update model card README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,69 @@
|
|
1 |
---
|
2 |
-
license:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- precision
|
7 |
+
- recall
|
8 |
+
- f1
|
9 |
+
- accuracy
|
10 |
+
model-index:
|
11 |
+
- name: finetuned_parsBERT_NER_fa
|
12 |
+
results: []
|
13 |
---
|
14 |
+
|
15 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
16 |
+
should probably proofread and complete it, then remove this comment. -->
|
17 |
+
|
18 |
+
# finetuned_parsBERT_NER_fa
|
19 |
+
|
20 |
+
This model is a fine-tuned version of [HooshvareLab/bert-fa-zwnj-base](https://huggingface.co/HooshvareLab/bert-fa-zwnj-base) on the None dataset.
|
21 |
+
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 0.0293
|
23 |
+
- Precision: 0.9435
|
24 |
+
- Recall: 0.9568
|
25 |
+
- F1: 0.9501
|
26 |
+
- Accuracy: 0.9941
|
27 |
+
|
28 |
+
## Model description
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Intended uses & limitations
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training and evaluation data
|
37 |
+
|
38 |
+
More information needed
|
39 |
+
|
40 |
+
## Training procedure
|
41 |
+
|
42 |
+
### Training hyperparameters
|
43 |
+
|
44 |
+
The following hyperparameters were used during training:
|
45 |
+
- learning_rate: 5e-05
|
46 |
+
- train_batch_size: 16
|
47 |
+
- eval_batch_size: 16
|
48 |
+
- seed: 42
|
49 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
+
- lr_scheduler_type: linear
|
51 |
+
- num_epochs: 5
|
52 |
+
|
53 |
+
### Training results
|
54 |
+
|
55 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
56 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
57 |
+
| 0.1202 | 1.0 | 1821 | 0.0528 | 0.8209 | 0.8587 | 0.8394 | 0.9831 |
|
58 |
+
| 0.0383 | 2.0 | 3642 | 0.0348 | 0.9060 | 0.9189 | 0.9124 | 0.9899 |
|
59 |
+
| 0.0168 | 3.0 | 5463 | 0.0278 | 0.9249 | 0.9420 | 0.9334 | 0.9923 |
|
60 |
+
| 0.0077 | 4.0 | 7284 | 0.0274 | 0.9354 | 0.9517 | 0.9435 | 0.9936 |
|
61 |
+
| 0.0037 | 5.0 | 9105 | 0.0293 | 0.9435 | 0.9568 | 0.9501 | 0.9941 |
|
62 |
+
|
63 |
+
|
64 |
+
### Framework versions
|
65 |
+
|
66 |
+
- Transformers 4.21.2
|
67 |
+
- Pytorch 1.12.1+cu113
|
68 |
+
- Datasets 2.4.0
|
69 |
+
- Tokenizers 0.12.1
|