Upload 13 files
Browse files- README.md +1 -5
- config.json +1 -1
- coptic_english_pipeline.py +151 -0
README.md
CHANGED
@@ -1,7 +1,3 @@
|
|
1 |
---
|
2 |
-
license:
|
3 |
-
language:
|
4 |
-
- en
|
5 |
-
- cop
|
6 |
---
|
7 |
-
|
|
|
1 |
---
|
2 |
+
license: mit
|
|
|
|
|
|
|
3 |
---
|
|
config.json
CHANGED
@@ -23,7 +23,7 @@
|
|
23 |
"pt": "megalaa/mul-cop-en-norm-group-greekified"
|
24 |
}
|
25 |
},
|
26 |
-
"impl": "
|
27 |
"pt": [
|
28 |
"AutoModelForSeq2SeqLM"
|
29 |
],
|
|
|
23 |
"pt": "megalaa/mul-cop-en-norm-group-greekified"
|
24 |
}
|
25 |
},
|
26 |
+
"impl": "coptic_english_pipeline.CopticEnglishPipeline",
|
27 |
"pt": [
|
28 |
"AutoModelForSeq2SeqLM"
|
29 |
],
|
coptic_english_pipeline.py
ADDED
@@ -0,0 +1,151 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict
|
2 |
+
import numpy as np
|
3 |
+
import torch
|
4 |
+
from transformers import Pipeline
|
5 |
+
from transformers.utils import ModelOutput
|
6 |
+
from transformers import pipeline
|
7 |
+
from transformers.pipelines import PIPELINE_REGISTRY
|
8 |
+
from transformers import AutoModelForSeq2SeqLM
|
9 |
+
from huggingface_hub import Repository
|
10 |
+
|
11 |
+
SAHIDIC_TAG = "з"
|
12 |
+
BOHAIRIC_TAG = "б"
|
13 |
+
|
14 |
+
from transformers import GenerationConfig
|
15 |
+
|
16 |
+
GENERATION_CONFIG = GenerationConfig(
|
17 |
+
max_length=20,
|
18 |
+
max_new_tokens=128,
|
19 |
+
min_new_tokens=1,
|
20 |
+
min_length=0,
|
21 |
+
early_stopping=True,
|
22 |
+
do_sample=True,
|
23 |
+
num_beams=5,
|
24 |
+
num_beam_groups=1,
|
25 |
+
top_k=50,
|
26 |
+
top_p=0.95,
|
27 |
+
temperature=1.0,
|
28 |
+
diversity_penalty=0.0,
|
29 |
+
output_scores=True,
|
30 |
+
return_dict_in_generate=True,
|
31 |
+
)
|
32 |
+
|
33 |
+
|
34 |
+
class CopticEnglishPipeline(Pipeline):
|
35 |
+
def _sanitize_parameters(self, **kwargs):
|
36 |
+
preprocess_kwargs = {}
|
37 |
+
if "from_bohairic" in kwargs and kwargs["from_bohairic"]:
|
38 |
+
preprocess_kwargs["from_bohairic"] = True
|
39 |
+
forward_kwargs = {}
|
40 |
+
if "output_confidence" in kwargs and kwargs["output_confidence"]:
|
41 |
+
forward_kwargs["output_confidence"] = True
|
42 |
+
|
43 |
+
return preprocess_kwargs, forward_kwargs, {}
|
44 |
+
|
45 |
+
def preprocess(self, text, from_bohairic=False):
|
46 |
+
text = greekify(text.lower())
|
47 |
+
|
48 |
+
if from_bohairic:
|
49 |
+
text = f"{BOHAIRIC_TAG} {text}"
|
50 |
+
else:
|
51 |
+
text = f"{SAHIDIC_TAG} {text}"
|
52 |
+
|
53 |
+
return self.tokenizer.encode(text, return_tensors="pt")
|
54 |
+
|
55 |
+
def _forward(self, input_tensors, output_confidence=False) -> ModelOutput:
|
56 |
+
outputs = self.model.generate(
|
57 |
+
input_tensors[:, : self.tokenizer.model_max_length],
|
58 |
+
generation_config=GENERATION_CONFIG,
|
59 |
+
)
|
60 |
+
|
61 |
+
translated_text = self.tokenizer.decode(
|
62 |
+
outputs.sequences[0], skip_special_tokens=True
|
63 |
+
)
|
64 |
+
|
65 |
+
if output_confidence:
|
66 |
+
scores = outputs.scores
|
67 |
+
confidences = [
|
68 |
+
torch.softmax(score, dim=-1).max().item() for score in scores
|
69 |
+
]
|
70 |
+
num_words = len(translated_text.split())
|
71 |
+
# scale the predicition probability by the number of words in the sentence
|
72 |
+
scaled_probability = np.exp(sum(np.log(confidences)) / num_words)
|
73 |
+
return translated_text, scaled_probability
|
74 |
+
|
75 |
+
return translated_text, None
|
76 |
+
|
77 |
+
def postprocess(self, outputs):
|
78 |
+
text, confidence = outputs
|
79 |
+
if confidence is None:
|
80 |
+
return {
|
81 |
+
"translation": text,
|
82 |
+
}
|
83 |
+
return {
|
84 |
+
"translation": text,
|
85 |
+
"confidence": confidence,
|
86 |
+
}
|
87 |
+
|
88 |
+
|
89 |
+
COPTIC_TO_GREEK = {
|
90 |
+
"ⲁ": "α",
|
91 |
+
"ⲃ": "β",
|
92 |
+
"ⲅ": "γ",
|
93 |
+
"ⲇ": "δ",
|
94 |
+
"ⲉ": "ε",
|
95 |
+
"ⲋ": "ϛ",
|
96 |
+
"ⲍ": "ζ",
|
97 |
+
"ⲏ": "η",
|
98 |
+
"ⲑ": "θ",
|
99 |
+
"ⲓ": "ι",
|
100 |
+
"ⲕ": "κ",
|
101 |
+
"ⲗ": "λ",
|
102 |
+
"ⲙ": "μ",
|
103 |
+
"ⲛ": "ν",
|
104 |
+
"ⲝ": "ξ",
|
105 |
+
"ⲟ": "ο",
|
106 |
+
"ⲡ": "π",
|
107 |
+
"ⲣ": "ρ",
|
108 |
+
"ⲥ": "σ",
|
109 |
+
"ⲧ": "τ",
|
110 |
+
"ⲩ": "υ",
|
111 |
+
"ⲫ": "φ",
|
112 |
+
"ⲭ": "χ",
|
113 |
+
"ⲯ": "ψ",
|
114 |
+
"ⲱ": "ω",
|
115 |
+
"ϣ": "s",
|
116 |
+
"ϥ": "f",
|
117 |
+
"ϧ": "k",
|
118 |
+
"ϩ": "h",
|
119 |
+
"ϫ": "j",
|
120 |
+
"ϭ": "c",
|
121 |
+
"ϯ": "t",
|
122 |
+
}
|
123 |
+
|
124 |
+
|
125 |
+
def greekify(coptic_text):
|
126 |
+
chars = []
|
127 |
+
for c in coptic_text:
|
128 |
+
l_c = c.lower()
|
129 |
+
chars.append(COPTIC_TO_GREEK.get(l_c, l_c))
|
130 |
+
return "".join(chars)
|
131 |
+
|
132 |
+
|
133 |
+
if __name__ == "__main__":
|
134 |
+
PIPELINE_REGISTRY.register_pipeline(
|
135 |
+
"coptic-english-translation",
|
136 |
+
pipeline_class=CopticEnglishPipeline,
|
137 |
+
pt_model=AutoModelForSeq2SeqLM,
|
138 |
+
default={"pt": "megalaa/mul-cop-en-norm-group-greekified"},
|
139 |
+
type="text",
|
140 |
+
)
|
141 |
+
|
142 |
+
classifier = pipeline(
|
143 |
+
"coptic-english-translation", model="megalaa/mul-cop-en-norm-group-greekified"
|
144 |
+
)
|
145 |
+
print(classifier("ⲛⲧⲟϥ ⲡⲉ ⲓⲏⲥⲟⲩⲥ ⲡⲉⲭⲣⲓⲥⲧⲟⲥ", from_bohairic=False, output_confidence=True))
|
146 |
+
|
147 |
+
repo = Repository(
|
148 |
+
"cop-eng-translation",
|
149 |
+
clone_from="megalaa/mul-cop-en-norm-group-greekified",
|
150 |
+
)
|
151 |
+
classifier.save_pretrained("cop-eng-translation")
|