meganstodel commited on
Commit
5cbed48
·
1 Parent(s): a033526

Trained model

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 250.73 +/- 40.06
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fb6d7686040>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb6d76860d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb6d7686160>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb6d76861f0>", "_build": "<function ActorCriticPolicy._build at 0x7fb6d7686280>", "forward": "<function ActorCriticPolicy.forward at 0x7fb6d7686310>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb6d76863a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fb6d7686430>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb6d76864c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb6d7686550>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb6d76865e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fb6d7682510>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 2015232, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673024505732586131, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAACAzQ75osaO8eWeYu58PCrrtjxA+zZrZOgAAgD8AAIA/HfaaPo6l9T3uRM+97WMivkGg6zzzZP+8AAAAAAAAAADzBkK+SNCtvHItabkh2de3z2ghPrgwnTgAAIA/AACAP73KY75UjY68eqruuor2Fbm+PfQ9JfEPOgAAgD8AAIA/GgNHPviY9Tzix8m64B2XudM+iD7/bh86AACAPwAAgD9D2l6+b5eJPjYu7r36Mga/tdrtveOjbr0AAAAAAAAAAFrpb770L4u84EJWO25aiznEKAQ+zsCFugAAgD8AAIA/ICE/vkgNobyaic660BUwufYRED78EAo6AACAPwAAgD9Dh4s+4y6SP+76LD9hCDi/u5CLPigv8T0AAAAAAAAAAFZC3T5v6M4+kacJvfu/Bb+O+HM+c9QnvgAAAAAAAAAAwDNhPqkeabyetka82oIBvaUxw72eEtO9AAAAAAAAgD8an369w9EquvYEOjtmgJM1s37Bus4CVLoAAAAAAAAAAAacY74KCWE8QOihtgXgzzQ7BPm9U9jDNQAAgD8AAIA/TYHbvUyGlD8CGd2+UE9Fv9KpsL1CFu29AAAAAAAAAAAAZEM811QSu6oj6TtrFow8mZQPPJZycr0AAIA/AACAPxqHEz3cQgG8Wtt3OspNAz2Fn0I9z76KvQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.007616000000000067, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVNxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI0084u3VhcECUhpRSlIwBbJRNEwGMAXSUR0CuDK60x/NJdX2UKGgGaAloD0MIL4Zyop2ccECUhpRSlGgVS8hoFkdArgzxZ6lchXV9lChoBmgJaA9DCGNBYVCmIXJAlIaUUpRoFUu3aBZHQK4NGdf9gnd1fZQoaAZoCWgPQwiVD0HV6GdxQJSGlFKUaBVLu2gWR0CuDXvsiSq3dX2UKGgGaAloD0MIBjBl4ECZcECUhpRSlGgVS4xoFkdArg2OOMl1KXV9lChoBmgJaA9DCAkbnl5pQ3JAlIaUUpRoFUvSaBZHQK4Nk6nzg/F1fZQoaAZoCWgPQwhBSuzanjZwQJSGlFKUaBVL3GgWR0CuDbrOJLuhdX2UKGgGaAloD0MIUitM3+vUb0CUhpRSlGgVS5ZoFkdArg6g371qWXV9lChoBmgJaA9DCNkKmpaYNXBAlIaUUpRoFU2DAWgWR0CuDr9pRGc4dX2UKGgGaAloD0MIVhFuMirPb0CUhpRSlGgVS69oFkdArg8naews5HV9lChoBmgJaA9DCN4dGasNF3BAlIaUUpRoFUujaBZHQK4PdUDMeOp1fZQoaAZoCWgPQwj5hOy8jUhtQJSGlFKUaBVLzWgWR0CuD4fcer+6dX2UKGgGaAloD0MIehowSPpub0CUhpRSlGgVS7NoFkdArg+HTTfBN3V9lChoBmgJaA9DCJEqilfZhnFAlIaUUpRoFUumaBZHQK4QBFPSDyx1fZQoaAZoCWgPQwheDybFx8cdwJSGlFKUaBVLbmgWR0CuEFc0k4WDdX2UKGgGaAloD0MIZhTLLS20cUCUhpRSlGgVS75oFkdArhCeOS4e93V9lChoBmgJaA9DCBeDh2nffHNAlIaUUpRoFUv5aBZHQK4RUOq//Nt1fZQoaAZoCWgPQwhegH10asFxQJSGlFKUaBVNAAFoFkdArhGKXpnpS3V9lChoBmgJaA9DCA5rKovCZ3BAlIaUUpRoFU26AWgWR0CuEar26ClKdX2UKGgGaAloD0MIK/nYXSCrb0CUhpRSlGgVS5toFkdArhH5RAKOUHV9lChoBmgJaA9DCPBsj95wp3BAlIaUUpRoFUvBaBZHQK4SQ/JvHcV1fZQoaAZoCWgPQwiFe2Xeav9xQJSGlFKUaBVL5WgWR0CuE0YLkS26dX2UKGgGaAloD0MIRSv3AnPpcECUhpRSlGgVS95oFkdArhO1WluWKXV9lChoBmgJaA9DCH8TChGwrnJAlIaUUpRoFUuNaBZHQK4T4u5BkZt1fZQoaAZoCWgPQwgPRYE+kaRjQJSGlFKUaBVN6ANoFkdArhP8tuk1uXV9lChoBmgJaA9DCD+LpUg++G5AlIaUUpRoFUukaBZHQK4UuaHbh3t1fZQoaAZoCWgPQwhFSrN5nIdiQJSGlFKUaBVN6ANoFkdArhTDkGRmsnV9lChoBmgJaA9DCNOf/UgRU3BAlIaUUpRoFUuhaBZHQK4U9cWTHKh1fZQoaAZoCWgPQwgcYVERJyxsQJSGlFKUaBVL3mgWR0CuFPwEZBLPdX2UKGgGaAloD0MI1hnfF9etcUCUhpRSlGgVS9loFkdArhU6EeyRjnV9lChoBmgJaA9DCMkcy7sqlXFAlIaUUpRoFU0gAWgWR0CuFVyLQ5WBdX2UKGgGaAloD0MITp1Hxb+EcUCUhpRSlGgVTZoBaBZHQK4WJAprk811fZQoaAZoCWgPQwiemssNxplxQJSGlFKUaBVLqGgWR0CuFnhH09QodX2UKGgGaAloD0MIv7uVJTq5TECUhpRSlGgVS1NoFkdArhaXxtpEhXV9lChoBmgJaA9DCCr+74gKDWNAlIaUUpRoFU3oA2gWR0CuFqdRrJr+dX2UKGgGaAloD0MIFqHYChojckCUhpRSlGgVS+JoFkdArhbPQ8fV7XV9lChoBmgJaA9DCKAVGLJ673BAlIaUUpRoFUvFaBZHQK4W9f8dgfF1fZQoaAZoCWgPQwh63/jacwlxQJSGlFKUaBVLoGgWR0CuFxXS0BwNdX2UKGgGaAloD0MI09o0thfqcUCUhpRSlGgVS5VoFkdArhck/4ZdfXV9lChoBmgJaA9DCKoQj8RLQ3BAlIaUUpRoFUvmaBZHQK4XL/EwWWR1fZQoaAZoCWgPQwid9SnHZK9xQJSGlFKUaBVNtAFoFkdArhc8XrMTvnV9lChoBmgJaA9DCG6l12YjyHFAlIaUUpRoFUuwaBZHQK4XRC3w1BN1fZQoaAZoCWgPQwjlnNhDe0hxQJSGlFKUaBVLxmgWR0CuF7BTfixWdX2UKGgGaAloD0MICf63kl3gcUCUhpRSlGgVS4poFkdArhhSN+9alnV9lChoBmgJaA9DCP5/nDBhfWNAlIaUUpRoFU3oA2gWR0CuGKBFVktmdX2UKGgGaAloD0MIC2Kga1/Sb0CUhpRSlGgVS8NoFkdArhizPIGQjnV9lChoBmgJaA9DCAWnPpA8K3BAlIaUUpRoFUuhaBZHQK4YsMJhOQB1fZQoaAZoCWgPQwhzTBb3XyhxQJSGlFKUaBVNFAFoFkdArhjs2DQJHHV9lChoBmgJaA9DCI2ZRL0gInBAlIaUUpRoFUuraBZHQK4Y9BTn7pF1fZQoaAZoCWgPQwhbP/1nzY9xQJSGlFKUaBVLtmgWR0CuGXGus90SdX2UKGgGaAloD0MIWwcHexPwa0CUhpRSlGgVS8VoFkdArhmORYA80XV9lChoBmgJaA9DCNsV+mAZCU1AlIaUUpRoFUtzaBZHQK4ZzGxUvPF1fZQoaAZoCWgPQwhfXoB9dLBxQJSGlFKUaBVL0mgWR0CuGd8LBsQ/dX2UKGgGaAloD0MIml/NAUKncECUhpRSlGgVS+xoFkdArhnxK3/gi3V9lChoBmgJaA9DCGgIxyz7um9AlIaUUpRoFUvWaBZHQK42CRtgrpd1fZQoaAZoCWgPQwhJFFrW/WtkQJSGlFKUaBVN6ANoFkdArjYJvUBnz3V9lChoBmgJaA9DCK2KcJORRnBAlIaUUpRoFU0RAWgWR0CuNphllK9PdX2UKGgGaAloD0MIBpylZLnsb0CUhpRSlGgVS5loFkdArjbeQnx8UnV9lChoBmgJaA9DCARUOIJUOm1AlIaUUpRoFU0UAWgWR0CuNzgTyrggdX2UKGgGaAloD0MI1/oioe3BcECUhpRSlGgVS8poFkdArjdDL4etCHV9lChoBmgJaA9DCD+p9uk4GHBAlIaUUpRoFUvNaBZHQK43ixEfDDV1fZQoaAZoCWgPQwjuCKcFb8VxQJSGlFKUaBVLsmgWR0CuN7eNtIkJdX2UKGgGaAloD0MI2PSgoFQDcECUhpRSlGgVS61oFkdArjgOMyad+XV9lChoBmgJaA9DCNZx/FDpl3FAlIaUUpRoFUuoaBZHQK44xd6cAip1fZQoaAZoCWgPQwhXPzbJT95yQJSGlFKUaBVL+mgWR0CuOM/LkjoqdX2UKGgGaAloD0MIj/6Xa5FfckCUhpRSlGgVS+loFkdArjjWfI0ZWXV9lChoBmgJaA9DCFKZYg4Cr2JAlIaUUpRoFU3oA2gWR0CuOTDGDL8rdX2UKGgGaAloD0MIejnsvuM4cUCUhpRSlGgVS6VoFkdArjlz41xbS3V9lChoBmgJaA9DCJC8cyhDtnBAlIaUUpRoFU0MAWgWR0CuOXrhrFfidX2UKGgGaAloD0MIPx767tbRckCUhpRSlGgVTRIBaBZHQK46kM8YAKh1fZQoaAZoCWgPQwhHc2TlV4pwQJSGlFKUaBVL1mgWR0CuOqt3wCr+dX2UKGgGaAloD0MILXjRV5CxckCUhpRSlGgVS8doFkdArjrXhMrVfHV9lChoBmgJaA9DCKvq5Xcaz29AlIaUUpRoFUujaBZHQK47ch7mdRR1fZQoaAZoCWgPQwhhwmhWtlBxQJSGlFKUaBVL0GgWR0CuO7JPZZjhdX2UKGgGaAloD0MIJT53gn2acUCUhpRSlGgVS7ZoFkdArjwHd43WF3V9lChoBmgJaA9DCLAfYoMFlnBAlIaUUpRoFU00AmgWR0CuPDq59Vm0dX2UKGgGaAloD0MIAYV6+oiXbkCUhpRSlGgVTQQBaBZHQK48hjG1hLJ1fZQoaAZoCWgPQwhiFW9kHqpwQJSGlFKUaBVLmWgWR0CuPOmmce8xdX2UKGgGaAloD0MIZJRnXs4PcECUhpRSlGgVS6FoFkdArj01CRfWtnV9lChoBmgJaA9DCOYEbXL4Bm5AlIaUUpRoFU0JAWgWR0CuPUlaSs8xdX2UKGgGaAloD0MImWTkLCztcECUhpRSlGgVS8doFkdArj16cNH6M3V9lChoBmgJaA9DCGKjrN/MXXFAlIaUUpRoFUuZaBZHQK498kSmIj51fZQoaAZoCWgPQwjQDyOER+JuQJSGlFKUaBVLtWgWR0CuPhrAxi5NdX2UKGgGaAloD0MICwvuBzysOUCUhpRSlGgVS39oFkdArj5ZI4EOiHV9lChoBmgJaA9DCCEFTyHXPm5AlIaUUpRoFUvBaBZHQK4+1gMMI/t1fZQoaAZoCWgPQwjwFkhQfMRvQJSGlFKUaBVLkmgWR0CuPwUIcBEKdX2UKGgGaAloD0MIR1Sobm4bckCUhpRSlGgVS+doFkdArj+WCEpRXXV9lChoBmgJaA9DCD6xTpXvYWFAlIaUUpRoFU3oA2gWR0CuQC2D6FdtdX2UKGgGaAloD0MI5DJuaqDqcECUhpRSlGgVS9NoFkdArkBTLB9Cu3V9lChoBmgJaA9DCOVjd4ESh25AlIaUUpRoFU2NAmgWR0CuQJrU1AJLdX2UKGgGaAloD0MI1lOrr25YcUCUhpRSlGgVS9FoFkdArkEUzKs+3nV9lChoBmgJaA9DCHdM3ZXdHHBAlIaUUpRoFUu3aBZHQK5BH1PFefJ1fZQoaAZoCWgPQwgZHvtZrExwQJSGlFKUaBVLoGgWR0CuQXXPZ7HAdX2UKGgGaAloD0MIUDkmi/uhbECUhpRSlGgVTXIDaBZHQK5Czc1wYLt1fZQoaAZoCWgPQwhEGD+Ne1xvQJSGlFKUaBVLnGgWR0CuQtRsl9jPdX2UKGgGaAloD0MIc0hqoeTXYkCUhpRSlGgVTegDaBZHQK5DGYjSofl1fZQoaAZoCWgPQwiZY3lXPZ9tQJSGlFKUaBVL7mgWR0CuQ4UiQkondX2UKGgGaAloD0MIxvgwexlPckCUhpRSlGgVS5NoFkdArkOlE9dNWXV9lChoBmgJaA9DCH/d6c6TDHJAlIaUUpRoFUutaBZHQK5EZ7qIJqt1fZQoaAZoCWgPQwjK3lLOlyxjQJSGlFKUaBVN6ANoFkdArkSnu1F6RnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1488, "n_steps": 1024, "gamma": 0.98, "gae_lambda": 0.985, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 12, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 #1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
explorer.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:931087b8bcc14ae41e0cf065c98d5edb94ab9040e86b0ac85a35debc04a15680
3
+ size 147124
explorer/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
explorer/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fb6d7686040>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb6d76860d0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb6d7686160>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb6d76861f0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fb6d7686280>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fb6d7686310>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb6d76863a0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fb6d7686430>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb6d76864c0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb6d7686550>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb6d76865e0>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7fb6d7682510>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 2015232,
46
+ "_total_timesteps": 2000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1673024505732586131,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAACAzQ75osaO8eWeYu58PCrrtjxA+zZrZOgAAgD8AAIA/HfaaPo6l9T3uRM+97WMivkGg6zzzZP+8AAAAAAAAAADzBkK+SNCtvHItabkh2de3z2ghPrgwnTgAAIA/AACAP73KY75UjY68eqruuor2Fbm+PfQ9JfEPOgAAgD8AAIA/GgNHPviY9Tzix8m64B2XudM+iD7/bh86AACAPwAAgD9D2l6+b5eJPjYu7r36Mga/tdrtveOjbr0AAAAAAAAAAFrpb770L4u84EJWO25aiznEKAQ+zsCFugAAgD8AAIA/ICE/vkgNobyaic660BUwufYRED78EAo6AACAPwAAgD9Dh4s+4y6SP+76LD9hCDi/u5CLPigv8T0AAAAAAAAAAFZC3T5v6M4+kacJvfu/Bb+O+HM+c9QnvgAAAAAAAAAAwDNhPqkeabyetka82oIBvaUxw72eEtO9AAAAAAAAgD8an369w9EquvYEOjtmgJM1s37Bus4CVLoAAAAAAAAAAAacY74KCWE8QOihtgXgzzQ7BPm9U9jDNQAAgD8AAIA/TYHbvUyGlD8CGd2+UE9Fv9KpsL1CFu29AAAAAAAAAAAAZEM811QSu6oj6TtrFow8mZQPPJZycr0AAIA/AACAPxqHEz3cQgG8Wtt3OspNAz2Fn0I9z76KvQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.007616000000000067,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVNxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI0084u3VhcECUhpRSlIwBbJRNEwGMAXSUR0CuDK60x/NJdX2UKGgGaAloD0MIL4Zyop2ccECUhpRSlGgVS8hoFkdArgzxZ6lchXV9lChoBmgJaA9DCGNBYVCmIXJAlIaUUpRoFUu3aBZHQK4NGdf9gnd1fZQoaAZoCWgPQwiVD0HV6GdxQJSGlFKUaBVLu2gWR0CuDXvsiSq3dX2UKGgGaAloD0MIBjBl4ECZcECUhpRSlGgVS4xoFkdArg2OOMl1KXV9lChoBmgJaA9DCAkbnl5pQ3JAlIaUUpRoFUvSaBZHQK4Nk6nzg/F1fZQoaAZoCWgPQwhBSuzanjZwQJSGlFKUaBVL3GgWR0CuDbrOJLuhdX2UKGgGaAloD0MIUitM3+vUb0CUhpRSlGgVS5ZoFkdArg6g371qWXV9lChoBmgJaA9DCNkKmpaYNXBAlIaUUpRoFU2DAWgWR0CuDr9pRGc4dX2UKGgGaAloD0MIVhFuMirPb0CUhpRSlGgVS69oFkdArg8naews5HV9lChoBmgJaA9DCN4dGasNF3BAlIaUUpRoFUujaBZHQK4PdUDMeOp1fZQoaAZoCWgPQwj5hOy8jUhtQJSGlFKUaBVLzWgWR0CuD4fcer+6dX2UKGgGaAloD0MIehowSPpub0CUhpRSlGgVS7NoFkdArg+HTTfBN3V9lChoBmgJaA9DCJEqilfZhnFAlIaUUpRoFUumaBZHQK4QBFPSDyx1fZQoaAZoCWgPQwheDybFx8cdwJSGlFKUaBVLbmgWR0CuEFc0k4WDdX2UKGgGaAloD0MIZhTLLS20cUCUhpRSlGgVS75oFkdArhCeOS4e93V9lChoBmgJaA9DCBeDh2nffHNAlIaUUpRoFUv5aBZHQK4RUOq//Nt1fZQoaAZoCWgPQwhegH10asFxQJSGlFKUaBVNAAFoFkdArhGKXpnpS3V9lChoBmgJaA9DCA5rKovCZ3BAlIaUUpRoFU26AWgWR0CuEar26ClKdX2UKGgGaAloD0MIK/nYXSCrb0CUhpRSlGgVS5toFkdArhH5RAKOUHV9lChoBmgJaA9DCPBsj95wp3BAlIaUUpRoFUvBaBZHQK4SQ/JvHcV1fZQoaAZoCWgPQwiFe2Xeav9xQJSGlFKUaBVL5WgWR0CuE0YLkS26dX2UKGgGaAloD0MIRSv3AnPpcECUhpRSlGgVS95oFkdArhO1WluWKXV9lChoBmgJaA9DCH8TChGwrnJAlIaUUpRoFUuNaBZHQK4T4u5BkZt1fZQoaAZoCWgPQwgPRYE+kaRjQJSGlFKUaBVN6ANoFkdArhP8tuk1uXV9lChoBmgJaA9DCD+LpUg++G5AlIaUUpRoFUukaBZHQK4UuaHbh3t1fZQoaAZoCWgPQwhFSrN5nIdiQJSGlFKUaBVN6ANoFkdArhTDkGRmsnV9lChoBmgJaA9DCNOf/UgRU3BAlIaUUpRoFUuhaBZHQK4U9cWTHKh1fZQoaAZoCWgPQwgcYVERJyxsQJSGlFKUaBVL3mgWR0CuFPwEZBLPdX2UKGgGaAloD0MI1hnfF9etcUCUhpRSlGgVS9loFkdArhU6EeyRjnV9lChoBmgJaA9DCMkcy7sqlXFAlIaUUpRoFU0gAWgWR0CuFVyLQ5WBdX2UKGgGaAloD0MITp1Hxb+EcUCUhpRSlGgVTZoBaBZHQK4WJAprk811fZQoaAZoCWgPQwiemssNxplxQJSGlFKUaBVLqGgWR0CuFnhH09QodX2UKGgGaAloD0MIv7uVJTq5TECUhpRSlGgVS1NoFkdArhaXxtpEhXV9lChoBmgJaA9DCCr+74gKDWNAlIaUUpRoFU3oA2gWR0CuFqdRrJr+dX2UKGgGaAloD0MIFqHYChojckCUhpRSlGgVS+JoFkdArhbPQ8fV7XV9lChoBmgJaA9DCKAVGLJ673BAlIaUUpRoFUvFaBZHQK4W9f8dgfF1fZQoaAZoCWgPQwh63/jacwlxQJSGlFKUaBVLoGgWR0CuFxXS0BwNdX2UKGgGaAloD0MI09o0thfqcUCUhpRSlGgVS5VoFkdArhck/4ZdfXV9lChoBmgJaA9DCKoQj8RLQ3BAlIaUUpRoFUvmaBZHQK4XL/EwWWR1fZQoaAZoCWgPQwid9SnHZK9xQJSGlFKUaBVNtAFoFkdArhc8XrMTvnV9lChoBmgJaA9DCG6l12YjyHFAlIaUUpRoFUuwaBZHQK4XRC3w1BN1fZQoaAZoCWgPQwjlnNhDe0hxQJSGlFKUaBVLxmgWR0CuF7BTfixWdX2UKGgGaAloD0MICf63kl3gcUCUhpRSlGgVS4poFkdArhhSN+9alnV9lChoBmgJaA9DCP5/nDBhfWNAlIaUUpRoFU3oA2gWR0CuGKBFVktmdX2UKGgGaAloD0MIC2Kga1/Sb0CUhpRSlGgVS8NoFkdArhizPIGQjnV9lChoBmgJaA9DCAWnPpA8K3BAlIaUUpRoFUuhaBZHQK4YsMJhOQB1fZQoaAZoCWgPQwhzTBb3XyhxQJSGlFKUaBVNFAFoFkdArhjs2DQJHHV9lChoBmgJaA9DCI2ZRL0gInBAlIaUUpRoFUuraBZHQK4Y9BTn7pF1fZQoaAZoCWgPQwhbP/1nzY9xQJSGlFKUaBVLtmgWR0CuGXGus90SdX2UKGgGaAloD0MIWwcHexPwa0CUhpRSlGgVS8VoFkdArhmORYA80XV9lChoBmgJaA9DCNsV+mAZCU1AlIaUUpRoFUtzaBZHQK4ZzGxUvPF1fZQoaAZoCWgPQwhfXoB9dLBxQJSGlFKUaBVL0mgWR0CuGd8LBsQ/dX2UKGgGaAloD0MIml/NAUKncECUhpRSlGgVS+xoFkdArhnxK3/gi3V9lChoBmgJaA9DCGgIxyz7um9AlIaUUpRoFUvWaBZHQK42CRtgrpd1fZQoaAZoCWgPQwhJFFrW/WtkQJSGlFKUaBVN6ANoFkdArjYJvUBnz3V9lChoBmgJaA9DCK2KcJORRnBAlIaUUpRoFU0RAWgWR0CuNphllK9PdX2UKGgGaAloD0MIBpylZLnsb0CUhpRSlGgVS5loFkdArjbeQnx8UnV9lChoBmgJaA9DCARUOIJUOm1AlIaUUpRoFU0UAWgWR0CuNzgTyrggdX2UKGgGaAloD0MI1/oioe3BcECUhpRSlGgVS8poFkdArjdDL4etCHV9lChoBmgJaA9DCD+p9uk4GHBAlIaUUpRoFUvNaBZHQK43ixEfDDV1fZQoaAZoCWgPQwjuCKcFb8VxQJSGlFKUaBVLsmgWR0CuN7eNtIkJdX2UKGgGaAloD0MI2PSgoFQDcECUhpRSlGgVS61oFkdArjgOMyad+XV9lChoBmgJaA9DCNZx/FDpl3FAlIaUUpRoFUuoaBZHQK44xd6cAip1fZQoaAZoCWgPQwhXPzbJT95yQJSGlFKUaBVL+mgWR0CuOM/LkjoqdX2UKGgGaAloD0MIj/6Xa5FfckCUhpRSlGgVS+loFkdArjjWfI0ZWXV9lChoBmgJaA9DCFKZYg4Cr2JAlIaUUpRoFU3oA2gWR0CuOTDGDL8rdX2UKGgGaAloD0MIejnsvuM4cUCUhpRSlGgVS6VoFkdArjlz41xbS3V9lChoBmgJaA9DCJC8cyhDtnBAlIaUUpRoFU0MAWgWR0CuOXrhrFfidX2UKGgGaAloD0MIPx767tbRckCUhpRSlGgVTRIBaBZHQK46kM8YAKh1fZQoaAZoCWgPQwhHc2TlV4pwQJSGlFKUaBVL1mgWR0CuOqt3wCr+dX2UKGgGaAloD0MILXjRV5CxckCUhpRSlGgVS8doFkdArjrXhMrVfHV9lChoBmgJaA9DCKvq5Xcaz29AlIaUUpRoFUujaBZHQK47ch7mdRR1fZQoaAZoCWgPQwhhwmhWtlBxQJSGlFKUaBVL0GgWR0CuO7JPZZjhdX2UKGgGaAloD0MIJT53gn2acUCUhpRSlGgVS7ZoFkdArjwHd43WF3V9lChoBmgJaA9DCLAfYoMFlnBAlIaUUpRoFU00AmgWR0CuPDq59Vm0dX2UKGgGaAloD0MIAYV6+oiXbkCUhpRSlGgVTQQBaBZHQK48hjG1hLJ1fZQoaAZoCWgPQwhiFW9kHqpwQJSGlFKUaBVLmWgWR0CuPOmmce8xdX2UKGgGaAloD0MIZJRnXs4PcECUhpRSlGgVS6FoFkdArj01CRfWtnV9lChoBmgJaA9DCOYEbXL4Bm5AlIaUUpRoFU0JAWgWR0CuPUlaSs8xdX2UKGgGaAloD0MImWTkLCztcECUhpRSlGgVS8doFkdArj16cNH6M3V9lChoBmgJaA9DCGKjrN/MXXFAlIaUUpRoFUuZaBZHQK498kSmIj51fZQoaAZoCWgPQwjQDyOER+JuQJSGlFKUaBVLtWgWR0CuPhrAxi5NdX2UKGgGaAloD0MICwvuBzysOUCUhpRSlGgVS39oFkdArj5ZI4EOiHV9lChoBmgJaA9DCCEFTyHXPm5AlIaUUpRoFUvBaBZHQK4+1gMMI/t1fZQoaAZoCWgPQwjwFkhQfMRvQJSGlFKUaBVLkmgWR0CuPwUIcBEKdX2UKGgGaAloD0MIR1Sobm4bckCUhpRSlGgVS+doFkdArj+WCEpRXXV9lChoBmgJaA9DCD6xTpXvYWFAlIaUUpRoFU3oA2gWR0CuQC2D6FdtdX2UKGgGaAloD0MI5DJuaqDqcECUhpRSlGgVS9NoFkdArkBTLB9Cu3V9lChoBmgJaA9DCOVjd4ESh25AlIaUUpRoFU2NAmgWR0CuQJrU1AJLdX2UKGgGaAloD0MI1lOrr25YcUCUhpRSlGgVS9FoFkdArkEUzKs+3nV9lChoBmgJaA9DCHdM3ZXdHHBAlIaUUpRoFUu3aBZHQK5BH1PFefJ1fZQoaAZoCWgPQwgZHvtZrExwQJSGlFKUaBVLoGgWR0CuQXXPZ7HAdX2UKGgGaAloD0MIUDkmi/uhbECUhpRSlGgVTXIDaBZHQK5Czc1wYLt1fZQoaAZoCWgPQwhEGD+Ne1xvQJSGlFKUaBVLnGgWR0CuQtRsl9jPdX2UKGgGaAloD0MIc0hqoeTXYkCUhpRSlGgVTegDaBZHQK5DGYjSofl1fZQoaAZoCWgPQwiZY3lXPZ9tQJSGlFKUaBVL7mgWR0CuQ4UiQkondX2UKGgGaAloD0MIxvgwexlPckCUhpRSlGgVS5NoFkdArkOlE9dNWXV9lChoBmgJaA9DCH/d6c6TDHJAlIaUUpRoFUutaBZHQK5EZ7qIJqt1fZQoaAZoCWgPQwjK3lLOlyxjQJSGlFKUaBVN6ANoFkdArkSnu1F6RnVlLg=="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 1488,
79
+ "n_steps": 1024,
80
+ "gamma": 0.98,
81
+ "gae_lambda": 0.985,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 12,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
explorer/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2d8e39ed8059a157dd03d351c871dd4a83838ed47a6c04bf8723117ef8e7a208
3
+ size 87929
explorer/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cf3fa7c4a3901168faa36d6cb8da106e7f2c796ddb7fbf64efda1e4642ae053b
3
+ size 43201
explorer/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
explorer/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.147+-x86_64-with-glibc2.27 #1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ Python: 3.8.16
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.13.0+cu116
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
Binary file (196 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 250.73288504613384, "std_reward": 40.06180932409206, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-06T18:07:51.811388"}