meganstodel
commited on
Commit
·
5cbed48
1
Parent(s):
a033526
Trained model
Browse files- README.md +37 -0
- config.json +1 -0
- explorer.zip +3 -0
- explorer/_stable_baselines3_version +1 -0
- explorer/data +94 -0
- explorer/policy.optimizer.pth +3 -0
- explorer/policy.pth +3 -0
- explorer/pytorch_variables.pth +3 -0
- explorer/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 250.73 +/- 40.06
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fb6d7686040>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb6d76860d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb6d7686160>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb6d76861f0>", "_build": "<function ActorCriticPolicy._build at 0x7fb6d7686280>", "forward": "<function ActorCriticPolicy.forward at 0x7fb6d7686310>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb6d76863a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fb6d7686430>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb6d76864c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb6d7686550>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb6d76865e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fb6d7682510>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 2015232, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673024505732586131, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAACAzQ75osaO8eWeYu58PCrrtjxA+zZrZOgAAgD8AAIA/HfaaPo6l9T3uRM+97WMivkGg6zzzZP+8AAAAAAAAAADzBkK+SNCtvHItabkh2de3z2ghPrgwnTgAAIA/AACAP73KY75UjY68eqruuor2Fbm+PfQ9JfEPOgAAgD8AAIA/GgNHPviY9Tzix8m64B2XudM+iD7/bh86AACAPwAAgD9D2l6+b5eJPjYu7r36Mga/tdrtveOjbr0AAAAAAAAAAFrpb770L4u84EJWO25aiznEKAQ+zsCFugAAgD8AAIA/ICE/vkgNobyaic660BUwufYRED78EAo6AACAPwAAgD9Dh4s+4y6SP+76LD9hCDi/u5CLPigv8T0AAAAAAAAAAFZC3T5v6M4+kacJvfu/Bb+O+HM+c9QnvgAAAAAAAAAAwDNhPqkeabyetka82oIBvaUxw72eEtO9AAAAAAAAgD8an369w9EquvYEOjtmgJM1s37Bus4CVLoAAAAAAAAAAAacY74KCWE8QOihtgXgzzQ7BPm9U9jDNQAAgD8AAIA/TYHbvUyGlD8CGd2+UE9Fv9KpsL1CFu29AAAAAAAAAAAAZEM811QSu6oj6TtrFow8mZQPPJZycr0AAIA/AACAPxqHEz3cQgG8Wtt3OspNAz2Fn0I9z76KvQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.007616000000000067, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVNxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI0084u3VhcECUhpRSlIwBbJRNEwGMAXSUR0CuDK60x/NJdX2UKGgGaAloD0MIL4Zyop2ccECUhpRSlGgVS8hoFkdArgzxZ6lchXV9lChoBmgJaA9DCGNBYVCmIXJAlIaUUpRoFUu3aBZHQK4NGdf9gnd1fZQoaAZoCWgPQwiVD0HV6GdxQJSGlFKUaBVLu2gWR0CuDXvsiSq3dX2UKGgGaAloD0MIBjBl4ECZcECUhpRSlGgVS4xoFkdArg2OOMl1KXV9lChoBmgJaA9DCAkbnl5pQ3JAlIaUUpRoFUvSaBZHQK4Nk6nzg/F1fZQoaAZoCWgPQwhBSuzanjZwQJSGlFKUaBVL3GgWR0CuDbrOJLuhdX2UKGgGaAloD0MIUitM3+vUb0CUhpRSlGgVS5ZoFkdArg6g371qWXV9lChoBmgJaA9DCNkKmpaYNXBAlIaUUpRoFU2DAWgWR0CuDr9pRGc4dX2UKGgGaAloD0MIVhFuMirPb0CUhpRSlGgVS69oFkdArg8naews5HV9lChoBmgJaA9DCN4dGasNF3BAlIaUUpRoFUujaBZHQK4PdUDMeOp1fZQoaAZoCWgPQwj5hOy8jUhtQJSGlFKUaBVLzWgWR0CuD4fcer+6dX2UKGgGaAloD0MIehowSPpub0CUhpRSlGgVS7NoFkdArg+HTTfBN3V9lChoBmgJaA9DCJEqilfZhnFAlIaUUpRoFUumaBZHQK4QBFPSDyx1fZQoaAZoCWgPQwheDybFx8cdwJSGlFKUaBVLbmgWR0CuEFc0k4WDdX2UKGgGaAloD0MIZhTLLS20cUCUhpRSlGgVS75oFkdArhCeOS4e93V9lChoBmgJaA9DCBeDh2nffHNAlIaUUpRoFUv5aBZHQK4RUOq//Nt1fZQoaAZoCWgPQwhegH10asFxQJSGlFKUaBVNAAFoFkdArhGKXpnpS3V9lChoBmgJaA9DCA5rKovCZ3BAlIaUUpRoFU26AWgWR0CuEar26ClKdX2UKGgGaAloD0MIK/nYXSCrb0CUhpRSlGgVS5toFkdArhH5RAKOUHV9lChoBmgJaA9DCPBsj95wp3BAlIaUUpRoFUvBaBZHQK4SQ/JvHcV1fZQoaAZoCWgPQwiFe2Xeav9xQJSGlFKUaBVL5WgWR0CuE0YLkS26dX2UKGgGaAloD0MIRSv3AnPpcECUhpRSlGgVS95oFkdArhO1WluWKXV9lChoBmgJaA9DCH8TChGwrnJAlIaUUpRoFUuNaBZHQK4T4u5BkZt1fZQoaAZoCWgPQwgPRYE+kaRjQJSGlFKUaBVN6ANoFkdArhP8tuk1uXV9lChoBmgJaA9DCD+LpUg++G5AlIaUUpRoFUukaBZHQK4UuaHbh3t1fZQoaAZoCWgPQwhFSrN5nIdiQJSGlFKUaBVN6ANoFkdArhTDkGRmsnV9lChoBmgJaA9DCNOf/UgRU3BAlIaUUpRoFUuhaBZHQK4U9cWTHKh1fZQoaAZoCWgPQwgcYVERJyxsQJSGlFKUaBVL3mgWR0CuFPwEZBLPdX2UKGgGaAloD0MI1hnfF9etcUCUhpRSlGgVS9loFkdArhU6EeyRjnV9lChoBmgJaA9DCMkcy7sqlXFAlIaUUpRoFU0gAWgWR0CuFVyLQ5WBdX2UKGgGaAloD0MITp1Hxb+EcUCUhpRSlGgVTZoBaBZHQK4WJAprk811fZQoaAZoCWgPQwiemssNxplxQJSGlFKUaBVLqGgWR0CuFnhH09QodX2UKGgGaAloD0MIv7uVJTq5TECUhpRSlGgVS1NoFkdArhaXxtpEhXV9lChoBmgJaA9DCCr+74gKDWNAlIaUUpRoFU3oA2gWR0CuFqdRrJr+dX2UKGgGaAloD0MIFqHYChojckCUhpRSlGgVS+JoFkdArhbPQ8fV7XV9lChoBmgJaA9DCKAVGLJ673BAlIaUUpRoFUvFaBZHQK4W9f8dgfF1fZQoaAZoCWgPQwh63/jacwlxQJSGlFKUaBVLoGgWR0CuFxXS0BwNdX2UKGgGaAloD0MI09o0thfqcUCUhpRSlGgVS5VoFkdArhck/4ZdfXV9lChoBmgJaA9DCKoQj8RLQ3BAlIaUUpRoFUvmaBZHQK4XL/EwWWR1fZQoaAZoCWgPQwid9SnHZK9xQJSGlFKUaBVNtAFoFkdArhc8XrMTvnV9lChoBmgJaA9DCG6l12YjyHFAlIaUUpRoFUuwaBZHQK4XRC3w1BN1fZQoaAZoCWgPQwjlnNhDe0hxQJSGlFKUaBVLxmgWR0CuF7BTfixWdX2UKGgGaAloD0MICf63kl3gcUCUhpRSlGgVS4poFkdArhhSN+9alnV9lChoBmgJaA9DCP5/nDBhfWNAlIaUUpRoFU3oA2gWR0CuGKBFVktmdX2UKGgGaAloD0MIC2Kga1/Sb0CUhpRSlGgVS8NoFkdArhizPIGQjnV9lChoBmgJaA9DCAWnPpA8K3BAlIaUUpRoFUuhaBZHQK4YsMJhOQB1fZQoaAZoCWgPQwhzTBb3XyhxQJSGlFKUaBVNFAFoFkdArhjs2DQJHHV9lChoBmgJaA9DCI2ZRL0gInBAlIaUUpRoFUuraBZHQK4Y9BTn7pF1fZQoaAZoCWgPQwhbP/1nzY9xQJSGlFKUaBVLtmgWR0CuGXGus90SdX2UKGgGaAloD0MIWwcHexPwa0CUhpRSlGgVS8VoFkdArhmORYA80XV9lChoBmgJaA9DCNsV+mAZCU1AlIaUUpRoFUtzaBZHQK4ZzGxUvPF1fZQoaAZoCWgPQwhfXoB9dLBxQJSGlFKUaBVL0mgWR0CuGd8LBsQ/dX2UKGgGaAloD0MIml/NAUKncECUhpRSlGgVS+xoFkdArhnxK3/gi3V9lChoBmgJaA9DCGgIxyz7um9AlIaUUpRoFUvWaBZHQK42CRtgrpd1fZQoaAZoCWgPQwhJFFrW/WtkQJSGlFKUaBVN6ANoFkdArjYJvUBnz3V9lChoBmgJaA9DCK2KcJORRnBAlIaUUpRoFU0RAWgWR0CuNphllK9PdX2UKGgGaAloD0MIBpylZLnsb0CUhpRSlGgVS5loFkdArjbeQnx8UnV9lChoBmgJaA9DCARUOIJUOm1AlIaUUpRoFU0UAWgWR0CuNzgTyrggdX2UKGgGaAloD0MI1/oioe3BcECUhpRSlGgVS8poFkdArjdDL4etCHV9lChoBmgJaA9DCD+p9uk4GHBAlIaUUpRoFUvNaBZHQK43ixEfDDV1fZQoaAZoCWgPQwjuCKcFb8VxQJSGlFKUaBVLsmgWR0CuN7eNtIkJdX2UKGgGaAloD0MI2PSgoFQDcECUhpRSlGgVS61oFkdArjgOMyad+XV9lChoBmgJaA9DCNZx/FDpl3FAlIaUUpRoFUuoaBZHQK44xd6cAip1fZQoaAZoCWgPQwhXPzbJT95yQJSGlFKUaBVL+mgWR0CuOM/LkjoqdX2UKGgGaAloD0MIj/6Xa5FfckCUhpRSlGgVS+loFkdArjjWfI0ZWXV9lChoBmgJaA9DCFKZYg4Cr2JAlIaUUpRoFU3oA2gWR0CuOTDGDL8rdX2UKGgGaAloD0MIejnsvuM4cUCUhpRSlGgVS6VoFkdArjlz41xbS3V9lChoBmgJaA9DCJC8cyhDtnBAlIaUUpRoFU0MAWgWR0CuOXrhrFfidX2UKGgGaAloD0MIPx767tbRckCUhpRSlGgVTRIBaBZHQK46kM8YAKh1fZQoaAZoCWgPQwhHc2TlV4pwQJSGlFKUaBVL1mgWR0CuOqt3wCr+dX2UKGgGaAloD0MILXjRV5CxckCUhpRSlGgVS8doFkdArjrXhMrVfHV9lChoBmgJaA9DCKvq5Xcaz29AlIaUUpRoFUujaBZHQK47ch7mdRR1fZQoaAZoCWgPQwhhwmhWtlBxQJSGlFKUaBVL0GgWR0CuO7JPZZjhdX2UKGgGaAloD0MIJT53gn2acUCUhpRSlGgVS7ZoFkdArjwHd43WF3V9lChoBmgJaA9DCLAfYoMFlnBAlIaUUpRoFU00AmgWR0CuPDq59Vm0dX2UKGgGaAloD0MIAYV6+oiXbkCUhpRSlGgVTQQBaBZHQK48hjG1hLJ1fZQoaAZoCWgPQwhiFW9kHqpwQJSGlFKUaBVLmWgWR0CuPOmmce8xdX2UKGgGaAloD0MIZJRnXs4PcECUhpRSlGgVS6FoFkdArj01CRfWtnV9lChoBmgJaA9DCOYEbXL4Bm5AlIaUUpRoFU0JAWgWR0CuPUlaSs8xdX2UKGgGaAloD0MImWTkLCztcECUhpRSlGgVS8doFkdArj16cNH6M3V9lChoBmgJaA9DCGKjrN/MXXFAlIaUUpRoFUuZaBZHQK498kSmIj51fZQoaAZoCWgPQwjQDyOER+JuQJSGlFKUaBVLtWgWR0CuPhrAxi5NdX2UKGgGaAloD0MICwvuBzysOUCUhpRSlGgVS39oFkdArj5ZI4EOiHV9lChoBmgJaA9DCCEFTyHXPm5AlIaUUpRoFUvBaBZHQK4+1gMMI/t1fZQoaAZoCWgPQwjwFkhQfMRvQJSGlFKUaBVLkmgWR0CuPwUIcBEKdX2UKGgGaAloD0MIR1Sobm4bckCUhpRSlGgVS+doFkdArj+WCEpRXXV9lChoBmgJaA9DCD6xTpXvYWFAlIaUUpRoFU3oA2gWR0CuQC2D6FdtdX2UKGgGaAloD0MI5DJuaqDqcECUhpRSlGgVS9NoFkdArkBTLB9Cu3V9lChoBmgJaA9DCOVjd4ESh25AlIaUUpRoFU2NAmgWR0CuQJrU1AJLdX2UKGgGaAloD0MI1lOrr25YcUCUhpRSlGgVS9FoFkdArkEUzKs+3nV9lChoBmgJaA9DCHdM3ZXdHHBAlIaUUpRoFUu3aBZHQK5BH1PFefJ1fZQoaAZoCWgPQwgZHvtZrExwQJSGlFKUaBVLoGgWR0CuQXXPZ7HAdX2UKGgGaAloD0MIUDkmi/uhbECUhpRSlGgVTXIDaBZHQK5Czc1wYLt1fZQoaAZoCWgPQwhEGD+Ne1xvQJSGlFKUaBVLnGgWR0CuQtRsl9jPdX2UKGgGaAloD0MIc0hqoeTXYkCUhpRSlGgVTegDaBZHQK5DGYjSofl1fZQoaAZoCWgPQwiZY3lXPZ9tQJSGlFKUaBVL7mgWR0CuQ4UiQkondX2UKGgGaAloD0MIxvgwexlPckCUhpRSlGgVS5NoFkdArkOlE9dNWXV9lChoBmgJaA9DCH/d6c6TDHJAlIaUUpRoFUutaBZHQK5EZ7qIJqt1fZQoaAZoCWgPQwjK3lLOlyxjQJSGlFKUaBVN6ANoFkdArkSnu1F6RnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1488, "n_steps": 1024, "gamma": 0.98, "gae_lambda": 0.985, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 12, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 #1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
explorer.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:931087b8bcc14ae41e0cf065c98d5edb94ab9040e86b0ac85a35debc04a15680
|
3 |
+
size 147124
|
explorer/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.2
|
explorer/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fb6d7686040>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb6d76860d0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb6d7686160>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb6d76861f0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fb6d7686280>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fb6d7686310>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb6d76863a0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fb6d7686430>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb6d76864c0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb6d7686550>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb6d76865e0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7fb6d7682510>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 2015232,
|
46 |
+
"_total_timesteps": 2000000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1673024505732586131,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAACAzQ75osaO8eWeYu58PCrrtjxA+zZrZOgAAgD8AAIA/HfaaPo6l9T3uRM+97WMivkGg6zzzZP+8AAAAAAAAAADzBkK+SNCtvHItabkh2de3z2ghPrgwnTgAAIA/AACAP73KY75UjY68eqruuor2Fbm+PfQ9JfEPOgAAgD8AAIA/GgNHPviY9Tzix8m64B2XudM+iD7/bh86AACAPwAAgD9D2l6+b5eJPjYu7r36Mga/tdrtveOjbr0AAAAAAAAAAFrpb770L4u84EJWO25aiznEKAQ+zsCFugAAgD8AAIA/ICE/vkgNobyaic660BUwufYRED78EAo6AACAPwAAgD9Dh4s+4y6SP+76LD9hCDi/u5CLPigv8T0AAAAAAAAAAFZC3T5v6M4+kacJvfu/Bb+O+HM+c9QnvgAAAAAAAAAAwDNhPqkeabyetka82oIBvaUxw72eEtO9AAAAAAAAgD8an369w9EquvYEOjtmgJM1s37Bus4CVLoAAAAAAAAAAAacY74KCWE8QOihtgXgzzQ7BPm9U9jDNQAAgD8AAIA/TYHbvUyGlD8CGd2+UE9Fv9KpsL1CFu29AAAAAAAAAAAAZEM811QSu6oj6TtrFow8mZQPPJZycr0AAIA/AACAPxqHEz3cQgG8Wtt3OspNAz2Fn0I9z76KvQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.007616000000000067,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVNxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI0084u3VhcECUhpRSlIwBbJRNEwGMAXSUR0CuDK60x/NJdX2UKGgGaAloD0MIL4Zyop2ccECUhpRSlGgVS8hoFkdArgzxZ6lchXV9lChoBmgJaA9DCGNBYVCmIXJAlIaUUpRoFUu3aBZHQK4NGdf9gnd1fZQoaAZoCWgPQwiVD0HV6GdxQJSGlFKUaBVLu2gWR0CuDXvsiSq3dX2UKGgGaAloD0MIBjBl4ECZcECUhpRSlGgVS4xoFkdArg2OOMl1KXV9lChoBmgJaA9DCAkbnl5pQ3JAlIaUUpRoFUvSaBZHQK4Nk6nzg/F1fZQoaAZoCWgPQwhBSuzanjZwQJSGlFKUaBVL3GgWR0CuDbrOJLuhdX2UKGgGaAloD0MIUitM3+vUb0CUhpRSlGgVS5ZoFkdArg6g371qWXV9lChoBmgJaA9DCNkKmpaYNXBAlIaUUpRoFU2DAWgWR0CuDr9pRGc4dX2UKGgGaAloD0MIVhFuMirPb0CUhpRSlGgVS69oFkdArg8naews5HV9lChoBmgJaA9DCN4dGasNF3BAlIaUUpRoFUujaBZHQK4PdUDMeOp1fZQoaAZoCWgPQwj5hOy8jUhtQJSGlFKUaBVLzWgWR0CuD4fcer+6dX2UKGgGaAloD0MIehowSPpub0CUhpRSlGgVS7NoFkdArg+HTTfBN3V9lChoBmgJaA9DCJEqilfZhnFAlIaUUpRoFUumaBZHQK4QBFPSDyx1fZQoaAZoCWgPQwheDybFx8cdwJSGlFKUaBVLbmgWR0CuEFc0k4WDdX2UKGgGaAloD0MIZhTLLS20cUCUhpRSlGgVS75oFkdArhCeOS4e93V9lChoBmgJaA9DCBeDh2nffHNAlIaUUpRoFUv5aBZHQK4RUOq//Nt1fZQoaAZoCWgPQwhegH10asFxQJSGlFKUaBVNAAFoFkdArhGKXpnpS3V9lChoBmgJaA9DCA5rKovCZ3BAlIaUUpRoFU26AWgWR0CuEar26ClKdX2UKGgGaAloD0MIK/nYXSCrb0CUhpRSlGgVS5toFkdArhH5RAKOUHV9lChoBmgJaA9DCPBsj95wp3BAlIaUUpRoFUvBaBZHQK4SQ/JvHcV1fZQoaAZoCWgPQwiFe2Xeav9xQJSGlFKUaBVL5WgWR0CuE0YLkS26dX2UKGgGaAloD0MIRSv3AnPpcECUhpRSlGgVS95oFkdArhO1WluWKXV9lChoBmgJaA9DCH8TChGwrnJAlIaUUpRoFUuNaBZHQK4T4u5BkZt1fZQoaAZoCWgPQwgPRYE+kaRjQJSGlFKUaBVN6ANoFkdArhP8tuk1uXV9lChoBmgJaA9DCD+LpUg++G5AlIaUUpRoFUukaBZHQK4UuaHbh3t1fZQoaAZoCWgPQwhFSrN5nIdiQJSGlFKUaBVN6ANoFkdArhTDkGRmsnV9lChoBmgJaA9DCNOf/UgRU3BAlIaUUpRoFUuhaBZHQK4U9cWTHKh1fZQoaAZoCWgPQwgcYVERJyxsQJSGlFKUaBVL3mgWR0CuFPwEZBLPdX2UKGgGaAloD0MI1hnfF9etcUCUhpRSlGgVS9loFkdArhU6EeyRjnV9lChoBmgJaA9DCMkcy7sqlXFAlIaUUpRoFU0gAWgWR0CuFVyLQ5WBdX2UKGgGaAloD0MITp1Hxb+EcUCUhpRSlGgVTZoBaBZHQK4WJAprk811fZQoaAZoCWgPQwiemssNxplxQJSGlFKUaBVLqGgWR0CuFnhH09QodX2UKGgGaAloD0MIv7uVJTq5TECUhpRSlGgVS1NoFkdArhaXxtpEhXV9lChoBmgJaA9DCCr+74gKDWNAlIaUUpRoFU3oA2gWR0CuFqdRrJr+dX2UKGgGaAloD0MIFqHYChojckCUhpRSlGgVS+JoFkdArhbPQ8fV7XV9lChoBmgJaA9DCKAVGLJ673BAlIaUUpRoFUvFaBZHQK4W9f8dgfF1fZQoaAZoCWgPQwh63/jacwlxQJSGlFKUaBVLoGgWR0CuFxXS0BwNdX2UKGgGaAloD0MI09o0thfqcUCUhpRSlGgVS5VoFkdArhck/4ZdfXV9lChoBmgJaA9DCKoQj8RLQ3BAlIaUUpRoFUvmaBZHQK4XL/EwWWR1fZQoaAZoCWgPQwid9SnHZK9xQJSGlFKUaBVNtAFoFkdArhc8XrMTvnV9lChoBmgJaA9DCG6l12YjyHFAlIaUUpRoFUuwaBZHQK4XRC3w1BN1fZQoaAZoCWgPQwjlnNhDe0hxQJSGlFKUaBVLxmgWR0CuF7BTfixWdX2UKGgGaAloD0MICf63kl3gcUCUhpRSlGgVS4poFkdArhhSN+9alnV9lChoBmgJaA9DCP5/nDBhfWNAlIaUUpRoFU3oA2gWR0CuGKBFVktmdX2UKGgGaAloD0MIC2Kga1/Sb0CUhpRSlGgVS8NoFkdArhizPIGQjnV9lChoBmgJaA9DCAWnPpA8K3BAlIaUUpRoFUuhaBZHQK4YsMJhOQB1fZQoaAZoCWgPQwhzTBb3XyhxQJSGlFKUaBVNFAFoFkdArhjs2DQJHHV9lChoBmgJaA9DCI2ZRL0gInBAlIaUUpRoFUuraBZHQK4Y9BTn7pF1fZQoaAZoCWgPQwhbP/1nzY9xQJSGlFKUaBVLtmgWR0CuGXGus90SdX2UKGgGaAloD0MIWwcHexPwa0CUhpRSlGgVS8VoFkdArhmORYA80XV9lChoBmgJaA9DCNsV+mAZCU1AlIaUUpRoFUtzaBZHQK4ZzGxUvPF1fZQoaAZoCWgPQwhfXoB9dLBxQJSGlFKUaBVL0mgWR0CuGd8LBsQ/dX2UKGgGaAloD0MIml/NAUKncECUhpRSlGgVS+xoFkdArhnxK3/gi3V9lChoBmgJaA9DCGgIxyz7um9AlIaUUpRoFUvWaBZHQK42CRtgrpd1fZQoaAZoCWgPQwhJFFrW/WtkQJSGlFKUaBVN6ANoFkdArjYJvUBnz3V9lChoBmgJaA9DCK2KcJORRnBAlIaUUpRoFU0RAWgWR0CuNphllK9PdX2UKGgGaAloD0MIBpylZLnsb0CUhpRSlGgVS5loFkdArjbeQnx8UnV9lChoBmgJaA9DCARUOIJUOm1AlIaUUpRoFU0UAWgWR0CuNzgTyrggdX2UKGgGaAloD0MI1/oioe3BcECUhpRSlGgVS8poFkdArjdDL4etCHV9lChoBmgJaA9DCD+p9uk4GHBAlIaUUpRoFUvNaBZHQK43ixEfDDV1fZQoaAZoCWgPQwjuCKcFb8VxQJSGlFKUaBVLsmgWR0CuN7eNtIkJdX2UKGgGaAloD0MI2PSgoFQDcECUhpRSlGgVS61oFkdArjgOMyad+XV9lChoBmgJaA9DCNZx/FDpl3FAlIaUUpRoFUuoaBZHQK44xd6cAip1fZQoaAZoCWgPQwhXPzbJT95yQJSGlFKUaBVL+mgWR0CuOM/LkjoqdX2UKGgGaAloD0MIj/6Xa5FfckCUhpRSlGgVS+loFkdArjjWfI0ZWXV9lChoBmgJaA9DCFKZYg4Cr2JAlIaUUpRoFU3oA2gWR0CuOTDGDL8rdX2UKGgGaAloD0MIejnsvuM4cUCUhpRSlGgVS6VoFkdArjlz41xbS3V9lChoBmgJaA9DCJC8cyhDtnBAlIaUUpRoFU0MAWgWR0CuOXrhrFfidX2UKGgGaAloD0MIPx767tbRckCUhpRSlGgVTRIBaBZHQK46kM8YAKh1fZQoaAZoCWgPQwhHc2TlV4pwQJSGlFKUaBVL1mgWR0CuOqt3wCr+dX2UKGgGaAloD0MILXjRV5CxckCUhpRSlGgVS8doFkdArjrXhMrVfHV9lChoBmgJaA9DCKvq5Xcaz29AlIaUUpRoFUujaBZHQK47ch7mdRR1fZQoaAZoCWgPQwhhwmhWtlBxQJSGlFKUaBVL0GgWR0CuO7JPZZjhdX2UKGgGaAloD0MIJT53gn2acUCUhpRSlGgVS7ZoFkdArjwHd43WF3V9lChoBmgJaA9DCLAfYoMFlnBAlIaUUpRoFU00AmgWR0CuPDq59Vm0dX2UKGgGaAloD0MIAYV6+oiXbkCUhpRSlGgVTQQBaBZHQK48hjG1hLJ1fZQoaAZoCWgPQwhiFW9kHqpwQJSGlFKUaBVLmWgWR0CuPOmmce8xdX2UKGgGaAloD0MIZJRnXs4PcECUhpRSlGgVS6FoFkdArj01CRfWtnV9lChoBmgJaA9DCOYEbXL4Bm5AlIaUUpRoFU0JAWgWR0CuPUlaSs8xdX2UKGgGaAloD0MImWTkLCztcECUhpRSlGgVS8doFkdArj16cNH6M3V9lChoBmgJaA9DCGKjrN/MXXFAlIaUUpRoFUuZaBZHQK498kSmIj51fZQoaAZoCWgPQwjQDyOER+JuQJSGlFKUaBVLtWgWR0CuPhrAxi5NdX2UKGgGaAloD0MICwvuBzysOUCUhpRSlGgVS39oFkdArj5ZI4EOiHV9lChoBmgJaA9DCCEFTyHXPm5AlIaUUpRoFUvBaBZHQK4+1gMMI/t1fZQoaAZoCWgPQwjwFkhQfMRvQJSGlFKUaBVLkmgWR0CuPwUIcBEKdX2UKGgGaAloD0MIR1Sobm4bckCUhpRSlGgVS+doFkdArj+WCEpRXXV9lChoBmgJaA9DCD6xTpXvYWFAlIaUUpRoFU3oA2gWR0CuQC2D6FdtdX2UKGgGaAloD0MI5DJuaqDqcECUhpRSlGgVS9NoFkdArkBTLB9Cu3V9lChoBmgJaA9DCOVjd4ESh25AlIaUUpRoFU2NAmgWR0CuQJrU1AJLdX2UKGgGaAloD0MI1lOrr25YcUCUhpRSlGgVS9FoFkdArkEUzKs+3nV9lChoBmgJaA9DCHdM3ZXdHHBAlIaUUpRoFUu3aBZHQK5BH1PFefJ1fZQoaAZoCWgPQwgZHvtZrExwQJSGlFKUaBVLoGgWR0CuQXXPZ7HAdX2UKGgGaAloD0MIUDkmi/uhbECUhpRSlGgVTXIDaBZHQK5Czc1wYLt1fZQoaAZoCWgPQwhEGD+Ne1xvQJSGlFKUaBVLnGgWR0CuQtRsl9jPdX2UKGgGaAloD0MIc0hqoeTXYkCUhpRSlGgVTegDaBZHQK5DGYjSofl1fZQoaAZoCWgPQwiZY3lXPZ9tQJSGlFKUaBVL7mgWR0CuQ4UiQkondX2UKGgGaAloD0MIxvgwexlPckCUhpRSlGgVS5NoFkdArkOlE9dNWXV9lChoBmgJaA9DCH/d6c6TDHJAlIaUUpRoFUutaBZHQK5EZ7qIJqt1fZQoaAZoCWgPQwjK3lLOlyxjQJSGlFKUaBVN6ANoFkdArkSnu1F6RnVlLg=="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 1488,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.98,
|
81 |
+
"gae_lambda": 0.985,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 12,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
explorer/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2d8e39ed8059a157dd03d351c871dd4a83838ed47a6c04bf8723117ef8e7a208
|
3 |
+
size 87929
|
explorer/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cf3fa7c4a3901168faa36d6cb8da106e7f2c796ddb7fbf64efda1e4642ae053b
|
3 |
+
size 43201
|
explorer/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
explorer/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.10.147+-x86_64-with-glibc2.27 #1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
Python: 3.8.16
|
3 |
+
Stable-Baselines3: 1.6.2
|
4 |
+
PyTorch: 1.13.0+cu116
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (196 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 250.73288504613384, "std_reward": 40.06180932409206, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-06T18:07:51.811388"}
|