--- library_name: transformers license: apache-2.0 base_model: openai/whisper-medium tags: - generated_from_trainer datasets: - fsicoli/common_voice_18_0 metrics: - wer model-index: - name: Whisper Medium New Train results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 18.0 type: fsicoli/common_voice_18_0 metrics: - name: Wer type: wer value: 2.2782892974889872 --- # Whisper Medium New Train This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the Common Voice 18.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.0204 - Wer: 2.2783 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - training_steps: 8000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.2733 | 0.4077 | 1000 | 0.2585 | 32.5924 | | 0.1527 | 0.8153 | 2000 | 0.1246 | 16.7238 | | 0.0655 | 1.2230 | 3000 | 0.0776 | 10.5668 | | 0.0455 | 1.6307 | 4000 | 0.0514 | 6.7675 | | 0.0162 | 2.0383 | 5000 | 0.0353 | 4.4772 | | 0.0129 | 2.4460 | 6000 | 0.0274 | 3.4364 | | 0.0117 | 2.8536 | 7000 | 0.0220 | 2.5110 | | 0.0044 | 3.2613 | 8000 | 0.0204 | 2.2783 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.3.1 - Datasets 3.0.0 - Tokenizers 0.19.1