained(peft_model_id) bnb_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.bfloat16 ) model = AutoModelForCausalLM.from_pretrained(peft_model_id, quantization_config=bnb_config, device_map='auto') tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path) if tokenizer.pad_token is None: tokenizer.add_special_tokens({'pad_token': '[PAD]'}) text = "Capital of USA is" device = "cuda:0" inputs = tokenizer(text, return_tensors="pt").to(device) outputs = model.generate(**inputs, pad_token_id= tokenizer.eos_token_id, max_new_tokens=20) print(tokenizer.decode(outputs[0], skip_special_tokens=True))