2m frames
Browse files- README.md +1 -1
- config.json +1 -1
- ppo-LunarLander-v2.zip +2 -2
- ppo-LunarLander-v2/data +23 -23
- ppo-LunarLander-v2/policy.optimizer.pth +1 -1
- ppo-LunarLander-v2/policy.pth +1 -1
- ppo-LunarLander-v2/system_info.txt +4 -4
- replay.mp4 +2 -2
- results.json +1 -1
README.md
CHANGED
@@ -10,7 +10,7 @@ model-index:
|
|
10 |
results:
|
11 |
- metrics:
|
12 |
- type: mean_reward
|
13 |
-
value:
|
14 |
name: mean_reward
|
15 |
task:
|
16 |
type: reinforcement-learning
|
|
|
10 |
results:
|
11 |
- metrics:
|
12 |
- type: mean_reward
|
13 |
+
value: 280.04 +/- 18.85
|
14 |
name: mean_reward
|
15 |
task:
|
16 |
type: reinforcement-learning
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f51f4d3bca0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f51f4d3bd30>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f51f4d3bdc0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f51f4d3be50>", "_build": "<function ActorCriticPolicy._build at 0x7f51f4d3bee0>", "forward": "<function ActorCriticPolicy.forward at 0x7f51f4d3bf70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f51f4d40040>", "_predict": "<function ActorCriticPolicy._predict at 0x7f51f4d400d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f51f4d40160>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f51f4d401f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f51f4d40280>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f51f4d3dc40>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651872647.258572, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV9wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGMvaG9tZS9ubS9hbmFjb25kYTMvZW52cy9kZWVwLXJsLWNsYXNzL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGMvaG9tZS9ubS9hbmFjb25kYTMvZW52cy9kZWVwLXJsLWNsYXNzL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAE0lTL6wDoM/eD35vldhHb+RyYi+Qv08vgAAAAAAAAAAgBEyva7VtrqRWYm3kcJ4sgPZbrleuZw2AACAPwAAgD8zW2+7Kzu5P845JbzknQy+VsX/PHrnWrwAAAAAAAAAAIbZUj6SqC0/JDQCvb8y9b6lB0s+yLn+vQAAAAAAAAAAJvXZPUhdirp45uK9O8rNOzKUIrtsfcQ8AAAAAAAAgD8N1P29ExqhP1bx876r7he/bfMHvomdpr0AAAAAAAAAABrqIT7D8D0/QtMRvN5+6762gT4+cG+lvQAAAAAAAAAAZt3xvLA5Oz86FQq+ZNbkvmoUAr0XJSm9AAAAAAAAAADN7kC8uL70ODN9mDu5sA09AgOfOpD+ljsAAIA/AACAPzNbJLspEDe6gXmNtVVoE7HtVKw78y23NAAAgD8AAIA/mtnAulz7OrrCa4S93NpePXTf3bm2kAC8AACAPwAAgD9z0pW9WHLCP8fbtL7JL1i8aANHvdyqtb0AAAAAAAAAAM3vpz0JLu4+jVPNvf1hqL45UCg9JVRkvQAAAAAAAAAAAHyRu9sMgj/4R1O9kAoTvyMyeD2zL5m9AAAAAAAAAAAaggC9J62UPgM3Y7yfe4a+MySQvKZ/Mb0AAAAAAAAAAGbhojyWmnk/o7r/vL517r59u549RxmZPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVTBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIw2fr4CDbc0CUhpRSlIwBbJRL/owBdJRHQIoHP779AHF1fZQoaAZoCWgPQwg164zvC6FuQJSGlFKUaBVL+2gWR0CKCD2bG3nZdX2UKGgGaAloD0MIU5eMY+TbcUCUhpRSlGgVS9loFkdAighuEmICVHV9lChoBmgJaA9DCLHAV3RrGXFAlIaUUpRoFUvvaBZHQIoIfpMYdhl1fZQoaAZoCWgPQwjONczQ+LNyQJSGlFKUaBVNEgFoFkdAigj/2bobGXV9lChoBmgJaA9DCCB/aVEfHHJAlIaUUpRoFUv6aBZHQIoJDMPjGT91fZQoaAZoCWgPQwhNv0S89dVuQJSGlFKUaBVL/GgWR0CKCcYvWYnfdX2UKGgGaAloD0MITihEwKGkbkCUhpRSlGgVTRoBaBZHQIoJ9hb4agp1fZQoaAZoCWgPQwgtlbcjHGNwQJSGlFKUaBVNGAFoFkdAigq1uaWonHV9lChoBmgJaA9DCCaKkLodWnJAlIaUUpRoFU0BAWgWR0CKCvRa5f+kdX2UKGgGaAloD0MITRQhdbsfb0CUhpRSlGgVS+loFkdAigstlZowmHV9lChoBmgJaA9DCPLpsS0DBHJAlIaUUpRoFU0YAWgWR0CKC3He7+UAdX2UKGgGaAloD0MI1ldXBerpcECUhpRSlGgVS+hoFkdAig45HEuQIXV9lChoBmgJaA9DCM8R+S4leHJAlIaUUpRoFU0iAWgWR0CKDphpg1FZdX2UKGgGaAloD0MIJhk5C/uLc0CUhpRSlGgVTQwBaBZHQIoOvjfek591fZQoaAZoCWgPQwiIvOXqB+lwQJSGlFKUaBVNMwFoFkdAig7M0HhS+HV9lChoBmgJaA9DCLg7a7cdTXFAlIaUUpRoFUvgaBZHQIoPND6WPcV1fZQoaAZoCWgPQwioVfSHJv1wQJSGlFKUaBVL4WgWR0CKD0uZkTYedX2UKGgGaAloD0MIn1VmSislc0CUhpRSlGgVTQ4BaBZHQIoQcvugHu91fZQoaAZoCWgPQwg661OOSWdwQJSGlFKUaBVNSAFoFkdAihCNnwob43V9lChoBmgJaA9DCFZI+Uk1A25AlIaUUpRoFUvwaBZHQIoRB4MWoFV1fZQoaAZoCWgPQwjcuwZ9abtxQJSGlFKUaBVNEQFoFkdAihFEvboKUnV9lChoBmgJaA9DCETC9/4G73BAlIaUUpRoFUv4aBZHQIoSZ1RtP551fZQoaAZoCWgPQwgipdk8jnBxQJSGlFKUaBVL/WgWR0CKEsi1RceKdX2UKGgGaAloD0MIKo2Y2efDb0CUhpRSlGgVTQ4BaBZHQIoTmD+R5kd1fZQoaAZoCWgPQwjNWgpIu6lzQJSGlFKUaBVNbgFoFkdAihPpe/pMYnV9lChoBmgJaA9DCAJ/+Pmv13BAlIaUUpRoFU08AWgWR0CKFC6UaAFxdX2UKGgGaAloD0MI4sgDkcVpckCUhpRSlGgVTWUBaBZHQIoUmIwdsBR1fZQoaAZoCWgPQwg8wJMWrgRxQJSGlFKUaBVL1GgWR0CKFQAeaKDTdX2UKGgGaAloD0MInBiSkwlib0CUhpRSlGgVS9hoFkdAihT+S0Sh8XV9lChoBmgJaA9DCHLhQEjWKXJAlIaUUpRoFUvcaBZHQIoVP2AXl8x1fZQoaAZoCWgPQwjHf4EgwItwQJSGlFKUaBVL+2gWR0CKFoDklu3udX2UKGgGaAloD0MI3GeVmVKrb0CUhpRSlGgVS9poFkdAihbVIRRMvnV9lChoBmgJaA9DCLqCbcQT625AlIaUUpRoFU0lAWgWR0CKFuRJVbRndX2UKGgGaAloD0MIijpzD8kUc0CUhpRSlGgVS+NoFkdAihb+xW1c+3V9lChoBmgJaA9DCPVk/tF3BXNAlIaUUpRoFU0RAWgWR0CKFzM3ZPEbdX2UKGgGaAloD0MIjKNyEzUXcUCUhpRSlGgVS/NoFkdAihfYKhL5AXV9lChoBmgJaA9DCNDVVuyvPnJAlIaUUpRoFUv3aBZHQIpKpnQID5l1fZQoaAZoCWgPQwhz843onq5wQJSGlFKUaBVNKQFoFkdAikrv+XJHRXV9lChoBmgJaA9DCLhWe9jLIXNAlIaUUpRoFUvOaBZHQIpLpjawljV1fZQoaAZoCWgPQwhJS+XtCA1wQJSGlFKUaBVL9GgWR0CKTCB5HEuQdX2UKGgGaAloD0MI6bZELjg3cECUhpRSlGgVS/RoFkdAikxl49ovjHV9lChoBmgJaA9DCGiyf55GUHRAlIaUUpRoFUvBaBZHQIpN2EM9bHJ1fZQoaAZoCWgPQwg6lnfVA0JyQJSGlFKUaBVLxWgWR0CKTh2dNFjNdX2UKGgGaAloD0MIgQcGEL4/cUCUhpRSlGgVTRIBaBZHQIpOXBeokzJ1fZQoaAZoCWgPQwh4tHHEmgFwQJSGlFKUaBVL2GgWR0CKTpWvr4WUdX2UKGgGaAloD0MIgO82b1zBcECUhpRSlGgVTRABaBZHQIpOoTqSowV1fZQoaAZoCWgPQwhF9dbAFntwQJSGlFKUaBVL6GgWR0CKTsOEug6EdX2UKGgGaAloD0MI2QbuQB22b0CUhpRSlGgVS9loFkdAik8QmNR3vHV9lChoBmgJaA9DCMsQx7q4eXFAlIaUUpRoFUvKaBZHQIpPbK7qY7d1fZQoaAZoCWgPQwgh5SfVvk5uQJSGlFKUaBVNPgFoFkdAik+3SBshxHV9lChoBmgJaA9DCPlmmxtTvHBAlIaUUpRoFU2SAWgWR0CKULwpe/pMdX2UKGgGaAloD0MIXi9NEeA0c0CUhpRSlGgVTcwBaBZHQIpRmEVWS2Z1fZQoaAZoCWgPQwh80okEk7NxQJSGlFKUaBVL3GgWR0CKUle1KGtZdX2UKGgGaAloD0MIU5eMYyQ/ckCUhpRSlGgVTRYBaBZHQIpTZgZ0jkd1fZQoaAZoCWgPQwjAIOnTqk9xQJSGlFKUaBVL82gWR0CKU4Fj/dZadX2UKGgGaAloD0MInFCIgAOJcUCUhpRSlGgVS9xoFkdAilSpr+Hae3V9lChoBmgJaA9DCCBEMuQYMnBAlIaUUpRoFU0TAWgWR0CKVMfms/6gdX2UKGgGaAloD0MI/z147dIGckCUhpRSlGgVTVoBaBZHQIpVPEsJ6Y51fZQoaAZoCWgPQwiGWWjn9LtxQJSGlFKUaBVNBwFoFkdAilXGJN0vG3V9lChoBmgJaA9DCHY4ukp3pnJAlIaUUpRoFUv6aBZHQIpWMiSq2jR1fZQoaAZoCWgPQwig3oya7wdyQJSGlFKUaBVNCQFoFkdAilZLhrFfiXV9lChoBmgJaA9DCE35EFQNxHBAlIaUUpRoFU0DAWgWR0CKVllnyup0dX2UKGgGaAloD0MI9FFGXIALc0CUhpRSlGgVS/JoFkdAilacuJ1q33V9lChoBmgJaA9DCC8WhshpM3BAlIaUUpRoFU0UAWgWR0CKVsvkBCD3dX2UKGgGaAloD0MIGt1B7EzNNECUhpRSlGgVS9BoFkdAilb3RXwLE3V9lChoBmgJaA9DCM3K9iHvQ29AlIaUUpRoFU0PAWgWR0CKVw/vfCQ+dX2UKGgGaAloD0MIjBAebRy5cECUhpRSlGgVTQoBaBZHQIpXevUz9CN1fZQoaAZoCWgPQwiWlLvPce1vQJSGlFKUaBVL62gWR0CKWFmVZ9uxdX2UKGgGaAloD0MIWYXNANc6cUCUhpRSlGgVS+1oFkdAilkcEV32VXV9lChoBmgJaA9DCM41zND4uXBAlIaUUpRoFUv6aBZHQIpamE25xzd1fZQoaAZoCWgPQwgPDCB8KEhwQJSGlFKUaBVNHAFoFkdAilunUUfxMHV9lChoBmgJaA9DCNjYJaq37m1AlIaUUpRoFUv/aBZHQIpcuuieumt1fZQoaAZoCWgPQwj84HzqWItxQJSGlFKUaBVL6GgWR0CKXSB5HEuQdX2UKGgGaAloD0MIxawXQ7nPb0CUhpRSlGgVTQQBaBZHQIpeQF7laKV1fZQoaAZoCWgPQwh39wDdl/xwQJSGlFKUaBVNDAFoFkdAil5feDWbw3V9lChoBmgJaA9DCFyufmzSOnJAlIaUUpRoFUv9aBZHQIpeknCwbER1fZQoaAZoCWgPQwjpmV5ibLFxQJSGlFKUaBVNRgFoFkdAil6y88La3HV9lChoBmgJaA9DCNS2YRTESHNAlIaUUpRoFU0OAWgWR0CKXuu+RHPNdX2UKGgGaAloD0MI2/rpP6tzcECUhpRSlGgVS89oFkdAil8nRLK3eHV9lChoBmgJaA9DCDwRxHk45XBAlIaUUpRoFU0gAWgWR0CKX+BRyfcvdX2UKGgGaAloD0MIz4JQ3sehckCUhpRSlGgVTWoBaBZHQIpf7+vQnhN1fZQoaAZoCWgPQwiHbCBdrKtyQJSGlFKUaBVNIwFoFkdAimAVU+9rXXV9lChoBmgJaA9DCMhD393KGnFAlIaUUpRoFU1ZAWgWR0CKYFjlxOtXdX2UKGgGaAloD0MIk6mCUYkockCUhpRSlGgVTSYBaBZHQIpgnezlcQl1fZQoaAZoCWgPQwiunpPet95xQJSGlFKUaBVL92gWR0CKYQ51eSjhdX2UKGgGaAloD0MIdha9U4FKb0CUhpRSlGgVS+FoFkdAimKaj3225XV9lChoBmgJaA9DCM/AyMsaTHNAlIaUUpRoFUvoaBZHQIpjtIK+i8F1fZQoaAZoCWgPQwgmNh/XBm5wQJSGlFKUaBVL4mgWR0CKY9uzhP0qdX2UKGgGaAloD0MIURa+vtaBcECUhpRSlGgVS/JoFkdAimV3N9ph4XV9lChoBmgJaA9DCFZmSusv0HFAlIaUUpRoFUvZaBZHQIpmvryDqW11fZQoaAZoCWgPQwg4vvbMEi1xQJSGlFKUaBVNAwFoFkdAimc4ukDZDnV9lChoBmgJaA9DCLmJWpob2XJAlIaUUpRoFUvxaBZHQIpnin5zo2Z1fZQoaAZoCWgPQwibcoV3OdlvQJSGlFKUaBVL2mgWR0CKZ6Kmbb1zdX2UKGgGaAloD0MI71UrE361b0CUhpRSlGgVS9FoFkdAimf8dHUc43V9lChoBmgJaA9DCFwC8E8pG29AlIaUUpRoFUv9aBZHQIpomc2BJ7N1fZQoaAZoCWgPQwgHYAMiRP5xQJSGlFKUaBVNGAFoFkdAimj5RTCLuXV9lChoBmgJaA9DCJl/9E1aZnFAlIaUUpRoFU1CAWgWR0CKaSXKr7wbdX2UKGgGaAloD0MIiKHVyRlIcUCUhpRSlGgVTVEBaBZHQIppVtO2y9p1fZQoaAZoCWgPQwjadW9FothwQJSGlFKUaBVNTgFoFkdAimlrzGxUvXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 32, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV9wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGMvaG9tZS9ubS9hbmFjb25kYTMvZW52cy9kZWVwLXJsLWNsYXNzL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGMvaG9tZS9ubS9hbmFjb25kYTMvZW52cy9kZWVwLXJsLWNsYXNzL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.11.0-38-generic-x86_64-with-glibc2.31 #42~20.04.1-Ubuntu SMP Tue Sep 28 20:41:07 UTC 2021", "Python": "3.9.12", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu102", "GPU Enabled": "True", "Numpy": "1.22.3", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f7881f0a3b0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7881f0a440>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7881f0a4d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7881f0a560>", "_build": "<function ActorCriticPolicy._build at 0x7f7881f0a5f0>", "forward": "<function ActorCriticPolicy.forward at 0x7f7881f0a680>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7881f0a710>", "_predict": "<function ActorCriticPolicy._predict at 0x7f7881f0a7a0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7881f0a830>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7881f0a8c0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7881f0a950>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f7881f49cf0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 2015232, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651873191.0180867, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADOVHz0QVG8/Ip24Pcr+OL8k8JA8ZhonvQAAAAAAAAAA8zT7PVtsiD3LN969yoBDvhVzYz1CJ4S8AAAAAAAAAACarTm+OxeWvCAfmLwqfQ67ojgCPjWP4zsAAIA/AACAP81we708zKc+fU53PV3cvb6DIHa89XfMPQAAAAAAAAAAJqCYPYUeUD/wpVk+YvQnvxWsNT0tRXc9AAAAAAAAAACaKaA89A6IvCeLg7wjzbI8J8/pvaJyHL0AAIA/AACAP0bcjz7Y99M+cUSUvZ03975nBoU+n5tAvgAAAAAAAAAAYBc2PqjEvT1alcW+JC52vhCuCb1q/0e9AAAAAAAAAACm0I69Hwrhu3iSsD3uDAk8IX4/vRJU8TwAAIA/AACAPyP7Ur51+H8+eqM5Pk9Jir7WdHe9AjePPAAAAAAAAAAAzWBRPZvaqT06Zmm9UvZ8vnTIHD2yVKa8AAAAAAAAAABtHEc+vqmWP5dbIz8mOi6/NqSPPmKOtz4AAAAAAAAAAKAZKb6BGjY+cpCTPpq7TL6RmiE8rhSSPQAAAAAAAAAAmjUlPUjPirr1sb03gCICMj8AqbpytNy2AACAPwAAgD+zFnq9KW99vNFnPz2M3zY6WkrYvThLEb4AAIA/AACAPwAYSj3PQya8cfAJvrtIij11/Zc94duKvAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.007616000000000067, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVMRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIJSAm4UIDdECUhpRSlIwBbJRL74wBdJRHQL9udClrM1V1fZQoaAZoCWgPQwjB4Jo7+mFxQJSGlFKUaBVL3WgWR0C/brCAxzq9dX2UKGgGaAloD0MIEeSghJkJb0CUhpRSlGgVTTUBaBZHQL9u76bONYN1fZQoaAZoCWgPQwgbguMy7odwQJSGlFKUaBVLwGgWR0C/bvRjriVCdX2UKGgGaAloD0MIDW0ANiD/cECUhpRSlGgVS95oFkdAv28m6y0KJHV9lChoBmgJaA9DCDLlQ1C1dHFAlIaUUpRoFUvSaBZHQL9vYh2W6bx1fZQoaAZoCWgPQwjMDBtlvQFxQJSGlFKUaBVNUQFoFkdAv29tCtzS1HV9lChoBmgJaA9DCLh1N0/1eXBAlIaUUpRoFUvUaBZHQL9vx5ggHNZ1fZQoaAZoCWgPQwh6/Ul8rgFxQJSGlFKUaBVLvWgWR0C/cAEGqxTsdX2UKGgGaAloD0MIg8KgTCMwbkCUhpRSlGgVS9ZoFkdAv3AdUbT+enV9lChoBmgJaA9DCEG7Q4qBo29AlIaUUpRoFUvvaBZHQL9wKOuJUHZ1fZQoaAZoCWgPQwhpHOp3IWhzQJSGlFKUaBVL1WgWR0C/cHX3L3bmdX2UKGgGaAloD0MI4WBvYshwcECUhpRSlGgVS9JoFkdAv3C3AWSEDnV9lChoBmgJaA9DCJ1/u+zXFXNAlIaUUpRoFUvhaBZHQL9w0lFMIu51fZQoaAZoCWgPQwi1FmahXbJwQJSGlFKUaBVL1WgWR0C/cPN6LOzIdX2UKGgGaAloD0MI+YTsvA1sZUCUhpRSlGgVTegDaBZHQL9xMz+3pfR1fZQoaAZoCWgPQwj2mh4UFHpxQJSGlFKUaBVNmgJoFkdAv3GBGI9C/3V9lChoBmgJaA9DCL9jeOxnRVdAlIaUUpRoFU3oA2gWR0C/cY16Rhc8dX2UKGgGaAloD0MIyvs4miMVcUCUhpRSlGgVS7toFkdAv3G9lkH2RXV9lChoBmgJaA9DCFk1CHO7N3NAlIaUUpRoFUvsaBZHQL9xzX1anrJ1fZQoaAZoCWgPQwjY9KCglK5uQJSGlFKUaBVNKgFoFkdAv3Hxa+vhZXV9lChoBmgJaA9DCOzeisSEC3JAlIaUUpRoFUvuaBZHQL9yFE384xV1fZQoaAZoCWgPQwjk+KHSSBFzQJSGlFKUaBVNHAFoFkdAv3JVIWgvlHV9lChoBmgJaA9DCAN64c4F2nFAlIaUUpRoFUvqaBZHQL9yXF5fMOh1fZQoaAZoCWgPQwh7MCk+/rFyQJSGlFKUaBVL1GgWR0C/coHOfNA1dX2UKGgGaAloD0MIQQ5KmKlPcUCUhpRSlGgVS8doFkdAv3KHfR/mT3V9lChoBmgJaA9DCH6OjxZnz25AlIaUUpRoFUvnaBZHQL9yjOjqOcV1fZQoaAZoCWgPQwj3ViQmqF1xQJSGlFKUaBVLymgWR0C/csAXMyJsdX2UKGgGaAloD0MIrB4wD9l3ckCUhpRSlGgVS8toFkdAv3MRkrf+CXV9lChoBmgJaA9DCNY4m47AbnFAlIaUUpRoFUvxaBZHQL9zWZgG8mN1fZQoaAZoCWgPQwg3jliLDzpxQJSGlFKUaBVL4GgWR0C/c3HQ2MsIdX2UKGgGaAloD0MIyXN9H07ScUCUhpRSlGgVS+JoFkdAv3OFsdkrgHV9lChoBmgJaA9DCBnkLsKUnXBAlIaUUpRoFUvMaBZHQL9zp2ycCo11fZQoaAZoCWgPQwgBvXDnAvNyQJSGlFKUaBVLt2gWR0C/c/q8QI2PdX2UKGgGaAloD0MI0erkDEWdZECUhpRSlGgVTegDaBZHQL90ERoRIz51fZQoaAZoCWgPQwhQx2MGqqduQJSGlFKUaBVL0WgWR0C/dCt5le4TdX2UKGgGaAloD0MI+FCiJQ8Mb0CUhpRSlGgVS75oFkdAv3RLvMKTjnV9lChoBmgJaA9DCNUD5iHT7XNAlIaUUpRoFUv7aBZHQL90lT1CgK51fZQoaAZoCWgPQwhYyFwZVIVyQJSGlFKUaBVNTgFoFkdAv3SVvitJWnV9lChoBmgJaA9DCFDFjVsMTXRAlIaUUpRoFUu9aBZHQL90pFC9h7V1fZQoaAZoCWgPQwgfEr73txVlQJSGlFKUaBVN6ANoFkdAv3mMlkYoAnV9lChoBmgJaA9DCJvIzAWuqG9AlIaUUpRoFU1CAWgWR0C/eZk1IiC8dX2UKGgGaAloD0MIdXXHYhsqb0CUhpRSlGgVS9FoFkdAv3nh3Roh6nV9lChoBmgJaA9DCBGPxMsTK3FAlIaUUpRoFUvpaBZHQL955R7Z39t1fZQoaAZoCWgPQwim0eRiDO9uQJSGlFKUaBVLyWgWR0C/elbGWD6FdX2UKGgGaAloD0MI5PT1fE0oYkCUhpRSlGgVTegDaBZHQL96anH/9511fZQoaAZoCWgPQwjzdK4o5eZwQJSGlFKUaBVLx2gWR0C/em5y+6AfdX2UKGgGaAloD0MISMK+nUQucECUhpRSlGgVS7ZoFkdAv3qqlwcYInV9lChoBmgJaA9DCK2Imuizx3FAlIaUUpRoFU01AWgWR0C/esqEFnqWdX2UKGgGaAloD0MIxXJLq6G3ckCUhpRSlGgVS+xoFkdAv3rWIHkcTHV9lChoBmgJaA9DCOHwgohUV3FAlIaUUpRoFUvaaBZHQL968iiZfD11fZQoaAZoCWgPQwgoDqDf93BxQJSGlFKUaBVL4WgWR0C/ewuAAhjfdX2UKGgGaAloD0MIIuLmVDL3ckCUhpRSlGgVS71oFkdAv3sOaVlf7nV9lChoBmgJaA9DCBxg5jt4bm9AlIaUUpRoFUvNaBZHQL97HscyWRl1fZQoaAZoCWgPQwgcCTTYlMJyQJSGlFKUaBVLzmgWR0C/e2sPWhAXdX2UKGgGaAloD0MIwK4mT5kAdECUhpRSlGgVS/VoFkdAv3u9RuTA33V9lChoBmgJaA9DCOOL9nghQ3JAlIaUUpRoFUvVaBZHQL98AyWzF/B1fZQoaAZoCWgPQwjxZg3eV+JcQJSGlFKUaBVN6ANoFkdAv3wFhlUZN3V9lChoBmgJaA9DCBXhJqOKmXFAlIaUUpRoFUvlaBZHQL98EMRHww11fZQoaAZoCWgPQwiAgSBAxpJyQJSGlFKUaBVL82gWR0C/fDr/0dzXdX2UKGgGaAloD0MIzVZe8r83b0CUhpRSlGgVS89oFkdAv3xX0qYqonV9lChoBmgJaA9DCH+8V61MlnJAlIaUUpRoFUv3aBZHQL98eVHnU2F1fZQoaAZoCWgPQwi8BRIUP/5yQJSGlFKUaBVL7GgWR0C/fIIBikO7dX2UKGgGaAloD0MIWBr4UU15ckCUhpRSlGgVS+FoFkdAv3yQzfrKNnV9lChoBmgJaA9DCJVm8zhM8HNAlIaUUpRoFUvZaBZHQL98moLofSx1fZQoaAZoCWgPQwj7rgj+dwNzQJSGlFKUaBVLumgWR0C/fMSZ4Oc2dX2UKGgGaAloD0MImgrxSDybckCUhpRSlGgVS/NoFkdAv3zbSMLncXV9lChoBmgJaA9DCF5jl6heGHFAlIaUUpRoFUvFaBZHQL99Ig8KXv91fZQoaAZoCWgPQwiNs+kIoMRwQJSGlFKUaBVLv2gWR0C/fVYkiUxEdX2UKGgGaAloD0MIzo5U33nYcECUhpRSlGgVS79oFkdAv31jeTFERnV9lChoBmgJaA9DCIVefxJfm3FAlIaUUpRoFUvaaBZHQL99imnfl6t1fZQoaAZoCWgPQwjeBN80vd1yQJSGlFKUaBVLrmgWR0C/fZENvwVkdX2UKGgGaAloD0MIo3iVtU0lcUCUhpRSlGgVTV8BaBZHQL99kUrkKeF1fZQoaAZoCWgPQwhvnBTmPSZvQJSGlFKUaBVLx2gWR0C/fZ9r433pdX2UKGgGaAloD0MI7fMY5VkMcECUhpRSlGgVS99oFkdAv34MlUp/gHV9lChoBmgJaA9DCCMShZZ1XXJAlIaUUpRoFUvnaBZHQL9+ElSjxkN1fZQoaAZoCWgPQwg+sOO/AMZwQJSGlFKUaBVLvmgWR0C/fi+x0MgEdX2UKGgGaAloD0MIsylXeBckcUCUhpRSlGgVS/VoFkdAv35E9t/FznV9lChoBmgJaA9DCHOBy2PNH3FAlIaUUpRoFUv5aBZHQL9+VnQpnYh1fZQoaAZoCWgPQwj6JeKtc+dkQJSGlFKUaBVN6ANoFkdAv357faYeDHV9lChoBmgJaA9DCOwvuyfPM3BAlIaUUpRoFUu1aBZHQL9+mBVMmF91fZQoaAZoCWgPQwjH8UOlkWhyQJSGlFKUaBVLrmgWR0C/ftmmHgxbdX2UKGgGaAloD0MIi/z6ITavcECUhpRSlGgVS8doFkdAv3706vJRwnV9lChoBmgJaA9DCHk7wmnB121AlIaUUpRoFUvDaBZHQL9+9Fjd56d1fZQoaAZoCWgPQwiA9E2axhZwQJSGlFKUaBVL5WgWR0C/fwZWV/tqdX2UKGgGaAloD0MIsRafAuCKcUCUhpRSlGgVS+ZoFkdAv381sANoanV9lChoBmgJaA9DCPet1omL0HBAlIaUUpRoFU07AWgWR0C/f2jPv8ZUdX2UKGgGaAloD0MIaOp1i0DDYUCUhpRSlGgVTegDaBZHQL9/lR4hUzd1fZQoaAZoCWgPQwiKlGbzOBpwQJSGlFKUaBVL2GgWR0C/f6y4OMESdX2UKGgGaAloD0MIMzUJ3pDWRECUhpRSlGgVS2NoFkdAv3+xWvKU3XV9lChoBmgJaA9DCHb/WIgOWHJAlIaUUpRoFUvqaBZHQL9/xuejEeh1fZQoaAZoCWgPQwjqJcYyvWdwQJSGlFKUaBVL2mgWR0C/f8v/FR51dX2UKGgGaAloD0MI41Eq4QlyUkCUhpRSlGgVS65oFkdAv3/j101ZT3V9lChoBmgJaA9DCCpwsg2c+HFAlIaUUpRoFUvdaBZHQL9/5ddE9dN1fZQoaAZoCWgPQwgU56ij46xwQJSGlFKUaBVLwWgWR0C/f+rS/j82dX2UKGgGaAloD0MIQiYZOQtMZUCUhpRSlGgVTegDaBZHQL+ABV+I/JN1fZQoaAZoCWgPQwjNyCB30QJxQJSGlFKUaBVLtmgWR0C/gDeYc/+sdX2UKGgGaAloD0MIqiuf5TmGcUCUhpRSlGgVS+VoFkdAv4BtuGbkO3V9lChoBmgJaA9DCFKbOLnfFXJAlIaUUpRoFUvYaBZHQL+AfTzND+l1fZQoaAZoCWgPQwj6uaEpO8BuQJSGlFKUaBVNFAJoFkdAv4B+dQO4G3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 492, "n_steps": 1024, "gamma": 0.99, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ee02697c9acd5945acb4e1dfb6057f9aa22bc0d1b960bbc463046598e43614a0
|
3 |
+
size 144009
|
ppo-LunarLander-v2/data
CHANGED
@@ -4,19 +4,19 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
14 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
15 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
16 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
17 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
18 |
"__abstractmethods__": "frozenset()",
|
19 |
-
"_abc_impl": "<
|
20 |
},
|
21 |
"verbose": 1,
|
22 |
"policy_kwargs": {},
|
@@ -42,21 +42,21 @@
|
|
42 |
"_np_random": null
|
43 |
},
|
44 |
"n_envs": 16,
|
45 |
-
"num_timesteps":
|
46 |
-
"_total_timesteps":
|
47 |
"_num_timesteps_at_start": 0,
|
48 |
"seed": null,
|
49 |
"action_noise": null,
|
50 |
-
"start_time":
|
51 |
"learning_rate": 0.0003,
|
52 |
"tensorboard_log": null,
|
53 |
"lr_schedule": {
|
54 |
":type:": "<class 'function'>",
|
55 |
-
":serialized:": "
|
56 |
},
|
57 |
"_last_obs": {
|
58 |
":type:": "<class 'numpy.ndarray'>",
|
59 |
-
":serialized:": "
|
60 |
},
|
61 |
"_last_episode_starts": {
|
62 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -66,27 +66,27 @@
|
|
66 |
"_episode_num": 0,
|
67 |
"use_sde": false,
|
68 |
"sde_sample_freq": -1,
|
69 |
-
"_current_progress_remaining": -0.
|
70 |
"ep_info_buffer": {
|
71 |
":type:": "<class 'collections.deque'>",
|
72 |
-
":serialized:": "
|
73 |
},
|
74 |
"ep_success_buffer": {
|
75 |
":type:": "<class 'collections.deque'>",
|
76 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
},
|
78 |
-
"_n_updates":
|
79 |
"n_steps": 1024,
|
80 |
-
"gamma": 0.
|
81 |
"gae_lambda": 0.98,
|
82 |
"ent_coef": 0.01,
|
83 |
"vf_coef": 0.5,
|
84 |
"max_grad_norm": 0.5,
|
85 |
-
"batch_size":
|
86 |
"n_epochs": 4,
|
87 |
"clip_range": {
|
88 |
":type:": "<class 'function'>",
|
89 |
-
":serialized:": "
|
90 |
},
|
91 |
"clip_range_vf": null,
|
92 |
"normalize_advantage": true,
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f7881f0a3b0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7881f0a440>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7881f0a4d0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7881f0a560>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f7881f0a5f0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f7881f0a680>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7881f0a710>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f7881f0a7a0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7881f0a830>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7881f0a8c0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7881f0a950>",
|
18 |
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f7881f49cf0>"
|
20 |
},
|
21 |
"verbose": 1,
|
22 |
"policy_kwargs": {},
|
|
|
42 |
"_np_random": null
|
43 |
},
|
44 |
"n_envs": 16,
|
45 |
+
"num_timesteps": 2015232,
|
46 |
+
"_total_timesteps": 2000000,
|
47 |
"_num_timesteps_at_start": 0,
|
48 |
"seed": null,
|
49 |
"action_noise": null,
|
50 |
+
"start_time": 1651873191.0180867,
|
51 |
"learning_rate": 0.0003,
|
52 |
"tensorboard_log": null,
|
53 |
"lr_schedule": {
|
54 |
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
},
|
57 |
"_last_obs": {
|
58 |
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADOVHz0QVG8/Ip24Pcr+OL8k8JA8ZhonvQAAAAAAAAAA8zT7PVtsiD3LN969yoBDvhVzYz1CJ4S8AAAAAAAAAACarTm+OxeWvCAfmLwqfQ67ojgCPjWP4zsAAIA/AACAP81we708zKc+fU53PV3cvb6DIHa89XfMPQAAAAAAAAAAJqCYPYUeUD/wpVk+YvQnvxWsNT0tRXc9AAAAAAAAAACaKaA89A6IvCeLg7wjzbI8J8/pvaJyHL0AAIA/AACAP0bcjz7Y99M+cUSUvZ03975nBoU+n5tAvgAAAAAAAAAAYBc2PqjEvT1alcW+JC52vhCuCb1q/0e9AAAAAAAAAACm0I69Hwrhu3iSsD3uDAk8IX4/vRJU8TwAAIA/AACAPyP7Ur51+H8+eqM5Pk9Jir7WdHe9AjePPAAAAAAAAAAAzWBRPZvaqT06Zmm9UvZ8vnTIHD2yVKa8AAAAAAAAAABtHEc+vqmWP5dbIz8mOi6/NqSPPmKOtz4AAAAAAAAAAKAZKb6BGjY+cpCTPpq7TL6RmiE8rhSSPQAAAAAAAAAAmjUlPUjPirr1sb03gCICMj8AqbpytNy2AACAPwAAgD+zFnq9KW99vNFnPz2M3zY6WkrYvThLEb4AAIA/AACAPwAYSj3PQya8cfAJvrtIij11/Zc94duKvAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
},
|
61 |
"_last_episode_starts": {
|
62 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
66 |
"_episode_num": 0,
|
67 |
"use_sde": false,
|
68 |
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.007616000000000067,
|
70 |
"ep_info_buffer": {
|
71 |
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVMRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIJSAm4UIDdECUhpRSlIwBbJRL74wBdJRHQL9udClrM1V1fZQoaAZoCWgPQwjB4Jo7+mFxQJSGlFKUaBVL3WgWR0C/brCAxzq9dX2UKGgGaAloD0MIEeSghJkJb0CUhpRSlGgVTTUBaBZHQL9u76bONYN1fZQoaAZoCWgPQwgbguMy7odwQJSGlFKUaBVLwGgWR0C/bvRjriVCdX2UKGgGaAloD0MIDW0ANiD/cECUhpRSlGgVS95oFkdAv28m6y0KJHV9lChoBmgJaA9DCDLlQ1C1dHFAlIaUUpRoFUvSaBZHQL9vYh2W6bx1fZQoaAZoCWgPQwjMDBtlvQFxQJSGlFKUaBVNUQFoFkdAv29tCtzS1HV9lChoBmgJaA9DCLh1N0/1eXBAlIaUUpRoFUvUaBZHQL9vx5ggHNZ1fZQoaAZoCWgPQwh6/Ul8rgFxQJSGlFKUaBVLvWgWR0C/cAEGqxTsdX2UKGgGaAloD0MIg8KgTCMwbkCUhpRSlGgVS9ZoFkdAv3AdUbT+enV9lChoBmgJaA9DCEG7Q4qBo29AlIaUUpRoFUvvaBZHQL9wKOuJUHZ1fZQoaAZoCWgPQwhpHOp3IWhzQJSGlFKUaBVL1WgWR0C/cHX3L3bmdX2UKGgGaAloD0MI4WBvYshwcECUhpRSlGgVS9JoFkdAv3C3AWSEDnV9lChoBmgJaA9DCJ1/u+zXFXNAlIaUUpRoFUvhaBZHQL9w0lFMIu51fZQoaAZoCWgPQwi1FmahXbJwQJSGlFKUaBVL1WgWR0C/cPN6LOzIdX2UKGgGaAloD0MI+YTsvA1sZUCUhpRSlGgVTegDaBZHQL9xMz+3pfR1fZQoaAZoCWgPQwj2mh4UFHpxQJSGlFKUaBVNmgJoFkdAv3GBGI9C/3V9lChoBmgJaA9DCL9jeOxnRVdAlIaUUpRoFU3oA2gWR0C/cY16Rhc8dX2UKGgGaAloD0MIyvs4miMVcUCUhpRSlGgVS7toFkdAv3G9lkH2RXV9lChoBmgJaA9DCFk1CHO7N3NAlIaUUpRoFUvsaBZHQL9xzX1anrJ1fZQoaAZoCWgPQwjY9KCglK5uQJSGlFKUaBVNKgFoFkdAv3Hxa+vhZXV9lChoBmgJaA9DCOzeisSEC3JAlIaUUpRoFUvuaBZHQL9yFE384xV1fZQoaAZoCWgPQwjk+KHSSBFzQJSGlFKUaBVNHAFoFkdAv3JVIWgvlHV9lChoBmgJaA9DCAN64c4F2nFAlIaUUpRoFUvqaBZHQL9yXF5fMOh1fZQoaAZoCWgPQwh7MCk+/rFyQJSGlFKUaBVL1GgWR0C/coHOfNA1dX2UKGgGaAloD0MIQQ5KmKlPcUCUhpRSlGgVS8doFkdAv3KHfR/mT3V9lChoBmgJaA9DCH6OjxZnz25AlIaUUpRoFUvnaBZHQL9yjOjqOcV1fZQoaAZoCWgPQwj3ViQmqF1xQJSGlFKUaBVLymgWR0C/csAXMyJsdX2UKGgGaAloD0MIrB4wD9l3ckCUhpRSlGgVS8toFkdAv3MRkrf+CXV9lChoBmgJaA9DCNY4m47AbnFAlIaUUpRoFUvxaBZHQL9zWZgG8mN1fZQoaAZoCWgPQwg3jliLDzpxQJSGlFKUaBVL4GgWR0C/c3HQ2MsIdX2UKGgGaAloD0MIyXN9H07ScUCUhpRSlGgVS+JoFkdAv3OFsdkrgHV9lChoBmgJaA9DCBnkLsKUnXBAlIaUUpRoFUvMaBZHQL9zp2ycCo11fZQoaAZoCWgPQwgBvXDnAvNyQJSGlFKUaBVLt2gWR0C/c/q8QI2PdX2UKGgGaAloD0MI0erkDEWdZECUhpRSlGgVTegDaBZHQL90ERoRIz51fZQoaAZoCWgPQwhQx2MGqqduQJSGlFKUaBVL0WgWR0C/dCt5le4TdX2UKGgGaAloD0MI+FCiJQ8Mb0CUhpRSlGgVS75oFkdAv3RLvMKTjnV9lChoBmgJaA9DCNUD5iHT7XNAlIaUUpRoFUv7aBZHQL90lT1CgK51fZQoaAZoCWgPQwhYyFwZVIVyQJSGlFKUaBVNTgFoFkdAv3SVvitJWnV9lChoBmgJaA9DCFDFjVsMTXRAlIaUUpRoFUu9aBZHQL90pFC9h7V1fZQoaAZoCWgPQwgfEr73txVlQJSGlFKUaBVN6ANoFkdAv3mMlkYoAnV9lChoBmgJaA9DCJvIzAWuqG9AlIaUUpRoFU1CAWgWR0C/eZk1IiC8dX2UKGgGaAloD0MIdXXHYhsqb0CUhpRSlGgVS9FoFkdAv3nh3Roh6nV9lChoBmgJaA9DCBGPxMsTK3FAlIaUUpRoFUvpaBZHQL955R7Z39t1fZQoaAZoCWgPQwim0eRiDO9uQJSGlFKUaBVLyWgWR0C/elbGWD6FdX2UKGgGaAloD0MI5PT1fE0oYkCUhpRSlGgVTegDaBZHQL96anH/9511fZQoaAZoCWgPQwjzdK4o5eZwQJSGlFKUaBVLx2gWR0C/em5y+6AfdX2UKGgGaAloD0MISMK+nUQucECUhpRSlGgVS7ZoFkdAv3qqlwcYInV9lChoBmgJaA9DCK2Imuizx3FAlIaUUpRoFU01AWgWR0C/esqEFnqWdX2UKGgGaAloD0MIxXJLq6G3ckCUhpRSlGgVS+xoFkdAv3rWIHkcTHV9lChoBmgJaA9DCOHwgohUV3FAlIaUUpRoFUvaaBZHQL968iiZfD11fZQoaAZoCWgPQwgoDqDf93BxQJSGlFKUaBVL4WgWR0C/ewuAAhjfdX2UKGgGaAloD0MIIuLmVDL3ckCUhpRSlGgVS71oFkdAv3sOaVlf7nV9lChoBmgJaA9DCBxg5jt4bm9AlIaUUpRoFUvNaBZHQL97HscyWRl1fZQoaAZoCWgPQwgcCTTYlMJyQJSGlFKUaBVLzmgWR0C/e2sPWhAXdX2UKGgGaAloD0MIwK4mT5kAdECUhpRSlGgVS/VoFkdAv3u9RuTA33V9lChoBmgJaA9DCOOL9nghQ3JAlIaUUpRoFUvVaBZHQL98AyWzF/B1fZQoaAZoCWgPQwjxZg3eV+JcQJSGlFKUaBVN6ANoFkdAv3wFhlUZN3V9lChoBmgJaA9DCBXhJqOKmXFAlIaUUpRoFUvlaBZHQL98EMRHww11fZQoaAZoCWgPQwiAgSBAxpJyQJSGlFKUaBVL82gWR0C/fDr/0dzXdX2UKGgGaAloD0MIzVZe8r83b0CUhpRSlGgVS89oFkdAv3xX0qYqonV9lChoBmgJaA9DCH+8V61MlnJAlIaUUpRoFUv3aBZHQL98eVHnU2F1fZQoaAZoCWgPQwi8BRIUP/5yQJSGlFKUaBVL7GgWR0C/fIIBikO7dX2UKGgGaAloD0MIWBr4UU15ckCUhpRSlGgVS+FoFkdAv3yQzfrKNnV9lChoBmgJaA9DCJVm8zhM8HNAlIaUUpRoFUvZaBZHQL98moLofSx1fZQoaAZoCWgPQwj7rgj+dwNzQJSGlFKUaBVLumgWR0C/fMSZ4Oc2dX2UKGgGaAloD0MImgrxSDybckCUhpRSlGgVS/NoFkdAv3zbSMLncXV9lChoBmgJaA9DCF5jl6heGHFAlIaUUpRoFUvFaBZHQL99Ig8KXv91fZQoaAZoCWgPQwiNs+kIoMRwQJSGlFKUaBVLv2gWR0C/fVYkiUxEdX2UKGgGaAloD0MIzo5U33nYcECUhpRSlGgVS79oFkdAv31jeTFERnV9lChoBmgJaA9DCIVefxJfm3FAlIaUUpRoFUvaaBZHQL99imnfl6t1fZQoaAZoCWgPQwjeBN80vd1yQJSGlFKUaBVLrmgWR0C/fZENvwVkdX2UKGgGaAloD0MIo3iVtU0lcUCUhpRSlGgVTV8BaBZHQL99kUrkKeF1fZQoaAZoCWgPQwhvnBTmPSZvQJSGlFKUaBVLx2gWR0C/fZ9r433pdX2UKGgGaAloD0MI7fMY5VkMcECUhpRSlGgVS99oFkdAv34MlUp/gHV9lChoBmgJaA9DCCMShZZ1XXJAlIaUUpRoFUvnaBZHQL9+ElSjxkN1fZQoaAZoCWgPQwg+sOO/AMZwQJSGlFKUaBVLvmgWR0C/fi+x0MgEdX2UKGgGaAloD0MIsylXeBckcUCUhpRSlGgVS/VoFkdAv35E9t/FznV9lChoBmgJaA9DCHOBy2PNH3FAlIaUUpRoFUv5aBZHQL9+VnQpnYh1fZQoaAZoCWgPQwj6JeKtc+dkQJSGlFKUaBVN6ANoFkdAv357faYeDHV9lChoBmgJaA9DCOwvuyfPM3BAlIaUUpRoFUu1aBZHQL9+mBVMmF91fZQoaAZoCWgPQwjH8UOlkWhyQJSGlFKUaBVLrmgWR0C/ftmmHgxbdX2UKGgGaAloD0MIi/z6ITavcECUhpRSlGgVS8doFkdAv3706vJRwnV9lChoBmgJaA9DCHk7wmnB121AlIaUUpRoFUvDaBZHQL9+9Fjd56d1fZQoaAZoCWgPQwiA9E2axhZwQJSGlFKUaBVL5WgWR0C/fwZWV/tqdX2UKGgGaAloD0MIsRafAuCKcUCUhpRSlGgVS+ZoFkdAv381sANoanV9lChoBmgJaA9DCPet1omL0HBAlIaUUpRoFU07AWgWR0C/f2jPv8ZUdX2UKGgGaAloD0MIaOp1i0DDYUCUhpRSlGgVTegDaBZHQL9/lR4hUzd1fZQoaAZoCWgPQwiKlGbzOBpwQJSGlFKUaBVL2GgWR0C/f6y4OMESdX2UKGgGaAloD0MIMzUJ3pDWRECUhpRSlGgVS2NoFkdAv3+xWvKU3XV9lChoBmgJaA9DCHb/WIgOWHJAlIaUUpRoFUvqaBZHQL9/xuejEeh1fZQoaAZoCWgPQwjqJcYyvWdwQJSGlFKUaBVL2mgWR0C/f8v/FR51dX2UKGgGaAloD0MI41Eq4QlyUkCUhpRSlGgVS65oFkdAv3/j101ZT3V9lChoBmgJaA9DCCpwsg2c+HFAlIaUUpRoFUvdaBZHQL9/5ddE9dN1fZQoaAZoCWgPQwgU56ij46xwQJSGlFKUaBVLwWgWR0C/f+rS/j82dX2UKGgGaAloD0MIQiYZOQtMZUCUhpRSlGgVTegDaBZHQL+ABV+I/JN1fZQoaAZoCWgPQwjNyCB30QJxQJSGlFKUaBVLtmgWR0C/gDeYc/+sdX2UKGgGaAloD0MIqiuf5TmGcUCUhpRSlGgVS+VoFkdAv4BtuGbkO3V9lChoBmgJaA9DCFKbOLnfFXJAlIaUUpRoFUvYaBZHQL+AfTzND+l1fZQoaAZoCWgPQwj6uaEpO8BuQJSGlFKUaBVNFAJoFkdAv4B+dQO4G3VlLg=="
|
73 |
},
|
74 |
"ep_success_buffer": {
|
75 |
":type:": "<class 'collections.deque'>",
|
76 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
},
|
78 |
+
"_n_updates": 492,
|
79 |
"n_steps": 1024,
|
80 |
+
"gamma": 0.99,
|
81 |
"gae_lambda": 0.98,
|
82 |
"ent_coef": 0.01,
|
83 |
"vf_coef": 0.5,
|
84 |
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
"n_epochs": 4,
|
87 |
"clip_range": {
|
88 |
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
},
|
91 |
"clip_range_vf": null,
|
92 |
"normalize_advantage": true,
|
ppo-LunarLander-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 84893
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9ec1efb95614a06c431b1fe046f3e18f6747ad906fd52674974ba49ffd3a8a50
|
3 |
size 84893
|
ppo-LunarLander-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 43201
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3dfd6d5c5e81ff0fe65ff2a4322dd0837f5abce42e2e9140f4477d5ffab5ac98
|
3 |
size 43201
|
ppo-LunarLander-v2/system_info.txt
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
-
OS: Linux-5.
|
2 |
-
Python: 3.
|
3 |
Stable-Baselines3: 1.5.0
|
4 |
-
PyTorch: 1.11.0+
|
5 |
GPU Enabled: True
|
6 |
-
Numpy: 1.
|
7 |
Gym: 0.21.0
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
Gym: 0.21.0
|
replay.mp4
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d870f480eb392810855b269cbf09fe10434e4d8ac331a0a60ff41988839171ac
|
3 |
+
size 217069
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 280.0433239325761, "std_reward": 18.847070735785138, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-06T22:20:33.984304"}
|