2m steps
Browse files- README.md +1 -1
- config.json +1 -1
- ppo-LunarLander-v2.zip +2 -2
- ppo-LunarLander-v2/data +25 -28
- ppo-LunarLander-v2/policy.optimizer.pth +1 -1
- ppo-LunarLander-v2/policy.pth +1 -1
- ppo-LunarLander-v2/system_info.txt +4 -4
- replay.mp4 +2 -2
- results.json +1 -1
README.md
CHANGED
@@ -10,7 +10,7 @@ model-index:
|
|
10 |
results:
|
11 |
- metrics:
|
12 |
- type: mean_reward
|
13 |
-
value:
|
14 |
name: mean_reward
|
15 |
task:
|
16 |
type: reinforcement-learning
|
|
|
10 |
results:
|
11 |
- metrics:
|
12 |
- type: mean_reward
|
13 |
+
value: 267.37 +/- 23.07
|
14 |
name: mean_reward
|
15 |
task:
|
16 |
type: reinforcement-learning
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f7881f0a3b0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7881f0a440>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7881f0a4d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7881f0a560>", "_build": "<function ActorCriticPolicy._build at 0x7f7881f0a5f0>", "forward": "<function ActorCriticPolicy.forward at 0x7f7881f0a680>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7881f0a710>", "_predict": "<function ActorCriticPolicy._predict at 0x7f7881f0a7a0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7881f0a830>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7881f0a8c0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7881f0a950>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f7881f49cf0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVLgsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaBOMBXN0YXRllH2UKIwDa2V5lIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolsAJAAAAAAAAg1+zzIvcNJlqwNB4NM2Jld2KGKsOUgJBBL2pfzFgicH6KRasi5NqLnOf+hqh/BpLilYWHKEhGmw6N/IeEtBfxDkwvbJUtdGJaoSF9rQmXhSmALLm3Ot6XRUwZZqnmmeyJ+3c7Uwi7yHms9ZknNpkpgiWJjxINKxNqw02hi0Y/hVsQHcDsOprdjWsGoQ2LqFD5W5ByKKUxEljtVaeeDrMDvRe6mljW0W8UuKfPMoY1Fp+uR3aouguyNrUI+xxwHqw3evHtqKo1AtLoq9azI+9I4tOUDk/j9uBTyOoTigVCuM8Pk8Zkt0VmzwfmsSLjZtOgUQo9KexG/qSxMxZHXpTRxVzQkEuBFfltXmnheb4w5jxVu38KqnNjwMnu+cbNXlXJQk+l+6Nvy6ApiOi20oGkoeUhbigfhBVbjF2j5Lj/ifUuwl4zY3DCeZOfoycuLWuif+mBkIuwuUyZMthr8Rj8t5EuneYXyEj6uvZ0EXy3n1/hvhkqPARsd2j8800PYPs8ly2nz6QeVChDRun8FvIUegmLY7bi8qEO5fZoWBOlMmMAoZ+2itN8+njiIlbJEpqXkmRBBHkOArcvy9DoNDGw3YtBy/w3etClKpzp33bLRYAaoL71oE7Hg1gCF8jA/rE7jQFHdZtcLmlvL2VTrYETpRSfAeHXWtlapcCusQyCduXPTRF/t3z4W+0SKZdv0mk7lFDNkLUt3Wh97GUS5StmnpSYFi9Vtffia2ILYu4uCockSjL9s6tuZ6KHvsMPpIDbMlkXR42BpQV+8MsG1kXVEjHLrVH11VZCQ7Wsx6LO+11/PrPDyEwPw7DJGYpEF/K29tzDVl1fH0fA7zcmO6495xTRV+BgucYn/T0AjRHIu0SzRD+Ma67fa99tlreYctWTQRSMvskhWjqH9GpSaptKG5mxqqSr6hSjZPrh6Etu1cBJVtasrSxiZ/LcJQKQ1ayKKw0HgyUyXE6mhY/HP/zpym7za3Suam1thZRWU5RiowUGoDZ1EdTzptUy4kpwT39qRdzvCYTQl9nR+rW+B0/lBHCcpwqoz58L4oo5kbvuOQvuwJaXM+6Dm0E7RetDI9hoDDW1YKXzlk95AkKBcsRuvpIKP/t5OQaqQdMIgdbG1pgnDMj/59YmLdZpg1q2UCW/o2hG0P0C1Q5E75r+PoZf4Mmx2ULh1xI85ivdG7JsipfPhmmH4FPGxqg75Bxwd4iPi+VivhifGnduOeXGwm9nsTWnSv2o1OJAYd2NsQw0E2Vrr3ESr7VgBvvItNadaD9ONvDF+XPKTl29KyFGMemFI48vdcXvhomRIoU1e4o7Z0ychNXNG411MERSaF3h/K2T566Fj4lTCrP6yoKCrVuDydsmZU0q00rlL9HUDveGvIqFg9upzVgWesM/Zv2onLIIevvyAbPrnK43yJnO58N1gFm8y49WPXvCjBBvDsgYdMjjxu8hkFdGBpImHD7BwuF8LZfg5hs05UKh2XUPGFKpNkV2+q29+ywu7J54rg+TeSOWkBXIgo+afgofttsHIIM3lLDJQYC2jmH1zGvpcV5HiNYgmGXZgfI1uTlFwOzmklsItokaNWz4YjRt9epMcgssnB2VQ5+EzzOcExNY13GT/gncgVsDsFNJdlVdepUU6F1eyv+DRZAu3LEdmpM3VB0+B6QIcsYlF7Q/Z1elNHyK8wqudihf6yrW8PsPPech9tcZ6Xt094ZzIDHsFJb9H5m9425WhDLcfVBZP4NHqxeqW+ouXIQK4Bc+7wnRbssOsFzRGsysHUlK+IjgeMJ5fo/2aCtBr3fCvILobAEZAJQsfoQ4/qd6ljf8v5ztX5Lni1tOo/eKEtxaKZ2dYBfSQRXb030Z+FBFFbSduExO/vaCSN1SH92OpNF6LVGD6xNh2r5G74C14mseuH7+hua7xmFlb/0ifMJVrSUZM7dOy/ycKrDPexjk/OWoHXz5b7gTUU+7f5tM7Osf2hSumva9hG+Q+Ec6M15I9doiMYcEl9XYcIp+LKCZpj728qP5A2Dl9Wdr1qW/Mh30pA2pQY6M3QAP58H2gqyKcHGEX7Zx0UgvUpWeCuG4bdWtEqnXzmXgDs5bpDaV84CjkgRc6hEqZ9nVCF6bMU5f46sYtOuoK60sjUg9l1SD23zHNkpKzY+T3fZDAF2NOuqpgyrjzekDTjyYyC1K3f7HTCMtjrhRN5BdReUKk4t2cJ1lNlDUolfLZQWMde9Ug5N8fP88Xyt8a4zUzACRer6vdq1ZYYYE9JojwzKL3yn7R6W3j1B2Z479S/TwNB5gTQmHlOtniuMKUwC7/Hw6DO/9F/gH1Iesncm+4ztI8GYs+J+8H/XjoiY8ZScYeTXsRUPiIUABeWfxXW/abUfFTosQdX5aiclk+kIcS3WENtk1C9cWwDG93hwUy8vaoqWzXT5XHGcvfVMgu2T31TLVr+tv4LsckaTPxcf03Jwh3i4bbrItEjR9BWC44XlbpIwblHjbl1ImwythqsRaapodJoT1UW1c/bLeSxj5r7Zn117IJ19sBLRIiUIOqevEPR3jDwlKmY7ocPfy7eG+OEp3OdTScoSYxsSUvBrYicbui9WXKggYebSC7oVHVeWthkwpOvydiV0gAuIrXvW3mW7wBlr94uLtI8ebCPSZFtOiQOftv5pGl+UYikyQRhwVYkLFGXFM/+d3h6fBlIm/wXXPknT6VVCDlrO57BYPt8+cOkQy0/ccN9c3HOpmc20EuJrSAq8b4vcq3cgJsmcI/pKClI616P8DAbaMd8ZIeZ3zdfBZTTV73AaE3o4hUn4AoBvgh0N+fDG2a7/3r7la8XQMMEQMxxk85jv2t4ECnaH3BjBrD4GXbHM9aDEEX5DGtFPNh2ilCf3NWROQ9ujmeFAGGV4kZcvF/nTW0d576yMulRQjfKXu3nqQkHaKK5um5vnnk54/KiXNc6Vji3l1wtQCBMbv98kFivVEXq6lRKWsxP5wpPmyvobIR81djmEbWSGNztjXpCH/pjHIA0ZJR5O/tyVcXUpD7a1X3WUoESqA4C4dBTvmkFEJLj9u+vVGQ66hMrNhEOj/zDLHLLsURhsXECAarFI+9EEf0i1xrMNBgWSreZ9CGQeQmoV/3SdMyyJThWB3RxkC2DbP9WGL4nN8Ku2honNvmGpXSK1XUtwEprBhy+wC8Y9XlfKQrTRlF1KTC7QkFW8Ime4NhT9oYGFQwVdYuBIUgMVIWNV829LdexpVSrsL+LiuZOyvhtIDjk4ZnlBhS6dgboS13ckqkaIV+SZl0RxqKFWmNpd64zAbns1OZwePevSF82x01dYLQsKGVboyzMbPOtKPivTlGgJjAJ1NJSJiIeUUpQoSwNoDU5OTkr/////Sv////9LAHSUYk1wAoWUjAFDlHSUUpSMA3Bvc5RLFHWMCWhhc19nYXVzc5RLAIwFZ2F1c3OURwAAAAAAAAAAdWJ1Yi4=", "n": 4, "_shape": [], "dtype": "int64", "_np_random": "RandomState(MT19937)"}, "n_envs": 1, "num_timesteps": 4000768, "_total_timesteps": 4000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651878502.2962997, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAACa00r1BixI/4tkEPpJE0b5z1Cw9bs77uwAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00019199999999996997, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVLBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI4qsdxTlFUECUhpRSlIwBbJRLq4wBdJRHQL0kTBVuJk51fZQoaAZoCWgPQwhhqMMKd2VzQJSGlFKUaBVL82gWR0C9JJ/gm7aqdX2UKGgGaAloD0MITpoGRfPCTkCUhpRSlGgVS7poFkdAvSTdYdQwbnV9lChoBmgJaA9DCDoGZK93rXFAlIaUUpRoFUvraBZHQL0lK5le4Td1fZQoaAZoCWgPQwjT9xqCI51xQJSGlFKUaBVLw2gWR0C9JblHjIaMdX2UKGgGaAloD0MIdAzIXq/8cECUhpRSlGgVS9RoFkdAvSX/nnuAqnV9lChoBmgJaA9DCM7eGW1VZ3JAlIaUUpRoFUv3aBZHQL0mVLhJiAl1fZQoaAZoCWgPQwid1m1Q+35xQJSGlFKUaBVNGAFoFkdAvSa4YqG1yHV9lChoBmgJaA9DCPq5oSl7A3JAlIaUUpRoFUvoaBZHQL0nVR9gF5h1fZQoaAZoCWgPQwg2BMdl3E9zQJSGlFKUaBVL62gWR0C9J6JN47iidX2UKGgGaAloD0MISPsfYO2KckCUhpRSlGgVTQkBaBZHQL0n/AN5MUR1fZQoaAZoCWgPQwi+vAD76IBxQJSGlFKUaBVL12gWR0C9KEQK8cuKdX2UKGgGaAloD0MIayi1F9GITECUhpRSlGgVS6poFkdAvSh/9ZRsM3V9lChoBmgJaA9DCAFO7+J9H3FAlIaUUpRoFUvMaBZHQL0pEV81Gb11fZQoaAZoCWgPQwi7YkZ4e/FtQJSGlFKUaBVL3GgWR0C9KVuYYzi0dX2UKGgGaAloD0MI6gWf5iTocUCUhpRSlGgVS+FoFkdAvSmqWw/xD3V9lChoBmgJaA9DCBMOvcVDo3NAlIaUUpRoFUvYaBZHQL0p8eiBXjl1fZQoaAZoCWgPQwjij6LOnI5yQJSGlFKUaBVL3WgWR0C9KjrE1l5GdX2UKGgGaAloD0MI4jrGFRcYckCUhpRSlGgVS+hoFkdAvSrazhP0qnV9lChoBmgJaA9DCBl1rb3PJnFAlIaUUpRoFUvraBZHQL0rK+xnnMd1fZQoaAZoCWgPQwhnR6rvfC5yQJSGlFKUaBVL1mgWR0C9K3Tk6tDEdX2UKGgGaAloD0MILoz0ovbAb0CUhpRSlGgVS9toFkdAvSu+RPoFFHV9lChoBmgJaA9DCHIxBtZxjE9AlIaUUpRoFUvIaBZHQL0sS7SApa11fZQoaAZoCWgPQwiFlQoq6stwQJSGlFKUaBVL7GgWR0C9LJzmnwXqdX2UKGgGaAloD0MI/WzkuildZ0CUhpRSlGgVTegDaBZHQL0ujb0voNd1fZQoaAZoCWgPQwiPN/ktOmNyQJSGlFKUaBVLymgWR0C9LtSyMUAUdX2UKGgGaAloD0MI+aBnsyqmckCUhpRSlGgVS8hoFkdAvS8YINVinnV9lChoBmgJaA9DCOLK2Tvj6nFAlIaUUpRoFUvraBZHQL0vZIOYplV1fZQoaAZoCWgPQwgR/kXQmBFxQJSGlFKUaBVNCAFoFkdAvTAMasIVunV9lChoBmgJaA9DCHR9Hw6S1m9AlIaUUpRoFUvpaBZHQL0wW38n/kx1fZQoaAZoCWgPQwgBp3fxfktnQJSGlFKUaBVNVQJoFkdAvTFxb5dnkHV9lChoBmgJaA9DCBeARukSPnJAlIaUUpRoFU0RAWgWR0C9MibbtZ3cdX2UKGgGaAloD0MIZmt9kRAjcUCUhpRSlGgVS+poFkdAvTJ1d6cAinV9lChoBmgJaA9DCA0c0NJVaHNAlIaUUpRoFUv6aBZHQL0yzmCROlB1fZQoaAZoCWgPQwhaZDvfjxRwQJSGlFKUaBVL1GgWR0C9MxhNRFZxdX2UKGgGaAloD0MIgH106ko2c0CUhpRSlGgVTQcBaBZHQL0zwjMV1wJ1fZQoaAZoCWgPQwgUeZJ0jepyQJSGlFKUaBVL6GgWR0C9NBE4aP0adX2UKGgGaAloD0MIach4lEpzcUCUhpRSlGgVS99oFkdAvTRcE1VHWnV9lChoBmgJaA9DCEsfuqB+f3BAlIaUUpRoFUvSaBZHQL00omlImPZ1fZQoaAZoCWgPQwi3tvC8VK1vQJSGlFKUaBVL22gWR0C9NTXVsk6cdX2UKGgGaAloD0MI/9DMk+tKc0CUhpRSlGgVS8xoFkdAvTV7IxQBP3V9lChoBmgJaA9DCMv2IW85uXJAlIaUUpRoFUvtaBZHQL01052Qnx91fZQoaAZoCWgPQwjObi2TYTduQJSGlFKUaBVLzmgWR0C9NhlwxWT5dX2UKGgGaAloD0MInKiluRV6bkCUhpRSlGgVS9poFkdAvTZhYKYzBXV9lChoBmgJaA9DCKc9JedEB3NAlIaUUpRoFUvPaBZHQL029KEFnqV1fZQoaAZoCWgPQwj8OQX5WXdyQJSGlFKUaBVL8WgWR0C9N0QdGRV7dX2UKGgGaAloD0MI3CvzVt27bUCUhpRSlGgVS95oFkdAvTePdrO7hHV9lChoBmgJaA9DCFxzR/8LgHJAlIaUUpRoFU0YAWgWR0C9N/C7kGRndX2UKGgGaAloD0MIsHPTZtyQcUCUhpRSlGgVTQABaBZHQL04lpBX0Xh1fZQoaAZoCWgPQwiF7/0NGqRxQJSGlFKUaBVLxGgWR0C9ONiS/0uldX2UKGgGaAloD0MIgzRj0TQKc0CUhpRSlGgVS/ZoFkdAvTkuhwl0HXV9lChoBmgJaA9DCAnCFVCop3JAlIaUUpRoFUvraBZHQL05gK/VRUF1fZQoaAZoCWgPQwhaZ3xf3F1xQJSGlFKUaBVL42gWR0C9OdWxdIGydX2UKGgGaAloD0MIUYU/w5tGb0CUhpRSlGgVS9RoFkdAvTp0YsNDt3V9lChoBmgJaA9DCPI/+bs373JAlIaUUpRoFUvuaBZHQL060vLX+VF1fZQoaAZoCWgPQwiSdqOP+WhxQJSGlFKUaBVL/2gWR0C9OzArlNlAdX2UKGgGaAloD0MIrU1je+3+ckCUhpRSlGgVS99oFkdAvTt4vDgqE3V9lChoBmgJaA9DCHvBpzl5h1NAlIaUUpRoFUvIaBZHQL08CfsNUfh1fZQoaAZoCWgPQwiaJmw/mZZvQJSGlFKUaBVL8mgWR0C9PF8FUyYYdX2UKGgGaAloD0MINIP4wE5ickCUhpRSlGgVS/BoFkdAvTyz+NtIkXV9lChoBmgJaA9DCOMYyR7hunBAlIaUUpRoFUvWaBZHQL08/Ea2nbZ1fZQoaAZoCWgPQwj1Se6wSXxyQJSGlFKUaBVL0GgWR0C9PUCXdCVsdX2UKGgGaAloD0MIf4Y3azBTcUCUhpRSlGgVS/NoFkdAvT3h3A2ycHV9lChoBmgJaA9DCE61FmbhI3FAlIaUUpRoFUvMaBZHQL0+JfoA4n51fZQoaAZoCWgPQwhv1uB9VZlyQJSGlFKUaBVNHAFoFkdAvT6GsbNr03V9lChoBmgJaA9DCLmpgeZzO25AlIaUUpRoFUvgaBZHQL0+1DQqqfh1fZQoaAZoCWgPQwiscwzI3nJxQJSGlFKUaBVL5GgWR0C9P3EdFOO9dX2UKGgGaAloD0MI9vBlooiqcUCUhpRSlGgVS75oFkdAvT+yfywwCnV9lChoBmgJaA9DCA99dyvL/2VAlIaUUpRoFU3oA2gWR0C9QbpAD7qIdX2UKGgGaAloD0MIEyf3O5Q0bkCUhpRSlGgVS9hoFkdAvUIKj8DSxHV9lChoBmgJaA9DCFOwxtl0qHNAlIaUUpRoFUv+aBZHQL1CX79hqj91fZQoaAZoCWgPQwjcLckBexBzQJSGlFKUaBVL42gWR0C9Qqptix3WdX2UKGgGaAloD0MIgGJkyVxxc0CUhpRSlGgVS+RoFkdAvUNG5tm+TXV9lChoBmgJaA9DCEM3+wMlZXBAlIaUUpRoFUvTaBZHQL1DjBfa6Bl1fZQoaAZoCWgPQwjIfECg8zhxQJSGlFKUaBVL1mgWR0C9Q9SDRMN+dX2UKGgGaAloD0MIzox+NNwpcUCUhpRSlGgVS+NoFkdAvUQhE0BOpXV9lChoBmgJaA9DCKvRqwGKx3FAlIaUUpRoFUvZaBZHQL1EaFQEZBN1fZQoaAZoCWgPQwjo9SfxOeZwQJSGlFKUaBVL9mgWR0C9RQrpiZv2dX2UKGgGaAloD0MIVWe1wN43ckCUhpRSlGgVS8poFkdAvUVNrRBu43V9lChoBmgJaA9DCB123zF8j3BAlIaUUpRoFUvqaBZHQL1FmgUlAu91fZQoaAZoCWgPQwj6Dn7igCZzQJSGlFKUaBVL92gWR0C9Re0yk9EDdX2UKGgGaAloD0MIdVlMbP7kcUCUhpRSlGgVS9hoFkdAvUaC2Xsw+XV9lChoBmgJaA9DCEz9vKlIFnNAlIaUUpRoFU0KAWgWR0C9Rt5OFg2IdX2UKGgGaAloD0MIkPeqlQlVbkCUhpRSlGgVS+RoFkdAvUcrpmmLtXV9lChoBmgJaA9DCD6Skh4GBW9AlIaUUpRoFUvXaBZHQL1HckN4JNV1fZQoaAZoCWgPQwjbTlsjghJvQJSGlFKUaBVLzGgWR0C9R7TMeOn3dX2UKGgGaAloD0MIz2bV52ogcECUhpRSlGgVS+hoFkdAvUhXIo3JgnV9lChoBmgJaA9DCOljPiDQY3JAlIaUUpRoFU0FAWgWR0C9SLHVsk6cdX2UKGgGaAloD0MIDM7g75dQb0CUhpRSlGgVS9JoFkdAvUj4BEKE4HV9lChoBmgJaA9DCHbfMTx2CW9AlIaUUpRoFUvRaBZHQL1JPpoK2KF1fZQoaAZoCWgPQwj0qWOV0nxyQJSGlFKUaBVL2GgWR0C9SduXu3MIdX2UKGgGaAloD0MIqmG/J9ZDTUCUhpRSlGgVTegDaBZHQL1MniqQzUJ1fZQoaAZoCWgPQwhNh07Pu4ZxQJSGlFKUaBVL42gWR0C9TOxyGSIQdX2UKGgGaAloD0MIn1bRH1ofckCUhpRSlGgVS+ZoFkdAvU05Wp6yB3V9lChoBmgJaA9DCO3w12SN2XBAlIaUUpRoFU0JAWgWR0C9TZZ5Z8rqdX2UKGgGaAloD0MIn1inynffb0CUhpRSlGgVS+JoFkdAvU4tcbBGhHV9lChoBmgJaA9DCK8iowOS5XFAlIaUUpRoFUv8aBZHQL1OhUM5OrR1fZQoaAZoCWgPQwhXIeUn1ZNwQJSGlFKUaBVL22gWR0C9Ts7HdXT3dX2UKGgGaAloD0MIC+4HPDDbcUCUhpRSlGgVS+9oFkdAvU8has6q83V9lChoBmgJaA9DCPMgPUWO/G5AlIaUUpRoFUvNaBZHQL1PZcIJJGx1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 15628, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f214ebadca0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f214ebadd30>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f214ebaddc0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f214ebade50>", "_build": "<function ActorCriticPolicy._build at 0x7f214ebadee0>", "forward": "<function ActorCriticPolicy.forward at 0x7f214ebadf70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f214ebb2040>", "_predict": "<function ActorCriticPolicy._predict at 0x7f214ebb20d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f214ebb2160>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f214ebb21f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f214ebb2280>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f214ebae500>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 2506752, "_total_timesteps": 2500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652125678.1445148, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV9wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGMvaG9tZS9ubS9hbmFjb25kYTMvZW52cy9kZWVwLXJsLWNsYXNzL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGMvaG9tZS9ubS9hbmFjb25kYTMvZW52cy9kZWVwLXJsLWNsYXNzL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": null, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0027007999999999477, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVMhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIbyu9Nts7c0CUhpRSlIwBbJRL2YwBdJRHQJch+DIzWPN1fZQoaAZoCWgPQwjb3QN0X/NvQJSGlFKUaBVL72gWR0CXIhTyauwHdX2UKGgGaAloD0MIfVwbKgamcUCUhpRSlGgVS9RoFkdAlyK127nPmnV9lChoBmgJaA9DCEPk9PU8O3FAlIaUUpRoFUv+aBZHQJcjChIvrW11fZQoaAZoCWgPQwi8BKc+kF1zQJSGlFKUaBVL2mgWR0CXIygM+eOGdX2UKGgGaAloD0MIuU+OAsRBbkCUhpRSlGgVS/JoFkdAlyNjVhCtzXV9lChoBmgJaA9DCIW2nEsx/HBAlIaUUpRoFUvZaBZHQJcjzNTtLL91fZQoaAZoCWgPQwgWTz3SINNwQJSGlFKUaBVL+mgWR0CXJDhK15SndX2UKGgGaAloD0MIHGFRESdickCUhpRSlGgVTR4BaBZHQJckVqASWZ91fZQoaAZoCWgPQwgvpMNDGEtxQJSGlFKUaBVLxmgWR0CXJIgX/HYIdX2UKGgGaAloD0MIOiAJ+3aJbkCUhpRSlGgVS+NoFkdAlyTCQo1DSnV9lChoBmgJaA9DCLbz/dT4BHRAlIaUUpRoFUvvaBZHQJclLTWoWHl1fZQoaAZoCWgPQwg8hzJURWtxQJSGlFKUaBVL7GgWR0CXJTw+MZP3dX2UKGgGaAloD0MIsrtASYFEcECUhpRSlGgVTQABaBZHQJclc3GXHBF1fZQoaAZoCWgPQwh/wW7Ydi1yQJSGlFKUaBVL7WgWR0CXJalCCz1LdX2UKGgGaAloD0MIjZyFPW1Hb0CUhpRSlGgVTQwCaBZHQJclv8aXKKZ1fZQoaAZoCWgPQwi+Ed2zrspxQJSGlFKUaBVL3mgWR0CXJt24/eLvdX2UKGgGaAloD0MID2Q9tbrtcUCUhpRSlGgVS/9oFkdAlycPIn0CinV9lChoBmgJaA9DCFouG50zBnFAlIaUUpRoFU0YAWgWR0CXJyP+n62wdX2UKGgGaAloD0MIytx8IzqRckCUhpRSlGgVTRoBaBZHQJcnoGmk30h1fZQoaAZoCWgPQwh5H0dzJKVwQJSGlFKUaBVL92gWR0CXJ7n003wTdX2UKGgGaAloD0MIEY5Z9mRTcUCUhpRSlGgVS+5oFkdAlyf+gpSaVnV9lChoBmgJaA9DCM9pFmj3029AlIaUUpRoFUv9aBZHQJcoXtdAxBV1fZQoaAZoCWgPQwi70Fynka1uQJSGlFKUaBVL32gWR0CXKN6vq1PWdX2UKGgGaAloD0MITnrf+BomckCUhpRSlGgVTRABaBZHQJco6LOzIFN1fZQoaAZoCWgPQwhaSwFpf6NwQJSGlFKUaBVNBwFoFkdAlykCtFKChHV9lChoBmgJaA9DCFvvN9qxSXBAlIaUUpRoFU23AWgWR0CXKRrBj4HpdX2UKGgGaAloD0MIpS2u8RnlcECUhpRSlGgVS/RoFkdAlykkuxrzoXV9lChoBmgJaA9DCFUYWwiyW3JAlIaUUpRoFUv/aBZHQJcpg+V1Oj91fZQoaAZoCWgPQwilTGpoA7FvQJSGlFKUaBVL72gWR0CXKZD9wWFfdX2UKGgGaAloD0MI9kIB2wHickCUhpRSlGgVTQ0BaBZHQJcp42/BWPt1fZQoaAZoCWgPQwhO7KF9LCdjQJSGlFKUaBVN6ANoFkdAlzdLbL2YfHV9lChoBmgJaA9DCLIqwk1GvnJAlIaUUpRoFUv8aBZHQJc3uQp4KQd1fZQoaAZoCWgPQwh73LdaZ0xxQJSGlFKUaBVL92gWR0CXN7gpBomHdX2UKGgGaAloD0MIx2Xc1MCxbECUhpRSlGgVS9xoFkdAlzfCSaEzwnV9lChoBmgJaA9DCAE0Spc+H3FAlIaUUpRoFUvXaBZHQJc3xZeRgZ11fZQoaAZoCWgPQwgLQnkfx2BxQJSGlFKUaBVNDwFoFkdAlzfWUfPom3V9lChoBmgJaA9DCDNqvkq+63FAlIaUUpRoFUveaBZHQJc4D7iyY5V1fZQoaAZoCWgPQwhRTrSrkNluQJSGlFKUaBVL3WgWR0CXOFEeyRjjdX2UKGgGaAloD0MI2Lj+XZ8dT0CUhpRSlGgVS6BoFkdAlzjm4Vh1DHV9lChoBmgJaA9DCFGHFW65RXFAlIaUUpRoFUviaBZHQJc46LWI42l1fZQoaAZoCWgPQwj+nIL8rEVxQJSGlFKUaBVL+2gWR0CXOS6uW8h+dX2UKGgGaAloD0MIRu7p6s4Xc0CUhpRSlGgVS/toFkdAlzlcj3VTaXV9lChoBmgJaA9DCDdtxmmIwXBAlIaUUpRoFU0AAWgWR0CXOXld1MdtdX2UKGgGaAloD0MI6NuCpXo3cUCUhpRSlGgVTRgBaBZHQJc5kZZSvTx1fZQoaAZoCWgPQwgZrDjVWiBwQJSGlFKUaBVL6WgWR0CXOZpQk5ZKdX2UKGgGaAloD0MIGjOJekGxcECUhpRSlGgVS/VoFkdAlzmzASFoMHV9lChoBmgJaA9DCBXGFoIcF3JAlIaUUpRoFUvWaBZHQJc6LPu5SWJ1fZQoaAZoCWgPQwguymyQyTlwQJSGlFKUaBVL6GgWR0CXOtrKeTV2dX2UKGgGaAloD0MI58OzBFnkckCUhpRSlGgVS+xoFkdAlzrsqz7di3V9lChoBmgJaA9DCI83+S26TnNAlIaUUpRoFUvfaBZHQJc7Y34sVcl1fZQoaAZoCWgPQwjC9/4GrYVxQJSGlFKUaBVNCQFoFkdAlzttoi9qUXV9lChoBmgJaA9DCINQ3seRDXFAlIaUUpRoFUv9aBZHQJc7hfF72L51fZQoaAZoCWgPQwjfiy/a44ByQJSGlFKUaBVNHQFoFkdAlzuZvtMPBnV9lChoBmgJaA9DCHglyXO9hXNAlIaUUpRoFUvQaBZHQJc7yDWbw0B1fZQoaAZoCWgPQwgYtftVADhzQJSGlFKUaBVNNgFoFkdAlzv1U+9rXXV9lChoBmgJaA9DCNBiKZIvVm9AlIaUUpRoFUviaBZHQJc8CSTyJ9B1fZQoaAZoCWgPQwh4CyQofgtxQJSGlFKUaBVL0mgWR0CXPDyXD3uedX2UKGgGaAloD0MIx/Xv+kzecECUhpRSlGgVS+xoFkdAlzxrvXsgMnV9lChoBmgJaA9DCBwIyQKmSnBAlIaUUpRoFUvRaBZHQJc8azposZp1fZQoaAZoCWgPQwjvPPGc7T9yQJSGlFKUaBVL6mgWR0CXPKTn7pFDdX2UKGgGaAloD0MIEarU7IFIckCUhpRSlGgVS+loFkdAlzy+bI91U3V9lChoBmgJaA9DCD7rGi3HD3NAlIaUUpRoFUvkaBZHQJc8x5VwPy11fZQoaAZoCWgPQwgnv0UnSzBwQJSGlFKUaBVL3WgWR0CXPSVlwtJ4dX2UKGgGaAloD0MIIlLTLqbdVkCUhpRSlGgVS5FoFkdAlz2VOj7AL3V9lChoBmgJaA9DCGGL3T4rXnJAlIaUUpRoFUvOaBZHQJc9nMNc4YJ1fZQoaAZoCWgPQwhWvJF5JJRyQJSGlFKUaBVL8mgWR0CXPghfShJzdX2UKGgGaAloD0MIQ3OdRtq2cUCUhpRSlGgVS9loFkdAlz5SHh0heXV9lChoBmgJaA9DCJcd4h/2lnBAlIaUUpRoFUvxaBZHQJc+lTvRZ2Z1fZQoaAZoCWgPQwhbQ6m9iAJyQJSGlFKUaBVL6mgWR0CXPqfNiYsvdX2UKGgGaAloD0MIq5hKP6F1ckCUhpRSlGgVS9doFkdAlz6/j0cwQHV9lChoBmgJaA9DCC7m54bmiXBAlIaUUpRoFUvRaBZHQJc+vk8zQ/p1fZQoaAZoCWgPQwihoX+Cy7NyQJSGlFKUaBVNGgFoFkdAlz8e0Xxe9nV9lChoBmgJaA9DCBAFM6Zgt3NAlIaUUpRoFUvqaBZHQJc/S4rjHXF1fZQoaAZoCWgPQwinsb0WdL1xQJSGlFKUaBVL8WgWR0CXP5WuX/o8dX2UKGgGaAloD0MIoPoHkcyKc0CUhpRSlGgVS9hoFkdAlz+mxIJ7cHV9lChoBmgJaA9DCM0+j1Fe6XBAlIaUUpRoFUvnaBZHQJc/sdFOO811fZQoaAZoCWgPQwjLaOTzCldxQJSGlFKUaBVL52gWR0CXP83pwCKadX2UKGgGaAloD0MI5q26DpXIc0CUhpRSlGgVTQoBaBZHQJc/551Ng0F1fZQoaAZoCWgPQwiAf0qVqGZuQJSGlFKUaBVL3WgWR0CXQBsHB1s+dX2UKGgGaAloD0MIATEJFzI6ckCUhpRSlGgVS/1oFkdAl0ERIjGDMHV9lChoBmgJaA9DCNPZyeAof29AlIaUUpRoFUvgaBZHQJdBGj3225R1fZQoaAZoCWgPQwjt1FxuMOlRQJSGlFKUaBVLh2gWR0CXQX1UVBUrdX2UKGgGaAloD0MI9SoyOiB8cECUhpRSlGgVS9ZoFkdAl0GGHUMG5nV9lChoBmgJaA9DCGoTJ/d7g3JAlIaUUpRoFU0sAWgWR0CXQcCpWFN+dX2UKGgGaAloD0MIAb9GkqDMb0CUhpRSlGgVS95oFkdAl0HQsCkoF3V9lChoBmgJaA9DCF+4c2EklG1AlIaUUpRoFUvqaBZHQJdB5YYBNmF1fZQoaAZoCWgPQwiLxAQ1PB5xQJSGlFKUaBVL62gWR0CXQf0dRzikdX2UKGgGaAloD0MIxLMEGYEnckCUhpRSlGgVS9poFkdAl0JPatcOb3V9lChoBmgJaA9DCEhvuI8chHBAlIaUUpRoFUvraBZHQJdCXvJA+px1fZQoaAZoCWgPQwj9h/TbF2JyQJSGlFKUaBVNMAFoFkdAl0KKz7di2HV9lChoBmgJaA9DCB9lxAXgdHFAlIaUUpRoFUviaBZHQJdCzU/fO2R1fZQoaAZoCWgPQwiZ8iGomgtyQJSGlFKUaBVL2mgWR0CXQs9XcQAddX2UKGgGaAloD0MIVvSHZh5ycUCUhpRSlGgVS9ZoFkdAl0LcxTKkmHV9lChoBmgJaA9DCHwrEhPUnXNAlIaUUpRoFUv1aBZHQJdDdr/Khct1fZQoaAZoCWgPQwjTZpyGKEJyQJSGlFKUaBVNKAFoFkdAl0OWGRFI/nV9lChoBmgJaA9DCGMnvARnt3NAlIaUUpRoFUvPaBZHQJdD6jj7yhB1fZQoaAZoCWgPQwg2kC42bTtxQJSGlFKUaBVL3GgWR0CXRA987ZFodX2UKGgGaAloD0MIaW6FsBqCcECUhpRSlGgVS9poFkdAl0R08NhE0HV9lChoBmgJaA9DCFIq4Qk9w29AlIaUUpRoFUvgaBZHQJdEg4Nqgyx1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 612, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV9wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGMvaG9tZS9ubS9hbmFjb25kYTMvZW52cy9kZWVwLXJsLWNsYXNzL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGMvaG9tZS9ubS9hbmFjb25kYTMvZW52cy9kZWVwLXJsLWNsYXNzL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.11.0-38-generic-x86_64-with-glibc2.31 #42~20.04.1-Ubuntu SMP Tue Sep 28 20:41:07 UTC 2021", "Python": "3.9.12", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu102", "GPU Enabled": "True", "Numpy": "1.22.3", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2c9943cacd4b73948cf269da877d984e67e5ecf3031d18a7816064d146f7bcbf
|
3 |
+
size 143252
|
ppo-LunarLander-v2/data
CHANGED
@@ -4,19 +4,19 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
14 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
15 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
16 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
17 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
18 |
"__abstractmethods__": "frozenset()",
|
19 |
-
"_abc_impl": "<_abc_data object at
|
20 |
},
|
21 |
"verbose": 1,
|
22 |
"policy_kwargs": {},
|
@@ -35,47 +35,44 @@
|
|
35 |
},
|
36 |
"action_space": {
|
37 |
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
-
":serialized:": "
|
39 |
"n": 4,
|
40 |
"_shape": [],
|
41 |
"dtype": "int64",
|
42 |
-
"_np_random":
|
43 |
},
|
44 |
-
"n_envs":
|
45 |
-
"num_timesteps":
|
46 |
-
"_total_timesteps":
|
47 |
"_num_timesteps_at_start": 0,
|
48 |
"seed": null,
|
49 |
"action_noise": null,
|
50 |
-
"start_time":
|
51 |
"learning_rate": 0.0003,
|
52 |
"tensorboard_log": null,
|
53 |
"lr_schedule": {
|
54 |
":type:": "<class 'function'>",
|
55 |
-
":serialized:": "
|
56 |
-
},
|
57 |
-
"_last_obs": {
|
58 |
-
":type:": "<class 'numpy.ndarray'>",
|
59 |
-
":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAACa00r1BixI/4tkEPpJE0b5z1Cw9bs77uwAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
|
60 |
},
|
|
|
61 |
"_last_episode_starts": {
|
62 |
":type:": "<class 'numpy.ndarray'>",
|
63 |
-
":serialized:": "
|
64 |
},
|
65 |
"_last_original_obs": null,
|
66 |
"_episode_num": 0,
|
67 |
"use_sde": false,
|
68 |
"sde_sample_freq": -1,
|
69 |
-
"_current_progress_remaining": -0.
|
70 |
"ep_info_buffer": {
|
71 |
":type:": "<class 'collections.deque'>",
|
72 |
-
":serialized:": "
|
73 |
},
|
74 |
"ep_success_buffer": {
|
75 |
":type:": "<class 'collections.deque'>",
|
76 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
},
|
78 |
-
"_n_updates":
|
79 |
"n_steps": 1024,
|
80 |
"gamma": 0.999,
|
81 |
"gae_lambda": 0.98,
|
@@ -86,7 +83,7 @@
|
|
86 |
"n_epochs": 4,
|
87 |
"clip_range": {
|
88 |
":type:": "<class 'function'>",
|
89 |
-
":serialized:": "
|
90 |
},
|
91 |
"clip_range_vf": null,
|
92 |
"normalize_advantage": true,
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f214ebadca0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f214ebadd30>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f214ebaddc0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f214ebade50>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f214ebadee0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f214ebadf70>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f214ebb2040>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f214ebb20d0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f214ebb2160>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f214ebb21f0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f214ebb2280>",
|
18 |
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f214ebae500>"
|
20 |
},
|
21 |
"verbose": 1,
|
22 |
"policy_kwargs": {},
|
|
|
35 |
},
|
36 |
"action_space": {
|
37 |
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
"n": 4,
|
40 |
"_shape": [],
|
41 |
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 2506752,
|
46 |
+
"_total_timesteps": 2500000,
|
47 |
"_num_timesteps_at_start": 0,
|
48 |
"seed": null,
|
49 |
"action_noise": null,
|
50 |
+
"start_time": 1652125678.1445148,
|
51 |
"learning_rate": 0.0003,
|
52 |
"tensorboard_log": null,
|
53 |
"lr_schedule": {
|
54 |
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWV9wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGMvaG9tZS9ubS9hbmFjb25kYTMvZW52cy9kZWVwLXJsLWNsYXNzL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGMvaG9tZS9ubS9hbmFjb25kYTMvZW52cy9kZWVwLXJsLWNsYXNzL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
|
|
|
|
|
|
|
|
56 |
},
|
57 |
+
"_last_obs": null,
|
58 |
"_last_episode_starts": {
|
59 |
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
61 |
},
|
62 |
"_last_original_obs": null,
|
63 |
"_episode_num": 0,
|
64 |
"use_sde": false,
|
65 |
"sde_sample_freq": -1,
|
66 |
+
"_current_progress_remaining": -0.0027007999999999477,
|
67 |
"ep_info_buffer": {
|
68 |
":type:": "<class 'collections.deque'>",
|
69 |
+
":serialized:": "gAWVMhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIbyu9Nts7c0CUhpRSlIwBbJRL2YwBdJRHQJch+DIzWPN1fZQoaAZoCWgPQwjb3QN0X/NvQJSGlFKUaBVL72gWR0CXIhTyauwHdX2UKGgGaAloD0MIfVwbKgamcUCUhpRSlGgVS9RoFkdAlyK127nPmnV9lChoBmgJaA9DCEPk9PU8O3FAlIaUUpRoFUv+aBZHQJcjChIvrW11fZQoaAZoCWgPQwi8BKc+kF1zQJSGlFKUaBVL2mgWR0CXIygM+eOGdX2UKGgGaAloD0MIuU+OAsRBbkCUhpRSlGgVS/JoFkdAlyNjVhCtzXV9lChoBmgJaA9DCIW2nEsx/HBAlIaUUpRoFUvZaBZHQJcjzNTtLL91fZQoaAZoCWgPQwgWTz3SINNwQJSGlFKUaBVL+mgWR0CXJDhK15SndX2UKGgGaAloD0MIHGFRESdickCUhpRSlGgVTR4BaBZHQJckVqASWZ91fZQoaAZoCWgPQwgvpMNDGEtxQJSGlFKUaBVLxmgWR0CXJIgX/HYIdX2UKGgGaAloD0MIOiAJ+3aJbkCUhpRSlGgVS+NoFkdAlyTCQo1DSnV9lChoBmgJaA9DCLbz/dT4BHRAlIaUUpRoFUvvaBZHQJclLTWoWHl1fZQoaAZoCWgPQwg8hzJURWtxQJSGlFKUaBVL7GgWR0CXJTw+MZP3dX2UKGgGaAloD0MIsrtASYFEcECUhpRSlGgVTQABaBZHQJclc3GXHBF1fZQoaAZoCWgPQwh/wW7Ydi1yQJSGlFKUaBVL7WgWR0CXJalCCz1LdX2UKGgGaAloD0MIjZyFPW1Hb0CUhpRSlGgVTQwCaBZHQJclv8aXKKZ1fZQoaAZoCWgPQwi+Ed2zrspxQJSGlFKUaBVL3mgWR0CXJt24/eLvdX2UKGgGaAloD0MID2Q9tbrtcUCUhpRSlGgVS/9oFkdAlycPIn0CinV9lChoBmgJaA9DCFouG50zBnFAlIaUUpRoFU0YAWgWR0CXJyP+n62wdX2UKGgGaAloD0MIytx8IzqRckCUhpRSlGgVTRoBaBZHQJcnoGmk30h1fZQoaAZoCWgPQwh5H0dzJKVwQJSGlFKUaBVL92gWR0CXJ7n003wTdX2UKGgGaAloD0MIEY5Z9mRTcUCUhpRSlGgVS+5oFkdAlyf+gpSaVnV9lChoBmgJaA9DCM9pFmj3029AlIaUUpRoFUv9aBZHQJcoXtdAxBV1fZQoaAZoCWgPQwi70Fynka1uQJSGlFKUaBVL32gWR0CXKN6vq1PWdX2UKGgGaAloD0MITnrf+BomckCUhpRSlGgVTRABaBZHQJco6LOzIFN1fZQoaAZoCWgPQwhaSwFpf6NwQJSGlFKUaBVNBwFoFkdAlykCtFKChHV9lChoBmgJaA9DCFvvN9qxSXBAlIaUUpRoFU23AWgWR0CXKRrBj4HpdX2UKGgGaAloD0MIpS2u8RnlcECUhpRSlGgVS/RoFkdAlykkuxrzoXV9lChoBmgJaA9DCFUYWwiyW3JAlIaUUpRoFUv/aBZHQJcpg+V1Oj91fZQoaAZoCWgPQwilTGpoA7FvQJSGlFKUaBVL72gWR0CXKZD9wWFfdX2UKGgGaAloD0MI9kIB2wHickCUhpRSlGgVTQ0BaBZHQJcp42/BWPt1fZQoaAZoCWgPQwhO7KF9LCdjQJSGlFKUaBVN6ANoFkdAlzdLbL2YfHV9lChoBmgJaA9DCLIqwk1GvnJAlIaUUpRoFUv8aBZHQJc3uQp4KQd1fZQoaAZoCWgPQwh73LdaZ0xxQJSGlFKUaBVL92gWR0CXN7gpBomHdX2UKGgGaAloD0MIx2Xc1MCxbECUhpRSlGgVS9xoFkdAlzfCSaEzwnV9lChoBmgJaA9DCAE0Spc+H3FAlIaUUpRoFUvXaBZHQJc3xZeRgZ11fZQoaAZoCWgPQwgLQnkfx2BxQJSGlFKUaBVNDwFoFkdAlzfWUfPom3V9lChoBmgJaA9DCDNqvkq+63FAlIaUUpRoFUveaBZHQJc4D7iyY5V1fZQoaAZoCWgPQwhRTrSrkNluQJSGlFKUaBVL3WgWR0CXOFEeyRjjdX2UKGgGaAloD0MI2Lj+XZ8dT0CUhpRSlGgVS6BoFkdAlzjm4Vh1DHV9lChoBmgJaA9DCFGHFW65RXFAlIaUUpRoFUviaBZHQJc46LWI42l1fZQoaAZoCWgPQwj+nIL8rEVxQJSGlFKUaBVL+2gWR0CXOS6uW8h+dX2UKGgGaAloD0MIRu7p6s4Xc0CUhpRSlGgVS/toFkdAlzlcj3VTaXV9lChoBmgJaA9DCDdtxmmIwXBAlIaUUpRoFU0AAWgWR0CXOXld1MdtdX2UKGgGaAloD0MI6NuCpXo3cUCUhpRSlGgVTRgBaBZHQJc5kZZSvTx1fZQoaAZoCWgPQwgZrDjVWiBwQJSGlFKUaBVL6WgWR0CXOZpQk5ZKdX2UKGgGaAloD0MIGjOJekGxcECUhpRSlGgVS/VoFkdAlzmzASFoMHV9lChoBmgJaA9DCBXGFoIcF3JAlIaUUpRoFUvWaBZHQJc6LPu5SWJ1fZQoaAZoCWgPQwguymyQyTlwQJSGlFKUaBVL6GgWR0CXOtrKeTV2dX2UKGgGaAloD0MI58OzBFnkckCUhpRSlGgVS+xoFkdAlzrsqz7di3V9lChoBmgJaA9DCI83+S26TnNAlIaUUpRoFUvfaBZHQJc7Y34sVcl1fZQoaAZoCWgPQwjC9/4GrYVxQJSGlFKUaBVNCQFoFkdAlzttoi9qUXV9lChoBmgJaA9DCINQ3seRDXFAlIaUUpRoFUv9aBZHQJc7hfF72L51fZQoaAZoCWgPQwjfiy/a44ByQJSGlFKUaBVNHQFoFkdAlzuZvtMPBnV9lChoBmgJaA9DCHglyXO9hXNAlIaUUpRoFUvQaBZHQJc7yDWbw0B1fZQoaAZoCWgPQwgYtftVADhzQJSGlFKUaBVNNgFoFkdAlzv1U+9rXXV9lChoBmgJaA9DCNBiKZIvVm9AlIaUUpRoFUviaBZHQJc8CSTyJ9B1fZQoaAZoCWgPQwh4CyQofgtxQJSGlFKUaBVL0mgWR0CXPDyXD3uedX2UKGgGaAloD0MIx/Xv+kzecECUhpRSlGgVS+xoFkdAlzxrvXsgMnV9lChoBmgJaA9DCBwIyQKmSnBAlIaUUpRoFUvRaBZHQJc8azposZp1fZQoaAZoCWgPQwjvPPGc7T9yQJSGlFKUaBVL6mgWR0CXPKTn7pFDdX2UKGgGaAloD0MIEarU7IFIckCUhpRSlGgVS+loFkdAlzy+bI91U3V9lChoBmgJaA9DCD7rGi3HD3NAlIaUUpRoFUvkaBZHQJc8x5VwPy11fZQoaAZoCWgPQwgnv0UnSzBwQJSGlFKUaBVL3WgWR0CXPSVlwtJ4dX2UKGgGaAloD0MIIlLTLqbdVkCUhpRSlGgVS5FoFkdAlz2VOj7AL3V9lChoBmgJaA9DCGGL3T4rXnJAlIaUUpRoFUvOaBZHQJc9nMNc4YJ1fZQoaAZoCWgPQwhWvJF5JJRyQJSGlFKUaBVL8mgWR0CXPghfShJzdX2UKGgGaAloD0MIQ3OdRtq2cUCUhpRSlGgVS9loFkdAlz5SHh0heXV9lChoBmgJaA9DCJcd4h/2lnBAlIaUUpRoFUvxaBZHQJc+lTvRZ2Z1fZQoaAZoCWgPQwhbQ6m9iAJyQJSGlFKUaBVL6mgWR0CXPqfNiYsvdX2UKGgGaAloD0MIq5hKP6F1ckCUhpRSlGgVS9doFkdAlz6/j0cwQHV9lChoBmgJaA9DCC7m54bmiXBAlIaUUpRoFUvRaBZHQJc+vk8zQ/p1fZQoaAZoCWgPQwihoX+Cy7NyQJSGlFKUaBVNGgFoFkdAlz8e0Xxe9nV9lChoBmgJaA9DCBAFM6Zgt3NAlIaUUpRoFUvqaBZHQJc/S4rjHXF1fZQoaAZoCWgPQwinsb0WdL1xQJSGlFKUaBVL8WgWR0CXP5WuX/o8dX2UKGgGaAloD0MIoPoHkcyKc0CUhpRSlGgVS9hoFkdAlz+mxIJ7cHV9lChoBmgJaA9DCM0+j1Fe6XBAlIaUUpRoFUvnaBZHQJc/sdFOO811fZQoaAZoCWgPQwjLaOTzCldxQJSGlFKUaBVL52gWR0CXP83pwCKadX2UKGgGaAloD0MI5q26DpXIc0CUhpRSlGgVTQoBaBZHQJc/551Ng0F1fZQoaAZoCWgPQwiAf0qVqGZuQJSGlFKUaBVL3WgWR0CXQBsHB1s+dX2UKGgGaAloD0MIATEJFzI6ckCUhpRSlGgVS/1oFkdAl0ERIjGDMHV9lChoBmgJaA9DCNPZyeAof29AlIaUUpRoFUvgaBZHQJdBGj3225R1fZQoaAZoCWgPQwjt1FxuMOlRQJSGlFKUaBVLh2gWR0CXQX1UVBUrdX2UKGgGaAloD0MI9SoyOiB8cECUhpRSlGgVS9ZoFkdAl0GGHUMG5nV9lChoBmgJaA9DCGoTJ/d7g3JAlIaUUpRoFU0sAWgWR0CXQcCpWFN+dX2UKGgGaAloD0MIAb9GkqDMb0CUhpRSlGgVS95oFkdAl0HQsCkoF3V9lChoBmgJaA9DCF+4c2EklG1AlIaUUpRoFUvqaBZHQJdB5YYBNmF1fZQoaAZoCWgPQwiLxAQ1PB5xQJSGlFKUaBVL62gWR0CXQf0dRzikdX2UKGgGaAloD0MIxLMEGYEnckCUhpRSlGgVS9poFkdAl0JPatcOb3V9lChoBmgJaA9DCEhvuI8chHBAlIaUUpRoFUvraBZHQJdCXvJA+px1fZQoaAZoCWgPQwj9h/TbF2JyQJSGlFKUaBVNMAFoFkdAl0KKz7di2HV9lChoBmgJaA9DCB9lxAXgdHFAlIaUUpRoFUviaBZHQJdCzU/fO2R1fZQoaAZoCWgPQwiZ8iGomgtyQJSGlFKUaBVL2mgWR0CXQs9XcQAddX2UKGgGaAloD0MIVvSHZh5ycUCUhpRSlGgVS9ZoFkdAl0LcxTKkmHV9lChoBmgJaA9DCHwrEhPUnXNAlIaUUpRoFUv1aBZHQJdDdr/Khct1fZQoaAZoCWgPQwjTZpyGKEJyQJSGlFKUaBVNKAFoFkdAl0OWGRFI/nV9lChoBmgJaA9DCGMnvARnt3NAlIaUUpRoFUvPaBZHQJdD6jj7yhB1fZQoaAZoCWgPQwg2kC42bTtxQJSGlFKUaBVL3GgWR0CXRA987ZFodX2UKGgGaAloD0MIaW6FsBqCcECUhpRSlGgVS9poFkdAl0R08NhE0HV9lChoBmgJaA9DCFIq4Qk9w29AlIaUUpRoFUvgaBZHQJdEg4Nqgyx1ZS4="
|
70 |
},
|
71 |
"ep_success_buffer": {
|
72 |
":type:": "<class 'collections.deque'>",
|
73 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
74 |
},
|
75 |
+
"_n_updates": 612,
|
76 |
"n_steps": 1024,
|
77 |
"gamma": 0.999,
|
78 |
"gae_lambda": 0.98,
|
|
|
83 |
"n_epochs": 4,
|
84 |
"clip_range": {
|
85 |
":type:": "<class 'function'>",
|
86 |
+
":serialized:": "gAWV9wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGMvaG9tZS9ubS9hbmFjb25kYTMvZW52cy9kZWVwLXJsLWNsYXNzL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGMvaG9tZS9ubS9hbmFjb25kYTMvZW52cy9kZWVwLXJsLWNsYXNzL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
87 |
},
|
88 |
"clip_range_vf": null,
|
89 |
"normalize_advantage": true,
|
ppo-LunarLander-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 84893
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:351465e51b46e95aa34cdd1c0cd8d37eac2f66dc610d0bc5609fd7710377244a
|
3 |
size 84893
|
ppo-LunarLander-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 43201
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2e5892ce18c7e2a6df07f390a5b0bb490210d9a792556f1224e4cc43503b736a
|
3 |
size 43201
|
ppo-LunarLander-v2/system_info.txt
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
-
OS: Linux-5.
|
2 |
-
Python: 3.
|
3 |
Stable-Baselines3: 1.5.0
|
4 |
-
PyTorch: 1.11.0+
|
5 |
GPU Enabled: True
|
6 |
-
Numpy: 1.
|
7 |
Gym: 0.21.0
|
|
|
1 |
+
OS: Linux-5.11.0-38-generic-x86_64-with-glibc2.31 #42~20.04.1-Ubuntu SMP Tue Sep 28 20:41:07 UTC 2021
|
2 |
+
Python: 3.9.12
|
3 |
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu102
|
5 |
GPU Enabled: True
|
6 |
+
Numpy: 1.22.3
|
7 |
Gym: 0.21.0
|
replay.mp4
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4576ff97fcc0c1a93c7e21bf3d33907b4481135cd27aacb1b30d7110365cd5b8
|
3 |
+
size 191055
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 267.36909513337594, "std_reward": 23.067034458833696, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-09T22:20:29.303998"}
|