meganstodel commited on
Commit
a193602
·
1 Parent(s): 4abf678

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1024.21 +/- 216.27
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c54b7cc22ff7c312d6f8c15f362385dd4de4d2dfc5dd3362353c4b9d11c05bd4
3
+ size 129260
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f8cff8eb1f0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f8cff8eb280>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f8cff8eb310>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f8cff8eb3a0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f8cff8eb430>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f8cff8eb4c0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f8cff8eb550>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f8cff8eb5e0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f8cff8eb670>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f8cff8eb700>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f8cff8eb790>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f8cff8eb820>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f8cff8ea120>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 2000000,
63
+ "_total_timesteps": 2000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1676564353000551648,
68
+ "learning_rate": 0.00096,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAFfir78CdZK9PQwqP86Ber9FdLA+2tWBPUghgj3U2Hk/AipOP0uqpjyWN2q/DfURvZI2vb93bcg7WO6TPqmUMjoiQY0/Ryu3vBXpjj4xY5W71cQlvykBPT0KPUe/luG5O4F9OD8aQcE+2G8nP696Wz+uW7G/ePmuvliNDD8GxYq/B6TbPkX/gT1/EYc9lE9xP1zCRj/69qq6UvhpvztImbxFKr2/9gKKN8CYnD7AXt88iM2SP7QvMLtFpZ8+r0jQPOGSJb+iK3o8Xu5GvxUNnbyBfTg/GkHBPthvJz+vels/eACzP8puOb/N5YE+QwekP6oSdj74Gyc//DNxv05jdb+xrRS+bDJgQJfbEkCP2I8+Z+S9Py0EH72cVi0/Si8NQLutj77tF4y/Ucqmv57tQz/ECya/rKQUPVdMwz+z1yfAgX04PxpBwT7Ybyc/gkyVv0I9g73KxTU/Mw0iP+GFSD/7Rdi/vvjlv5zmn70qvW0+/BYPPwopmLxq1Qu+dPKMvn/tpL9YCIa9+kHdvcw7cz8oIEg+20+KP3s3Dr70DIc/3E4lvxqhSzwfQdS9Zl4KQIF9OD8aQcE+HrTDv4JMlb+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADL9vU1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA/lPWvAAAAACqY9q/AAAAAOaGZD0AAAAA9+7sPwAAAABX67M9AAAAAOgs7z8AAAAAPmq1PQAAAAByIuq/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4H4pNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgIxjnLwAAAAAyEvrvwAAAABo9ag9AAAAAB369D8AAAAA6hHHvQAAAAA2WPc/AAAAADhr4L0AAAAAVXT0vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALD14zMAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAbf9c9AAAAANGB7b8AAAAAVRybPQAAAAAPDuE/AAAAAA1MVz0AAAAAIXTmPwAAAADrT8I8AAAAAHBG7b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD9Xa22AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAfvF+vQAAAACoAvy/AAAAANtT4b0AAAAA0KPiPwAAAAA2Q129AAAAAE6A7T8AAAAAjKT4PQAAAAAKiO2/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJGkppVS4vyMAWyUTegDjAF0lEdAqyH9p9JBgXV9lChoBkdAkeYLtu1nd2gHTegDaAhHQKskIjfNzKd1fZQoaAZHQI7u331zySVoB03oA2gIR0CrJ8FQl8gIdX2UKGgGR0CASVDl5nlGaAdN6ANoCEdAqyx2Cf6Gg3V9lChoBkdAhFgt9ph4MWgHTegDaAhHQKsubiuuA7R1fZQoaAZHQIiM1wJgLJFoB03oA2gIR0CrMZEZJkGzdX2UKGgGR0CMPnqIJqqPaAdN6ANoCEdAqzciCDmKZXV9lChoBkdAkSQSwbEP2GgHTegDaAhHQKs8Tbt7a7F1fZQoaAZHQJEBVZpztC1oB03oA2gIR0CrPgcYyfthdX2UKGgGR0CRniWnjyWiaAdN6ANoCEdAq0BtZHNHH3V9lChoBkdAil4t8ma6SWgHTegDaAhHQKtEOrYoRZl1fZQoaAZHQJCflChN/ONoB03oA2gIR0CrSOGs/6frdX2UKGgGR0CPZtpJPIn0aAdN6ANoCEdAq0qYm5UcXHV9lChoBkdAkaFnmig00mgHTegDaAhHQKtM8QJ5VwR1fZQoaAZHQJFq5yo4uK5oB03oA2gIR0CrUjodELH/dX2UKGgGR0CM4HsOXmeUaAdN6ANoCEdAq1i0L0BfbHV9lChoBkdAk5T+/5+H8GgHTegDaAhHQKtab114gRt1fZQoaAZHQJHrjf4yoGZoB03oA2gIR0CrXJ2ldkaudX2UKGgGR0CIRwLXL/0eaAdN6ANoCEdAq2A68tf5UXV9lChoBkdAktc/xQSBb2gHTegDaAhHQKtlABy0a611fZQoaAZHQJRWJ00WM0hoB03oA2gIR0CrZsDGDL8rdX2UKGgGR0CWtWuSfUWmaAdN6ANoCEdAq2jpwjt5U3V9lChoBkdAk9TnMEA5rGgHTegDaAhHQKttTV8Ti851fZQoaAZHQJQ2r/IbOu9oB03oA2gIR0CrdIW+oLofdX2UKGgGR0CK2txYq5LAaAdN6ANoCEdAq3aXkkrwv3V9lChoBkdAlv2QyAQQMGgHTegDaAhHQKt4vhJiAlR1fZQoaAZHQJjHMchkiEBoB03oA2gIR0CrfGmXXyy2dX2UKGgGR0CWTl78vVVhaAdN6ANoCEdAq4GF36hxpHV9lChoBkdAlUzhzBAOa2gHTegDaAhHQKuDPtY0VJt1fZQoaAZHQJUdRtbcGkhoB03oA2gIR0CrhWasQumKdX2UKGgGR0CYAE0163RYaAdN6ANoCEdAq4j84rBj4HV9lChoBkdAlwbrnHNorWgHTegDaAhHQKuP0Rr8BMl1fZQoaAZHQJOqWeyzHCJoB03oA2gIR0CrkoqiGnGbdX2UKGgGR0CB0HdWQwK0aAdN6ANoCEdAq5U7RfF72XV9lChoBkdAmOCGGh24eGgHTegDaAhHQKuY5WilBQh1fZQoaAZHQJRQHH3lCC1oB03oA2gIR0CrnaiemNzbdX2UKGgGR0CS8Qg8KXv6aAdN6ANoCEdAq590Cgbp/3V9lChoBkdAgKn9nTRYzWgHTegDaAhHQKuhoFmFrVR1fZQoaAZHQJN7DMQmNR5oB03oA2gIR0CrpTdSde6adX2UKGgGR0CUjGy0a6z3aAdN6ANoCEdAq6r8Bfa6BnV9lChoBkdAkThll9SdfGgHTegDaAhHQKutmb83uNR1fZQoaAZHQIQAuS6lLvloB03oA2gIR0CrsOhnJ1aGdX2UKGgGR0CONdwfhddFaAdN6ANoCEdAq7UJiTdLx3V9lChoBkdAkypg3o9s8GgHTegDaAhHQKu59D63y7R1fZQoaAZHQI13o+OfdyloB03oA2gIR0Cru9szEaVEdX2UKGgGR0CS37oduHeraAdN6ANoCEdAq74NwYLsr3V9lChoBkdAhed/zSThYWgHTegDaAhHQKvBt0wrUb11fZQoaAZHQJEYl0GNaQpoB03oA2gIR0CrxnzBqKxcdX2UKGgGR0CIurbmlqJuaAdN6ANoCEdAq8j6B7NSqHV9lChoBkdAlHca/Efkm2gHTegDaAhHQKvMLzI3irF1fZQoaAZHQJe4pugpSaVoB03oA2gIR0Cr0WyMUAT7dX2UKGgGR0CXFj0sOG0vaAdN6ANoCEdAq9YWuPmxMXV9lChoBkdAl25ui8FpwmgHTegDaAhHQKvX1J7sv7F1fZQoaAZHQIzdNmOEM9doB03oA2gIR0Cr2gIHC4z8dX2UKGgGR0CUMjMPz4DcaAdN6ANoCEdAq92ajUNKAnV9lChoBkdAlZQJjc2zfWgHTegDaAhHQKvicyhSLqF1fZQoaAZHQJc/skhRqGloB03oA2gIR0Cr5DaW5YozdX2UKGgGR0CVwUKneiztaAdN6ANoCEdAq+cBMWXTmXV9lChoBkdAmEZ9Pci4a2gHTegDaAhHQKvsZttygf51fZQoaAZHQJRaEG3WnTBoB03oA2gIR0Cr8024uscRdX2UKGgGR0CJbh6/qPfbaAdN6ANoCEdAq/XiAe7tiXV9lChoBkdAli0gJokAxWgHTegDaAhHQKv5mDTSb6R1fZQoaAZHQJb3H1TR6WxoB03oA2gIR0Cr/ZBGQSzxdX2UKGgGR0CUs1yad+XraAdN6ANoCEdArAJaV8kUsXV9lChoBkdAk3f0AT7EYWgHTegDaAhHQKwEbxYJVsF1fZQoaAZHQJTVw5uIhyNoB03oA2gIR0CsB5Imw7kodX2UKGgGR0CR96CHARChaAdN6ANoCEdArA0ca6z3RHV9lChoBkdAkZwwjyFwk2gHTegDaAhHQKwSOOtGNJh1fZQoaAZHQJZXKEf1YhdoB03oA2gIR0CsE/FDF6zFdX2UKGgGR0CUhKr2g398aAdN6ANoCEdArBYQzN2TxHV9lChoBkdAl+rRt1p0wWgHTegDaAhHQKwZsAH3UQV1fZQoaAZHQJWoshMajvdoB03oA2gIR0CsHmLqD9OzdX2UKGgGR0CQQGUedTYNaAdN6ANoCEdArCAmiBXjl3V9lChoBkdAkiRBjOLR8mgHTegDaAhHQKwiaRUWEbp1fZQoaAZHQJUxnWd3B55oB03oA2gIR0CsJ6C2+fyxdX2UKGgGR0CWzO1tO2y+aAdN6ANoCEdArC4DKifxt3V9lChoBkdAljB5j2BatGgHTegDaAhHQKwvxZg5R0l1fZQoaAZHQJUQB3MY/FBoB03oA2gIR0CsMePBSDRMdX2UKGgGR0CW8YYNAkcCaAdN6ANoCEdArDV3V3EAHXV9lChoBkdAmNNJW/8EV2gHTegDaAhHQKw6Qf8uSOl1fZQoaAZHQJcmlFd9lVdoB03oA2gIR0CsO/kcsDnvdX2UKGgGR0CZcIemNzbOaAdN6ANoCEdArD4fkq+ajXV9lChoBkdAlYMeP7vXsmgHTegDaAhHQKxCc+3Ytg91fZQoaAZHQJcKdMyrPt5oB03oA2gIR0CsSa5TIeYEdX2UKGgGR0CXi1MAmzBzaAdN6ANoCEdArEv5CF9KEnV9lChoBkdAln4zsyBTXWgHTegDaAhHQKxOFZZB9kV1fZQoaAZHQJWbn6guh9NoB03oA2gIR0CsUaIjGDL9dX2UKGgGR0CYK23m3fALaAdN6ANoCEdArFZmorFwUHV9lChoBkdAlyAbMHKOk2gHTegDaAhHQKxYJD5TIeZ1fZQoaAZHQJBosExIre9oB03oA2gIR0CsWleRHPNWdX2UKGgGR0CNvwH9m6GyaAdN6ANoCEdArF31PepGWnV9lChoBkdAlIL4uCf6GmgHTegDaAhHQKxkVuCPIXF1fZQoaAZHQJIFIqkM1CRoB03oA2gIR0CsZwD+R5kcdX2UKGgGR0CWMc83dbgTaAdN6ANoCEdArGoqiwjdHnV9lChoBkdAlpnMURFqjGgHTegDaAhHQKxtzriVB2R1fZQoaAZHQJMmxdKNAC5oB03oA2gIR0CscpGtITXbdX2UKGgGR0CWgcDIBBAwaAdN6ANoCEdArHRDin5zo3V9lChoBkdAk9eqOgg5imgHTegDaAhHQKx2lnq3VkN1fZQoaAZHQJXpnFefI0ZoB03oA2gIR0CsekJhvze5dX2UKGgGR0CVS3gBtDUmaAdN6ANoCEdArH95TjvNNnVlLg=="
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 62500,
99
+ "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:311dae4ae9a6710e23204b3a4cce8a8f7e80ed799c64a3147de8b7dc36de1343
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b61092a78ee628717b4500915ac5349a67aa9a95249b7ae78cd7dab393c85f84
3
+ size 56958
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f8cff8eb1f0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f8cff8eb280>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f8cff8eb310>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f8cff8eb3a0>", "_build": "<function ActorCriticPolicy._build at 0x7f8cff8eb430>", "forward": "<function ActorCriticPolicy.forward at 0x7f8cff8eb4c0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f8cff8eb550>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f8cff8eb5e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f8cff8eb670>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f8cff8eb700>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f8cff8eb790>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f8cff8eb820>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f8cff8ea120>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1676564353000551648, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAFfir78CdZK9PQwqP86Ber9FdLA+2tWBPUghgj3U2Hk/AipOP0uqpjyWN2q/DfURvZI2vb93bcg7WO6TPqmUMjoiQY0/Ryu3vBXpjj4xY5W71cQlvykBPT0KPUe/luG5O4F9OD8aQcE+2G8nP696Wz+uW7G/ePmuvliNDD8GxYq/B6TbPkX/gT1/EYc9lE9xP1zCRj/69qq6UvhpvztImbxFKr2/9gKKN8CYnD7AXt88iM2SP7QvMLtFpZ8+r0jQPOGSJb+iK3o8Xu5GvxUNnbyBfTg/GkHBPthvJz+vels/eACzP8puOb/N5YE+QwekP6oSdj74Gyc//DNxv05jdb+xrRS+bDJgQJfbEkCP2I8+Z+S9Py0EH72cVi0/Si8NQLutj77tF4y/Ucqmv57tQz/ECya/rKQUPVdMwz+z1yfAgX04PxpBwT7Ybyc/gkyVv0I9g73KxTU/Mw0iP+GFSD/7Rdi/vvjlv5zmn70qvW0+/BYPPwopmLxq1Qu+dPKMvn/tpL9YCIa9+kHdvcw7cz8oIEg+20+KP3s3Dr70DIc/3E4lvxqhSzwfQdS9Zl4KQIF9OD8aQcE+HrTDv4JMlb+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADL9vU1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA/lPWvAAAAACqY9q/AAAAAOaGZD0AAAAA9+7sPwAAAABX67M9AAAAAOgs7z8AAAAAPmq1PQAAAAByIuq/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4H4pNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgIxjnLwAAAAAyEvrvwAAAABo9ag9AAAAAB369D8AAAAA6hHHvQAAAAA2WPc/AAAAADhr4L0AAAAAVXT0vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALD14zMAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAbf9c9AAAAANGB7b8AAAAAVRybPQAAAAAPDuE/AAAAAA1MVz0AAAAAIXTmPwAAAADrT8I8AAAAAHBG7b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD9Xa22AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAfvF+vQAAAACoAvy/AAAAANtT4b0AAAAA0KPiPwAAAAA2Q129AAAAAE6A7T8AAAAAjKT4PQAAAAAKiO2/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJGkppVS4vyMAWyUTegDjAF0lEdAqyH9p9JBgXV9lChoBkdAkeYLtu1nd2gHTegDaAhHQKskIjfNzKd1fZQoaAZHQI7u331zySVoB03oA2gIR0CrJ8FQl8gIdX2UKGgGR0CASVDl5nlGaAdN6ANoCEdAqyx2Cf6Gg3V9lChoBkdAhFgt9ph4MWgHTegDaAhHQKsubiuuA7R1fZQoaAZHQIiM1wJgLJFoB03oA2gIR0CrMZEZJkGzdX2UKGgGR0CMPnqIJqqPaAdN6ANoCEdAqzciCDmKZXV9lChoBkdAkSQSwbEP2GgHTegDaAhHQKs8Tbt7a7F1fZQoaAZHQJEBVZpztC1oB03oA2gIR0CrPgcYyfthdX2UKGgGR0CRniWnjyWiaAdN6ANoCEdAq0BtZHNHH3V9lChoBkdAil4t8ma6SWgHTegDaAhHQKtEOrYoRZl1fZQoaAZHQJCflChN/ONoB03oA2gIR0CrSOGs/6frdX2UKGgGR0CPZtpJPIn0aAdN6ANoCEdAq0qYm5UcXHV9lChoBkdAkaFnmig00mgHTegDaAhHQKtM8QJ5VwR1fZQoaAZHQJFq5yo4uK5oB03oA2gIR0CrUjodELH/dX2UKGgGR0CM4HsOXmeUaAdN6ANoCEdAq1i0L0BfbHV9lChoBkdAk5T+/5+H8GgHTegDaAhHQKtab114gRt1fZQoaAZHQJHrjf4yoGZoB03oA2gIR0CrXJ2ldkaudX2UKGgGR0CIRwLXL/0eaAdN6ANoCEdAq2A68tf5UXV9lChoBkdAktc/xQSBb2gHTegDaAhHQKtlABy0a611fZQoaAZHQJRWJ00WM0hoB03oA2gIR0CrZsDGDL8rdX2UKGgGR0CWtWuSfUWmaAdN6ANoCEdAq2jpwjt5U3V9lChoBkdAk9TnMEA5rGgHTegDaAhHQKttTV8Ti851fZQoaAZHQJQ2r/IbOu9oB03oA2gIR0CrdIW+oLofdX2UKGgGR0CK2txYq5LAaAdN6ANoCEdAq3aXkkrwv3V9lChoBkdAlv2QyAQQMGgHTegDaAhHQKt4vhJiAlR1fZQoaAZHQJjHMchkiEBoB03oA2gIR0CrfGmXXyy2dX2UKGgGR0CWTl78vVVhaAdN6ANoCEdAq4GF36hxpHV9lChoBkdAlUzhzBAOa2gHTegDaAhHQKuDPtY0VJt1fZQoaAZHQJUdRtbcGkhoB03oA2gIR0CrhWasQumKdX2UKGgGR0CYAE0163RYaAdN6ANoCEdAq4j84rBj4HV9lChoBkdAlwbrnHNorWgHTegDaAhHQKuP0Rr8BMl1fZQoaAZHQJOqWeyzHCJoB03oA2gIR0CrkoqiGnGbdX2UKGgGR0CB0HdWQwK0aAdN6ANoCEdAq5U7RfF72XV9lChoBkdAmOCGGh24eGgHTegDaAhHQKuY5WilBQh1fZQoaAZHQJRQHH3lCC1oB03oA2gIR0CrnaiemNzbdX2UKGgGR0CS8Qg8KXv6aAdN6ANoCEdAq590Cgbp/3V9lChoBkdAgKn9nTRYzWgHTegDaAhHQKuhoFmFrVR1fZQoaAZHQJN7DMQmNR5oB03oA2gIR0CrpTdSde6adX2UKGgGR0CUjGy0a6z3aAdN6ANoCEdAq6r8Bfa6BnV9lChoBkdAkThll9SdfGgHTegDaAhHQKutmb83uNR1fZQoaAZHQIQAuS6lLvloB03oA2gIR0CrsOhnJ1aGdX2UKGgGR0CONdwfhddFaAdN6ANoCEdAq7UJiTdLx3V9lChoBkdAkypg3o9s8GgHTegDaAhHQKu59D63y7R1fZQoaAZHQI13o+OfdyloB03oA2gIR0Cru9szEaVEdX2UKGgGR0CS37oduHeraAdN6ANoCEdAq74NwYLsr3V9lChoBkdAhed/zSThYWgHTegDaAhHQKvBt0wrUb11fZQoaAZHQJEYl0GNaQpoB03oA2gIR0CrxnzBqKxcdX2UKGgGR0CIurbmlqJuaAdN6ANoCEdAq8j6B7NSqHV9lChoBkdAlHca/Efkm2gHTegDaAhHQKvMLzI3irF1fZQoaAZHQJe4pugpSaVoB03oA2gIR0Cr0WyMUAT7dX2UKGgGR0CXFj0sOG0vaAdN6ANoCEdAq9YWuPmxMXV9lChoBkdAl25ui8FpwmgHTegDaAhHQKvX1J7sv7F1fZQoaAZHQIzdNmOEM9doB03oA2gIR0Cr2gIHC4z8dX2UKGgGR0CUMjMPz4DcaAdN6ANoCEdAq92ajUNKAnV9lChoBkdAlZQJjc2zfWgHTegDaAhHQKvicyhSLqF1fZQoaAZHQJc/skhRqGloB03oA2gIR0Cr5DaW5YozdX2UKGgGR0CVwUKneiztaAdN6ANoCEdAq+cBMWXTmXV9lChoBkdAmEZ9Pci4a2gHTegDaAhHQKvsZttygf51fZQoaAZHQJRaEG3WnTBoB03oA2gIR0Cr8024uscRdX2UKGgGR0CJbh6/qPfbaAdN6ANoCEdAq/XiAe7tiXV9lChoBkdAli0gJokAxWgHTegDaAhHQKv5mDTSb6R1fZQoaAZHQJb3H1TR6WxoB03oA2gIR0Cr/ZBGQSzxdX2UKGgGR0CUs1yad+XraAdN6ANoCEdArAJaV8kUsXV9lChoBkdAk3f0AT7EYWgHTegDaAhHQKwEbxYJVsF1fZQoaAZHQJTVw5uIhyNoB03oA2gIR0CsB5Imw7kodX2UKGgGR0CR96CHARChaAdN6ANoCEdArA0ca6z3RHV9lChoBkdAkZwwjyFwk2gHTegDaAhHQKwSOOtGNJh1fZQoaAZHQJZXKEf1YhdoB03oA2gIR0CsE/FDF6zFdX2UKGgGR0CUhKr2g398aAdN6ANoCEdArBYQzN2TxHV9lChoBkdAl+rRt1p0wWgHTegDaAhHQKwZsAH3UQV1fZQoaAZHQJWoshMajvdoB03oA2gIR0CsHmLqD9OzdX2UKGgGR0CQQGUedTYNaAdN6ANoCEdArCAmiBXjl3V9lChoBkdAkiRBjOLR8mgHTegDaAhHQKwiaRUWEbp1fZQoaAZHQJUxnWd3B55oB03oA2gIR0CsJ6C2+fyxdX2UKGgGR0CWzO1tO2y+aAdN6ANoCEdArC4DKifxt3V9lChoBkdAljB5j2BatGgHTegDaAhHQKwvxZg5R0l1fZQoaAZHQJUQB3MY/FBoB03oA2gIR0CsMePBSDRMdX2UKGgGR0CW8YYNAkcCaAdN6ANoCEdArDV3V3EAHXV9lChoBkdAmNNJW/8EV2gHTegDaAhHQKw6Qf8uSOl1fZQoaAZHQJcmlFd9lVdoB03oA2gIR0CsO/kcsDnvdX2UKGgGR0CZcIemNzbOaAdN6ANoCEdArD4fkq+ajXV9lChoBkdAlYMeP7vXsmgHTegDaAhHQKxCc+3Ytg91fZQoaAZHQJcKdMyrPt5oB03oA2gIR0CsSa5TIeYEdX2UKGgGR0CXi1MAmzBzaAdN6ANoCEdArEv5CF9KEnV9lChoBkdAln4zsyBTXWgHTegDaAhHQKxOFZZB9kV1fZQoaAZHQJWbn6guh9NoB03oA2gIR0CsUaIjGDL9dX2UKGgGR0CYK23m3fALaAdN6ANoCEdArFZmorFwUHV9lChoBkdAlyAbMHKOk2gHTegDaAhHQKxYJD5TIeZ1fZQoaAZHQJBosExIre9oB03oA2gIR0CsWleRHPNWdX2UKGgGR0CNvwH9m6GyaAdN6ANoCEdArF31PepGWnV9lChoBkdAlIL4uCf6GmgHTegDaAhHQKxkVuCPIXF1fZQoaAZHQJIFIqkM1CRoB03oA2gIR0CsZwD+R5kcdX2UKGgGR0CWMc83dbgTaAdN6ANoCEdArGoqiwjdHnV9lChoBkdAlpnMURFqjGgHTegDaAhHQKxtzriVB2R1fZQoaAZHQJMmxdKNAC5oB03oA2gIR0CscpGtITXbdX2UKGgGR0CWgcDIBBAwaAdN6ANoCEdArHRDin5zo3V9lChoBkdAk9eqOgg5imgHTegDaAhHQKx2lnq3VkN1fZQoaAZHQJXpnFefI0ZoB03oA2gIR0CsekJhvze5dX2UKGgGR0CVS3gBtDUmaAdN6ANoCEdArH95TjvNNnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c71141448e1aca320904c54bbadd9599e54f6011cf814632e9486caade3d3f12
3
+ size 1030627
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1024.2097356593847, "std_reward": 216.26840241584244, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-16T17:22:06.263497"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c8cee9f3d245aeb3533bf136ce11c911216a4f7b6bb99a86faa5a19a2fed6bf9
3
+ size 2136